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ABSTRACT

Structures placed in deep snow covers are subject to
forces caused by interruption of the down-slope snow-pack
deformation components. The resulting creep pressures are
often the primary design consideration. In this paper,
accurate field data (pressures) and theoretical analysis of the
problem wusing a linear creep law to define snow
deformation are presented. Results include analytical
expressions for the pressures, and it is demonstrated that
the resulting linear theory underestimates the mean pressures
by about 20%. Higher accuracy will require that a non-
linear deformation law be formulated.

INTRODUCTION

When structures are erected in deep snow covers, snow-
creep pressures are often the primary design consideration.
Important examples include avalanche defences in starting
zones, and ski-lift and power-line towers. Although it is
relatively easy to design structures which can withstand
creep pressures, the cost penalty for structures which are
stronger than necessary is often prohibitive. Conversely, the
failure of structures buried in deep snow covers can be
very expensive and potentially dangerous. These con-
siderations underline the importance of accuracy in the
specification of the expected creep loads.

For a given snow-pack, two elements control the
distribution and magnitude of forces on structures: (1) the
boundary conditions on the face of the structure and at
positions where the snow-pack is in contact with the
ground, and (2) the rheology of the material. In this paper,
the effects of boundary conditions are quantified and
compared with field data from a plane-strain configuration.
Calculations are given over the range of expected boundary
conditions appropriate to the data. In addition, simple depth
variations in snow-pack density and stiffness are explored
using linear rheology. Taken together, the data and
calculations indicate the direction that must be taken for a
complete definition of design loads. In particular, we are
able to show that in the future the focus of attention must
be on non-linear rheology.

MODELLING CONCEPTS

Alpine snow has a unique combination of physical
properties which have not vyet been formalized in a
non-linear  deformation law suitable for engineering
applications. These properties include: (1) high porosity; (2)
high temperature (relative to its melting point); and (3) very
low strength (it is the weakest bonded natural geotechnical
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material). These properties combine to produce slow
deformation which can occur even without an applied load.
The high porosity results in continuous densification
throughout the winter, through irreversible deformation
(mainly from grain re-arrangement). This viscous (or plastic)
deformation may be described as non-steady creep.

Given the absence of a non-linear formulation, a linear
deformation law is applied in this paper. The linear theory
yields analytical expressions for the expected loads on the
structure, and it provides information on the importance
and character of non-linear effects. Our approach is to
generalize linear visco-elastic behaviour from a model which
15 characterized in one dimension as a four-parameter
Burger Fluid (see Fligge, 1975, p. 22). This results in an
engineering formulation for describing interruption of slow,
viscous creep by a rigid structure on a slope with a deep
snow cover. Transient visco-elastic effects induced by
loading (new snowfall) are ignored; field data (McClung,
1975) show that transient creep rates in new snow layers
persist for several days following a storm.

Even when rapid (transient) creep rates are not present,
the creep loads on a structure are still time-dependent
because alpine snow is continuously densifying and settling,
making steady-state creep impossible. However, the effect is
very slow for a deep snow cover which has been present
for several months on a slope. For design purposes, the
time of greatest interest is late winter or early spring when
snow depth is at a maximum and densification is slow.
With a linear model it is possible to treat this aspect of
time-dependence by exploring slow variations in the moduli
as time proceeds but with constant values at a given instant
of time.

Generalization of the one-dimensional model to a
three-dimensional one (including both deviatoric and
hydrostatic components) is well known. Lang and Nakamura
(1984) have provided