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SUMMARY

Using the moments of gene frequencies, the drift variances of heterozy-
gosity and genetic distance in transient states have been studied under the
assumption that all mutations are selectively neutral. Interestingly, this
approach provides a simple derivation of Stewart’s formula for the vari-
ance of heterozygosity at steady state. The results obtained indicate that
if all alleles in the initial population are equally frequent, the standard
derivation of heterozygosity is very small and increases linearly with
timein the early generations. On the other hand, if the initial allele frequen-
cies deviate appreciably from equality, then the standard deviation in the
early generations is much larger but increases linearly with the square root
of time. Under certain conditions, the standard deviation of genetic dis-
tance also increases linearly with time. Numerical computations have
shown that the standard deviations of heterozygosity and genetic distance
relative to their means are so large that a large number of loci must be
used in estimating the average heterozygosity and genetic distance per
locus.

1. INTRODUCTION

The genetic variability of a population is usually measured by the average
heterozygosity per locus, while the gene differences between two populations may
be measured by the genetic distance proposed by Nei (1972). The expected value of
heterozygosity of a locus maintained by selectively neutral mutations in a finite
population has been studied by Malécot (1948), Kimura & Crow (1964) and Kimura
(1968) for both transient and steady states while the drift variance at steady state
has recently been obtained by Stewart (1974). However, no one seems to have
studied the variance of heterozygosity in transient states. Since the steady state
is reached only when population size remains constant for a long time, this variance
should be worked out. On the other hand, the expected genetic distance between
two populations that have been isolated for an arbitrary number of generations has
been studied for some important cases by Nei (1972), Nei & Feldman (1972) and
Chakraborty & Nei (1974). However, the drift variance of this quantity has yet to be
studied. Empirical data from natural populations suggest that this variance is
generally very large (cf. Nei & Roychoudhury, 1974a). The purpose of this paper
is to study this variance as well as the variance of heterozygosity in transient states.
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It should be noted that the variances to be studied here are those due to random
genetic drift. The sampling variances of these quantities at the time of survey have
already been studied by Nei & Roychoudhury (1974b).

2. VARIANCE OF HETEROZYGOSITY

Let us consider a randomly mating diploid population of effective size N. We
assume that N is sufficiently large so that 1/N?2 and higher powers of 1/N are negli-
gible compared with 1/N. Following Kimura (1968), we assume that there are £
possible allelic states at a locus and each allele mutates at the rate of v per genera-
tion to any one of the I = k— 1 other allelic types with equal probability. We assume
that in each generation the gene frequency changes first by mutation deterministic-
ally and then by random sampling of gametes stochastically. Selection will not be
considered in this paper.

The homozygosity j(t) and heterozygosity A(t) of a locus in generation ¢ is defined
as Xa3(f) and 1 -—-Zz¥(t), respectively, where «,(t) is the frequency of the sth allele
and X stands for the summation over all alleles. Clearly, the variance of A(t) is
equal to that of j(£), and we skall determine the variance of A{t) by studying the
moments of j(¢). The mean j(¢) and variance V(j(¢)) of j(t) are given by

. k k
= B{j0} = B[ £ 210)| = £ B@i0), W
k 2
V(o) = B 3, 0] -7

- '=§1 E{xg(t)}+é B0 230} — 7). )

Thus, if we know the single and joint moments of gene frequencies, then 7(¢) and
V(j(t)) can be computed.

The single nth moment of gene frequency z;(t) has been studied by Kimura (Crow
& Kimura, 1956). It is approximately given by

"ty _ § n) 'B+n)rd+2)IN(A—-—B+:)I'(4+i-1)
o = 2\ ) T@+n+i) T (B+i) (A —B) (4 + % — 1)
xF(4+i—-1,-i,A-B,1 p)exp{—z(c+ 4N)t} (3)
where p =,(0), 4 =4Nc and B = 4Nd, in which d =9/l and ¢ = kd, while
F(-,-, -, ) denotes the hypergeometric function.

The joint moments of two gene frequencies can be obtained by extending
Kimura’s method. Let u,$) = E{af(t) 27(t)} be the m, nth moments of z,(t) and z(¢).
In our mathematical model, x;(¢) and x;(¢) satisfy the following recurrence equations:

zi(t+1) = Xy(t) +0X,(¢8), (4a)
w;(t+ 1) = Xy(t) +0X,(¢), (4d)
where X,(t)=(1—c)x,(t)+4d,

EBX (0} = 0,
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E[{6X,(1)}"] = X,(t) (1 — X ())/(2N),

and E(OX,(t) 0X,(t) = — X,(t) X,(t)/(2N).
Approximating g, &0 — 48 by dp,)/dt, we obtain the following differential
equation:

dg i) m+n ,
Lo =—L(A+m+n 1) 8

; n ’

where the terms involving 1/N2and higher-order terms are neglected. In the absence
of mutation 4 = B = 0, and (5) reduces to that of Kimura (1955).

It is not easy to obtain a general solution of (5), but all the moments can be
obtained step by step, starting from z£)¥ and . The complete expressions of the
moments that are required for our purpose are given in the Appendix. The mean and
variance of j(f) can be obtained by using these moments together with the single
moments given by (3). Since, however, the general formulae are very complicated,
we shall present simplified formulae for the case of k — co. In practice the following
formulae are sufficiently accurate if £ > 20. We also note that at the molecular.
level k is practically infinite.

={j(0)—j}exp{ (2v+2N) }+j, (6)
V(j(t))=O’exp{ (4v+2N) =+Dexp{ (3v+2N)t}
+Gexp{ (2v+2N) }+j_2(oo)—32(t), (7)

where
= j(e0) = 1/(M +1),
(M +6)/{(M +1) (M +2) (M +3)},
= 2{j(0) -7} (M + 16)[{(M + 4) (M + 5)},
D = 4{j(0) + 2Za}(0)}/(M + 6) — 2G(M + 5)[(M + 6) — 45 /(M +2),
C = j*0)~ D~ G—5%(),
in which M = 4Nwv. Expression (6) is equivalent to Malécot’s (1948) formula for the
inbreeding coefficient for the case of k¥ = 2. Noting that A(¢) = 1—j(¢) and

V(h(t)) = V(i)
it is clear that at equilibrium
k(o) = M|(M +1), (8)
V = V(h(c0)) = 2M[{(M +1)2 (M +2) (M + 3)}. (9)
Formula (8) is identical with Kimura’s (1968) and (9) with Stewart’s (1974).
When (4v+ 3/N)t is much smaller than 1, formulae (6) and (7) can further be
simplified. The mean and variance of heterozygosity are then given by

Ai(t) = h(0) + DI~ 12)17\,(0)_ !

_J
JHe0) =
¢

t (10)
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V(h(t)) = kyt + ks t?, (11)
approximately, where
Ny = 2(Zx3(0) - 5%(0)),

8%k, = 4C(M + 32+ 9D(M + 2)%/4+ G(M +1)° - 2(0) {25(0) — 37} (M + 1)~ 2.
We note that if all alleles in the initial population are equally frequent,
323(0) = j%0) and thus k, =0,

but otherwise k, + 0. We also note that k&, is much larger than %, unless 323(0) — 52(0)
is very small —say less than 1/N. Therefore, we have two different situations. Namely,
if Z23(0) = 5%(0),

V(h(t)) = kot (12)
In this case V(A(t)) is very small and the standard deviation (\/{V(k(¢))}) of A(¢)
increases linearly with time. Since the mutation rate is generally very small, this

linearity is expected to hold for a long period of time, if population size is large. On
the other hand, if Z22(0) —52(0) is not small, then

V(h(t)) = k,t (13)

approximately. In this case the variance is much larger than that for the first case
and increases linearly with time.

In the derivation of formulae (6) and (7), we have neglected terms involving
v[N, 1/N?, and higher orders. This approximation is satisfactory as long as there
are one or more variant alleles in the population and 2Nv < 1. However, if the initial
population is completely homozygous for an allele with j(0) = 1, then formula (7) is
not very accurate in the very early generations. For example, in the first generation
(7) gives V(h(1)) = v/N while the exact value is 2v/N if 2N < 1/v. (Note that the
varianceis of the order of v/N, which has been assumed to be negligible in our formu-
lation.) Numerical computations, however, have shown that the difference between
the approximate and exact values relative to the approximate value decreases very
rapidly. For example, if ¥ = 250,000and v = 10—7, formula (7) gives a good approxi-
mation for ¢ > 100.

The formulae developed above may be applied to two different situations. One is
the case where a large number of independent populations are derived simul-
taneously from a common ancestral population and the variation of heterozygosity
at a particular locus among populations is to be studied. In this case, if the effective
size is the same for all populations, then formulae (6) and (7) are directly applicable.
The other case is that where the variation of heterozygosity among loci in a single
population is to be studied. If the initial gene frequencies and mutation rate are the
same for all loci, formulae (6) and (7) are again applicable. In practice, however, the
initial gene frequencies vary from locus to locus except in some special cases. In
this case the initial conditions j(0), j%0), and Z23(0) in (6) and (7) should be replaced
by their means over all loci, i.e. 7(0), j2(0), and E{Z2%(0)}, respectively. Therefore

30 = (30)~Tyexp{ ~ (204 55) 45 (14)
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V(4(t) =(7exp: (4v+ﬁ) }+Eexp{ (3v+2i,) }
+G"exp{ (2v+2N) }+j—2(oo)—j'2(t), (15)

where C, D and @ are respectively the means of C, D and G over all loci with respect
to the initial gene frequencies.

It is noted that V(j(#)) in (15) corresponds to the ‘interlocus’ variance in Nei &
Roychoudhury (1974b). This interlocus variance can be decomposed into two com-
ponents, i.e. the ‘interclass’ and ‘intraclass’ variances. The former refers to the
variance due to the differences in initial gene frequencies among different loci, while
the latter is the expected variance within gene frequency classes. The intraclass
variance can be computed in the following way. We first classify the loci in the
genome according to the initial gene frequencies, and let P, be the proportion of
the sth class of loci whose initial gene frequencies are identical with each other.
The expected intraclass variance can then be computed by

Vulh(t)) = 2 FV(hs(t))s (16)

where V{(h(t)) is the variance of heterozygosity for the sth class of initial gene
frequencies and given by (7). Therefore,

V. (h(t)) = C_’exp: (4v+2§v) }+Bexpl (3v +23\7) t:
+1G-23(30) —exp{ - (20453, ) ¢
—{73(0) — 25(0)] +] }exp{ (4v+%) t}+17. (17)

On the other hand, the interclass variance is the variance of A(t) due to the variation
of 2(0) in (6). Therefore,

W, (h(t)) = V(h(0)) exp { - (4'0 + %) t} . (18)

This indicates that the effect of initial gene frequencies declines at a rate of 4v + 1/
in every generation. Furthermore, it can be shown that

V(R(t)) = V,(h(t)) + Vy(R(2)), (19)
as it should be.

As noted earlier, V(h(t)) refers to the variation of heterozygosity among loci.
Therefore, if we compute average heterozygosity from 7 loct which are randomly
chosen from the genome, the expected variance of average heterozygosity is given
by V(k(t))/n, neglecting the sampling variance at the time of gene frequency survey.
If, however, one is interested in the variation of average heterozygosity among
different populationswhich have been derived simultaneously from the same common
ancestral population and average heterozygosity is computed from the same set of
n random loci, then the expected variance of average heterozygosity is given by
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V.,(R(2))/n. In nature, of course, most isolated populations or species would not have
been derived at the same time. Furthermore, there is no assurance that the effective
size has been the same or similar for all populations. Therefore, except in artificial
populations it is difficult to get the observed value of V,(k(?)).

Table 1. Means (k) and standard deviations (o(h)) of
heterozygosity in transient states

The mutation rate is assumed to be 10-7 per locus per generation.)
P g

Generation 0 10 102 10 108 10°
N = 250000
R 0-0 2x 10-¢ 2x10-8 0-0020 0-081 0-0909
a(h) 0-0 6:3x 106 6-3x10-5 0-0062 0-150 0-159
)3 0-5 0-49999 0-49991 0-491 0-136 0-0909
o(h) 0-0 1-4x 10-5 1-4x 104 0-014 0-189 0-159
I 0-48 0-47999 0-47991 0-472 0-134 0-0909
V(h) 0-0 7-7% 107 7-7 %1086 0-0009 0-035 0-0253
o(h) 0-0 87x 104 0-0028 0-03 0-188 0-159
N = 200

I3 0-0909 0-0887 0-071 0-00008 0-00008 0-00008
o(h) 0-159 0-160 0-153 0-0052 0-0052 0:0052

In Table 1 four examples are given to illustrate how the mean (%) and standard
deviation (o(h) = 4/[V(R())]) of h(t) = 1—j(t) change with evolutionary time. It is
assumed that v = 10~7 and k¥ = co in all cases. The mutation rate of v = 10~7 seems
to be appropriate for an organism whose generation time is about one year (cf.
Kimura & Ohta, 1971; Nei, 1975). The population size is assumed to be N = 250000
in all cases except in the last. In the first case of 2(0) = 0, % and (%) both increase
almost linearly with increasing ¢ up to about £ = 10000 and then the rate of increase
gradually declines. (As mentioned earlier, however, the value of o(k) is not very
accurate for ¢ < 100.) In the second case, where z,(0) = z,(0) = 0-5, o(k) again
increases linearly with time up to about { = 10000. In the third example of

2,(0) =06 and z,(0) = 0-4,

V(R) rather than o(h) increases linearly with time in the early generations, as
mentioned earlier. Comparison of (k) between the second and third cases shows
that it is much larger in the latter case than in the former. It is also seen that in all
of the above three examples both % and o(h) practically reach the equilibrium value
by generation 107. The asymptotic rate of approach to the equilibrium value is the
same for both % and V (h), as is clear from (6) and (7). It is interesting to note that the
variance of heterozygosity in the transient state may be larger than the equilibrium
value (the second and third examples).

In the fourth example, it is assumed that the initial population was in equilibrium
with N = 250000 but the population size was subsequently reduced to N = 200,
and the mean and variance of heterozygosity among loci is computed. Therefore,
£(0) = 0-0909 and o(h(0)) = 0-159 from (8) and (9), whereas E{Z2%(0)} = 0-8658
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from (23’), which is given in the next paragraph. This example may simulate the
evolution of a cave population in the characid fish Astyanax mexicanus (Avise &
Selander, 1972). It is clear from Table 1 that average heterozygosity declines rather
rapidly in the early generations and practically reaches the equilibrium value by
generation 10000. On the other hand, the standard deviation of heterozygosity
obtained from (15) first increases slightly and then starts to decrease. By generation
10000 it again reaches the equilibrium value.

Stewart (1974) derived a formula for the variance of heterozygosity at steady
state for an arbitrary value of £ by studying the equilibrium joint distribution
of z,,...,2;. If we use the present method, his result can be obtained very easily.
Namely, at steady state the left-hand side of equation (5) is 0, so that the joint
moment of gene frequencies becomes

T(B+m)T(B+n) T(4)

() _.
tm’ = T4 +m+n)D(B) (B’ (20)
while the single moment is
’ , I'(B+n)I'(4)
(0) — 5"ty . _AD T2\
Hn = Hno F(A+n)l"(B)’ (21)
which also follows from formula (3). Therefore,
ko ko k 2
Vo) = B+ 3 ik | 5 )
i=1 i+] i=1
_ 2M(1+M|l) (22)
T +MAMAR2C+M+M)B+M+ M|l
This i1s identical with Stewart’s formula. It can also be shown that
_ (1+M[)(2+ M)
B{Zei(oo)} = T ar < 710 @ 7 + 30)’ (23)
which reduces to
2/[(M + 1) (M + 2)] (23")

when k or [ - o0.

3. VARIANCE OF GENETIC DISTANCE

In the last two decades, several different measures of genetic distance between
populations have been proposed (e.g. Sanghvi, 1953; Cavalli-Sforza & Edwards,
1967; Rogers, 1972). However, most of these measures are constructed from the
statistical point of view and it is not clear what biological unit they are going to
measure (see Nei, 1973, for review). In contrast to these measures, the genetic
distance proposed by Nei (1972) is intended to estimate the accumulated number
of gene substitutions (net codon differences) per locus between populations. He has
devised three different estimates of this number, i.e. the minimum (D,,), standard
(D) and maximum (D’) distances. For the biological meanings of these estimates or
distances the reader may refer to Nei (1972, 1973) and Nei & Roychoudhury (1972).

Nei’s genetic distance is based on the identities of genes within and between
populations. Let z; and y, be the frequencies of the ith allele at a locus in populations
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1 and 2, respectively. The probability of identity of two randomly chosen genes
from population 1isj, = Zx? and that from population 2 is j, = Zy%. The identity of
two genes chosen at random, one from each population, is j,, = Zz;y;. The three
distance measures are then defined as:

minimum: D,, = (J;+)/2—J},, (24)
standard: D = —log, [Suy(% )] (25)
maximum: D’ = —log, [J15/s/(J1J3)], (26)

where J,, J, and J, are the arithmetic means of §;, j, and j,, over all loci, respectively,
while J3, J; and J3, are the geometric means. Since the genetic distances defined
above are intended to measure the number of gene substitutions per locus, a large
number of loci which are ideally a random sample of the genome should be used,
including the polymorphic and monomorphic loci, as in the case of estimation of
average heterozygosity. Note that Jj, is 0 if one of j,,’s is 0; then the maximum
distance is meaningless. Actually, D’ always tends to be an overestimate of the
number of gene substitutions, and it is safe not to use this estimate if any one of
J12’s issmall compared with unity (Nei, 1972). In the following, we shall not consider
the maximum distance. As in the case of heterozygosity, the variance of genetic
distance may be computed among a random set of loci between a given pair of
populations as well as among independent pairs of populations at-the same loci. In
the present paper we shall first study the variance among loci and then show how to
compute the variance appropriate for the latter case.

Now suppose that a population splits into two populations and thereafter no
migration occurs between the two populations. In the absence of selection the
differentiation of gene frequencies occurs due to mutation and random genetic
drift. The genetic distance measures mentioned above were originally designed to
be applied to the case where the sizes of the ancestral and the two descendant popula-
tions are more or less the same, so that in each population equilibrium between
mutation and genetic drift is maintained throughout the process considered.
Chakraborty & Nei (1974), however, showed that the distance measures are quite
robust and applicable even when the size of one of the two descendant populations is
100 times larger or smaller than that of the other. Let N, and N, be the effective
sizes of populations 1 and 2, respectively, and assume that they are so large that the
terms involving 1/N%, 1/N%, 1/(N, N,) and higher order terms are negligible. We first
consider the mean and variance of the minimum genetic distance in generation ¢
after reproductive isolation.

At a particular locus, the minimum genetic distance is defined as

d(t) = 3 5:(t) +J:(0)] —Jr2(8). (27)
The mean [d,,(t)] and variance [V(d,(t))] of d,,(t) over loci are given by
d(t) = H71(8) +72(0)] — Ta2t), (28)

V(@n(t)) = 2LV (5:(8)) + V(52())] + Eeov (51 (8), 52(8)) + V (5:12(8))
— 0V (jy(£): J12(£)) — cOV (Ja(t), J12(2))-  (29)
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Clearly, D,, in (24) is an estimate of d,,(t). We have seen that 7,(f) and j,(t) are given
by (14), while 7,,(¢) is given by 7,,(0)e~2¢ (Nei, 1972; Nei & Feldman, 1972). If
N, = N, = N and equilibrium between mutation and genetic drift is maintained
throughout the process with 7;(0) = 7,(0) = 7;5(0) = 7, then (28) reduces to
d,n(t) = J(1— exp{—20t}). (30)
We also know that V(j,(¢)) and V(jy(t)) are given by (15). On the other hand,
cov (j,(0), juft)) is given by
B OO+ Z B0 Y50} —7(6)7(0)-
Therefore, in order to know cov (4,(t), 7(¢)), we must evaluate the joint moments
Koo, 00 = E{x3(t) y3(8)} and pgg o9 = E{r}(t) y5(t)}. These moments can be obtained by

the method given in the Appendix. The results are, however, very complicated and
we may consider only the case of £ = c0. In this case we have

cov (0)ut) = cov (s (O) s exp |~ (404 5+ ). (31)

The variance V{(d,(¢)) includes three more quantities to be determined. They can
be obtained in the same way as the above and are given by

V() = gexp - (4”+211v raw)if+ Baeso |- (0455 )

+03exp{ (30+2N) }+F3exp{—2vt}—5§2(0) exp{—4vt}, (32)

cov(jl(t),j12(t)) =A4exp{ (4”"'21\7) }+B4exp{ (3v+2N1) }

+Fyexp {— 20t} ~J;(£)712(t), (33)

where

M, = 4Nv, M, = 4N,v, Ay = E{j3(0)}—B;—C;—

By = 2[E{Zx}(0) y,(0)} — 25,2(0)/(M, + 2)]/ (M, + 2),

Cs = 2[E{Zx,(0) y3(0)} — 2715(0)/ (M + 2)) /(M +2),

F3 = 25,5(0) [Ny/(M; + 2) + Nof (M, + 2)][ (N, My + Ny + V),

4, = B{j,(0)5,,(0)} — B,— F,,

B, = [4E{Z2%(0) y,(0)} — (8 — 214,) 5:5(0)/(M, + 2)]/ (M, + 4)
and

Fy = €515(0)/[(M, + 2) (B, + 3)].
The formula for cov (j,(t), j15(t)) can be obtained by interchanging x,(0) and y,(0)
and subscripts 1 and 2 in (33).
Therefore, putting the above variances and covariances of j,(¢), j,(t) and j,,(f) into
(29), V(d,,(t)) can be evaluated. One of the important cases to which (29) may be
17 GRH 25
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applied is that where the sizes of the ancestral and the two descendant populations
are more or less the same. In this case we may assume that

N,=N,=N, M,=M,=M,
Talt) = 75(t) = 712(0) = = 1/(M + 1),
V(5:(8) = V(jaft) = cov (51(0), j(0))
=V = 2M|[(M +1)2 (M +2) (M +3)],

E{j3,(0)} = B{j1(0)15(0)} = j3(c0) = (M + 6)[{(M + 1) (M + 2) (M + 3)}
and
B{Ea(0)y(0)} = B{Zx,(0)y3(0)} = B(ZaX(0)} = 2/[(M +1) (M +2)].

Therefore, (29) reduces t-

& 4M +6
—1 4  ompl A2 _
V(d,@) = 2V+2y{j T 2F 73 }exp{ 20t} —j2exp{— dvt}

~arsyure |~ (" a)'

(304
17 +arvap) ol (+x) |

2M} 3
+(——M+3)(M+4)6Xp{ (47J+2N) } (34)
When (4v +- 3/2) t is much smaller than 1, the above formula can be approxi-
mated as follows:

V(dm(t)) = k1t2, (35)
where
M7 3\2 T, AM +6
by = (L +3) (M +4) (4”+2N) "49”2[J+(M+2)2(M+3)]

o.M 1\2 1[.o (M) 1)\
~arrorn(+am) *317+arre (2 4F)
Thus, both the mean (30) and standard deviation of minimum genetic distance
increase linearly with time in the early generations. This linearity is expected to
hold for a long period of time, if N is large.

As in the case of heterozygosity, the variance of genetic distance among loci can
be decomposed into the intraclass [V,(d,,(t))] and interclass [V,(d,())] variances.
Namely,

V(d(t)) = Vp(@n(t)) + Vo(d()). (36)

The interclass variance is the variance of d,,(¢) in (27) due to the variation of
72(0), 75(0) and j;5(0) among loci. Therefore, we have

Vo) = D) + VoG4
+300v (7(0) O exp{ - (0 53+ 537 + VO exp(— 408
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— 0V (1(0),515(0)) exP: (4” + 2;\7) }

~cov (OO exp | - (4-+337) ). (37)
If §,(0) = jo(0) = 4,5(0) = 5(0) at each locus and N, = N, = N, the above formula
reduces to
: 2
Vi(d,(t) = (h(O)){exp{ (21) +ﬁ) } exp{—2vt}} ) (38)
Furthermore, if (4v+ 1/N)t < 1,
Vo(dn()) = V(R(0)) (¢/2N) (39)

approximately. Formulae (38) and (39) indicate that the interclass variance
initially increases with time but eventually becomes 0.

It is noted that (39) can be directly obtained from the following approximate
formula for d,,(t) for (2v+1/2N)t < 1:

d,,(t) = h(0) (t/2N). (40)
Note also that if j; = j, = 7(0) = j, then the mean of (40) over all loci is
- 4Nv ¢
mlt) = INo 12N
= 2vjt, (41)

as expected from (30).
The intraclass variance of genetic distance can be obtained by the same method
ag (16), but the result is somewhat complicated. However, if

Ny =Ny =N, 35() =7(t) = J12(0) = J,
and

V(5a(t)) = V(jat)) = cov(51(0),55(0)) = ¥,

then it is given by the difference between (34) and (38).

The intraclass variance gives the expected variance of genetic distance among
random pairs of populations when the same set of random loci are used for all
populations. For a given value of M = 4Nv the proportion of intraclass variance
among the total variance remains constant in the early generations and is given by
1-— V/(4N 2k,). This proportion is 0-78 when M is close to 0, and increases with
increasing M. For example, it is 0-80 for M = 0-1 and 0-83 for M = 0-2. Therefore,
in all cases the intraclass variance accounts for a major part of the variance of
genetic distance, as long as the balance between mutation and genetic drift is
maintained in the process of gene differentiation. .

Let us now consider the standard genetic distance, D. This distance is designed
to be applied to a set of loci and it is not meaningful to compute the distance for
each locus separately. Furthermore, since it involves the logarithm, it is not easy to
obtain the exact mean and variance of D computed from a finite number of loci.
However, approximate formulae may be obtained by using the method of Taylor

17-2
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expansion, assuming that the probabilities of J;, J; and J;, deviating far from their
means are negligibly small. This assumption seems to be satisfactory as long as a
large number of loci are used to estimate J;, J, and J;, and the populations to be com-
pared belong to the same species or different species in the same genus (Nei, 1973,
1975). The number of loci used (r) is generally larger than 20 in practice.

The expectation of D based on 7 loci is given by

D = — Blog, (l(hJ3)
- = = = 0D
= —log () + B =T 37| +B=T57)
~ ~log, (Tl ), (42)

where J, = E(J,), J, = E(J,) and J12 = E(J},), and the second and higher order
terms of (J; —J,), (Jo—Jp) and (J;,—Jj,) are neglected. The value (D(t)) of D at the
tth generation is given by (42) replacing J’s by J(t)’s where J(t) = Zj(t )/r in which
the summation is over all loci. We note that if Ji(¢) = J5(t) = J35(0) = j, then

+

D =20t (43)
(Nei & Feldman, 1972). Therefore, D is proportional to the divergence time.
Similarly, neglecting the third and higher order terms of (J; —J,), (J;— ) and
(Jy5— J5), the variance of D is given by

V(o) - &[5 ZHG) Beorlipi)  ZV G

4T | 4dp 2J,J, J 12
»> co‘:(,ipjm) > cov (éz,jn)] (44)
(]] le J2‘I12

approximately. Since the denominator of each term in the bracket in the above
formula is the same for all loci, the contribution of a locus to the total variance is

V() , V(ja)  cov(ji,de)  V(jie) €OV (Ji,fue) €OV (s, 515)
TO="Ge ey T Teg, T e Gy o
if the mutation rate is the same for all loci and each locus behaves independently.
V(d)in the tth generation can be evaluated by replacing 7’s by 7(¢)’s. Decomposition
of V(d)into the intraclass and interclass variances can be made by the same method
as that for the minimum genetic distance, and we shall not repeat it here.

Chakraborty & Nei (1974) showed that when the size (V,) of one of the two popula-
tions is drastically reduced after divergence a better measure of genetic distance is

D, = —log, (J1o/h), (46)

since this is porportional to the divergence time. The expectation and variance of
this measure can be obtained in the same way as the above. Namely,

Ea = _loge (‘]_]2/‘]—1): (47)
2V(4) 2V(.712) 2% cov (53, J32)
V(D, =~ 72[ J > T J12 Jle ] (48)
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Therefore, the contribution of a locus to the total variance is

_ V), Vi) _ 2¢ov (Jy, Jas)
A O S 5 A )
When J,(r) = J;5(0) = j, D, = 20t, as shown by Chakraborty & Nei (1974).

In table 2 the means and standard deviations of genetic distances are given for
two different situations. In Case 1 a population splits into two completely isolated
populations of equal size with equilibrium between mutation and genetic drift main-
tained. We assume that N, = N, = 250000 and 7,(¢) = 75(t) = 7,5(0) =7 = 1/(M + 1),
etc., as mentioned earlier. In Case 2 a small population of effective sizes N, = 200 is

Table 2. Means and standard deviations of genetic distances in
various generations after divergence of two populations

(The mutation rate is assumed to be 10~7 per locus per generation.)

Generation 0 10 103 10° 108 107
N, = N, = 250000
d,. 0 1-8x 108 1-8x 10— 0-018 0-165 0-786
o(d,y) 0 7-2 x 106 7.2 x 10~ 0-064 0-334 0-326
D 0 2% 108 2x10—4 0-020 0-20 2:00
o(d) 0 8-1x 108 8:1x 104 0-074 0-448 2-52
N, = 250000, N, = 200

D 0 0-0012 0-044 0-067 0-24 2-05
o(d) 0 0-0041 0-147 0-216 0-52 2-60
5,, 0 2%x10-8 0-0002 0-02 0-20 2-00
o(d,) 0 0-020 0-125 0-20 0-52 2-60

derived from a large population whose effective size (IV,) is 250 000. We assume that
74(8) = 715(0) =7 = 1/(M + 1). In both cases the mutation rate is assumed to be 107
per locus per generation.

In case 1 both d,, and D first increase linearly with increasing ¢, but after about 108
generations the linearity for d,, is destroyed. The standard deviations

o(dn) = {V(@,)} and o(d)={V(d}
of d,, and D for a locus increase linearly until about 10° generations, and then the
rate of increase declines. The standard deviations are both about four times larger
than their respective means until about 10° generations and then o(d,,)/d,, or
o(d)/D gradually declines. This indicates that in order to have a reliable estimate
of genetic distance a large number of loci must be used. If o(d)/D is 4 and one wants to
make a(D)/D to be } or less, then at least 64 loci should be used, where

o(D) = V{V(D)}-
If o(d)/D = 2-2 (the value at generation 10%), then the number of loci to be used will
be 19. The square root of the intraclass variance is smaller than o(d,,) but not much.
For example, the value for the minimum distance is 6-5 x 10-¢ for £ = 10 compared
with o(d,,) = 7-2 x 10~5.
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In case 2 the means and single-locus standard deviations of D and D, are given.
As expected, D is not linear with divergence time and increases rapidly in the early
generations. On the other hand, D, increases linearly with increasing number of
generations. The standard deviation (o(d,) = /{V(d,)}) of D, for a locus is, however,
very large in the early generations. Therefore, to obtain a reliable estimate of
D, a large number of loci must be studied. In the later generations there is not
much difference between the two distance measures in both the mean and standard
deviation

4. DISCUSSION

In the present study we have assumed that mutation rate is the same for all loci.
This assumption is certainly unrealistic and mutation rate would vary from locus to
locus. If this is the case, the variances of heterozygosity and genetic distance among
loci will be larger than those given in this paper. In practice, however, we do not
know the magnitude of the variation of mutation rate. It is worth noting that if
mutation rate varies with locus, the expected heterozygosity at steady state and
genetic distance become smaller than those obtained by replacing v in (8) and (43)
by the average mutation rate (Nei, 1975). For example, the expectation of average
heterozygosity at steady state can be shown to be equal to

M oy
M+1 (M+1)3
approximately, where M and 0%, are the mean and variance of M respectively.

We have also assumed that the number of possible allelic states at a locus is so
large, that whenever a mutation occurs in a population it represents a new allele
(the model of infinite number of alleles). This model seems to be appropriate if
allelic variants are identified at the nucleotide or codon level. In practice, however,
genetic variation is often studied by electrophoresis. Under the model of stepwise
change of electrophoretic mobility of protein, Ohta & Kimura (1973) and Nei &
Chakraborty (1973) studied the expectations of heterozygosity and genetic distance,
respectively. Ohta & Kimura showed that the expected homozygosity at steady
state is given by J = 1/,/(1 +8Nv), where v is the rate of mutation that induces
electrophoretic charge change. This value is much larger than 1/(1+ 4Nv), if 4Nv is
large, In practice, however, 4Nv is generally of the order of 0-15 or less (cf. Nei,
1975), and the difference between the two formulae is very small. The formula for
genetic distance in (43) is also approximately applicable for electrophoretic data
as long as D is smaller than 1 (Nei & Chakraborty, 1973). It is not easy to determine
the variance of heterozygosity under the model of stepwise mutation, but the com-
puter simulation conducted by Ohta & Kimura (1974) suggests that it is slightly
smaller than that given by our formula. The variance of genetic distance is also
expected to be slightly smaller. However, if such a technique as heat denaturation
treatment (Bernstein, Throckmorton & Hubby, 1973) is used in combination with
electrophoresis to detect protein variation, both the means and variances of hetero-
zygosity and genetic distance become closer to those for the model of infinite
number of alleles.
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In practice, average heterozygosity and genetic distance are measured by taking
samples from populations, and this sampling process introduces another variance.
Nei & Roychoudhury (1974b) presented a method for decomposing the variances of
average heterozygosity and genetic distance into the interlocus and intralocus
(sampling) variances. Empirical data have shown that the interlocus variance is
much larger than the sampling variance even when only about 40 genes (20 in-
dividuals) per locus are sampled. This large interlocus variance is of course expected
to occur due to random genetic drift. In fact, in a number of organisms there is a
good agreement between the observed interlocus variance of heterozygosity and the
theoretical variance computed from (9) (Nei, 1975). The present study indicates that
in transient states the drift variance of heterozygosity relative to the mean may be
larger than that at steady state. This is particularly so when population size has
recently been reduced. The drift variance of genetic distance is also very large, and
this large value of the expected variance of genetic distance is in agreement with the
empirical observations by Nei & Roychoudhury (1974a) and Chakraborty & Nei
(1974). These results again emphasize the importance of studying many loci for
estimating average heterozygosity and genetic distance. The strategy of determining
the number of loci and sample size per locus in estimating these quantities has been
discussed by Nei & Roychoudhury (1974b).

As mentioned earlier, a number of authors proposed different measures of
genetic distance. It is known that there is a strong positive correlation between these
measures when they are applied to closely related populations. One might, therefore,
suspect that the results obtained here are also applicable approximately to other
distance measures. We are not sure about this. Actually, there are a number of
problems in evaluating the variances of other distance measures. For example,
Cavalli-Sforza’s distance involves the square roots of gene frequencies, so that both
the mean and variance of this distance are expected to be a complicated function
of evolutionary time. (Under certain circumstances with no mutation, the expecta-
tion of his f; (Cavalli-Sforza, 1969) is approvimately linear with time for ¢ € 2N.)
Furthermore, his distance is intended to be applied not to a random set of loci but
to polymorphic loci alone. Therefore, in order to evaluate the variance, we must
know the initial gene frequencies, which are not obtainable in natural populations.
The same comment applies to all distance measures which make use of polymorphic
(selected) loci only.

In addition to our distance measures, those devised by Latter (1972), Rogers
(1972), and Hedrick (1971) are clearly intended to be applied to a random set of
loci. Latter’s distance is defined as y = 2D,,[(Jx + J¥) in our terminology. Thus, the
expectation of y under mutation-drift balance is linear with evolutionary time in
the early generations. The variance of y is somewhat complicated, but if the number
of loci used is large, the ratio of the standard deviation to the mean of this distance
would not be far from that of D,,. Rogers’ coefficient of dissimilarity is a function of
the square root of our d,,(t). Therefore, the expectation of this coefficient cannot be
linear with time even in the early generations. Its variance is also expected to be a
complicated function of evolutionary time. Hedrick’s coefficient of similarity (rather
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than dissimilarity) measures the degree of similarity of genotype frequencies rather
than gene frequencies between two populations and is a function of fourth moments
of gene frequencies in diploid organisms. Therefore, the variance of his coefficient
relative to the mean is expected to be large, since it becomes a function of eighth
moments of gene frequencies. This is true also with the sampling variance at the
time of gene frequency survey. For the comparison of other properties of various
distance measures, see Nei (1973).

We thank Dr Alan Robertson for his valuable comments on the manuscript. This
study was supported by U.S. Public Health Service Grant GM 20293.

APPENDIX
Joint Moments of the Gene Frequencies
(i) One population
From equation (5) we obtain the following formulae:

, , B 1
piP = [pp;— AG (A +2)1— pu ] exP{ (2c+2N) :
+AG' (A +2) 1 {exp —ct} +p5, (A1)

pa) = Qexp{ (3c+ﬁ) }+Rexp{ (20"'5’[\7) }+Texp{—ct}+,u;‘{°), (A2)

’ ’ ’ 3
pad) = A exp‘ (40+2N) }+B exp{ (3c+2N) }

+¢ eXP{ - (20 +%v)‘} + D’ exp{—ct} +p5"), (A3)

where 4,2 is given by (12), and
= (p;+p;—2[k)[k,
Q = pip;— B—T — ™,
= [2(B+ 1) {p;p;— AG' (A +2)—p}
+B{p}—2B+1) (p;— 1/k) (A +2) 7 — >} ] (A +4)7,
= (B+1){46" +B(p;— 1/k) }{(4 +2) (4 +3)}7,

A’ = pipi—B' —C'— D' — s,

B’ = 2(B+1)[p,;p}+pip;— 4B+ 1){pp; - AG'(A +2)7 =P HA +4)
—B{p?+p3—2(B+1) G'k(A +2)"1 — 2u3™} (A + 4)72
—2(B4+1)AGQ{(A+2)(A4A+3)} 1~ (B+1)AG{(A+2) (4 +3)}?
— 2] (4 +6)7,

= (B+1)[4(B+ 1) {p;p;— AG' (A +2) — i} (A + 4)
+B{p2+p7—2(B+ 1) G'H(A +2)7 25"} (A + 4)72 ] (A + 5)7,
D' =2(B+1)2AG{(A+2)(4+3)(4+4)}.
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By virtue of symmetry, #;¥ can be obtained simply by interchanging p; and p; in
formula (A 2). In the absence of mutation, 4 = B = 0 and the above formlae reduce
to those of Kimura (1955).

(ii) Two populations
Let x,(t), ;(¢), y,(t) and y,(t) be the frequencies of the sth and jth alleles at genera-
tion ¢ in populations 1 and 2, respectively. Since we assume that there is no migra-
tion between the two populations, these gene frequencies satisfy the recurrence
equation (4). Note also that dz,(¢) and dx;(¢) are independent of dy,(t) and dy,(t). Let

/'('1,1(12 pag — E{ (t) xn(t)yz( )y?(t)}

be the m, n, p, g-th moment of gene frequencies at generation ¢. Then, a differential
equation equivalent to (5) can be derived. Using this differential equation all the
moments required can be obtained successively starting from u;4 o,. However, the
results obtained are so complicated, that we present only the following typical
moments:

w1 = (pyg;— Gy — 1[k?) exp { — 2ct} + Gy exp { —ct} + 1[k?, (Ad4)
/ 3 3 1
ﬂagfﬁl:Asexp{ (40+2N) }+Bsexp{ (30+2N) }+O5exp{—(3c+§—lvl)t}
1 ’
+D5exp{ (20+2N) }+E’5exp{—20t}+F5exp{—ct}+/t3{,‘j°0)1, (A5)

, 1 1 1
,uz‘ot(,z—-Asexp{ (4c+2N 2Nz) }+B6exp{ (30+2N)>

(o) b ) B8

+ Fyexp { — 2ct} + Ggexp{ —ct} + o5, (A6)
where

P =20), ¢;=1y;(0), 4, =4Nc, 4,=4Nyc,
B, = 4N,d, B, = 4N,d,

Pasd = 3Wi(4,+ 3)"1+ B, I'(B, + 3) I'(4,)/{2T'(4, + 4) ['(B,)},
Wy=[2+A4,(By+1)(Ay+1)1(34,+2) k2 (A=1or2),
o = (NWh+ NoWp) 2Ny Ay + N+ )7, Gy = (py+g;—2[k)[K,

A5 =plg;—Bs—C— Dy~ Es— F;—ps(dh,  Bs = Uk,

O = 60,/(4,+4), Ds=(6R+B,0,)[(24,+4),

E; = 38,/(4,+3), F;=(6T,+B,U;)/(34,+6),

U, = p}—Uy—Us— (By +2) (By+ 1) {(4; +2) (4, + 1) B} 2,

U, = 3(By +2)[p2— 2(B, + 1) (p; — 1/k) (4, + 2)1— (B, + 1){(4, + 1)k} 1]/(4, + 4),
Us = 3(B,+2) (B, +1) (p;— 1/k) {(41+ 2) (4, + 3)} 7,
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Oy =pig;— P, =8, - T, -W,, Oy=p;0;— B8~ T,—-W,
R = [p}—2(B,+1)(p;— 1/k) (A, +2) — (B, + 1) {(4, + 1) k} ][k,
P, = [q? —2(By+1)(g;—1/k) (434 2)1— (B, +1) {(4y+ 1)k} 1)k,
S, = 2(p,q;—Go—1/k*) [(4,+2), A=1 or 2
Ty = Gy(4;+ 1)1+ By(By +1) (0, 1/k) {(4, + 1) (4, + 2)} 7,
Ty = Gy Ao+ 1)+ By(By + 1) (g;— 1/k) {(Ao+ 1) (A2 +2)}7,
Ag = pipi—By—Cg— Dg— Eg— Fy— G — poigge,  Bg = 20,/(4,+2),
Cs = 20,/(A,+2), Dg= P[(A,+1), Es= Bf(A,+1),
Fy = (NS, +N,8p) /(N Ay + N, +1N,), G = 2(N, Ty + N, To,)[ (8N, Ay + 2N, + 21N,).
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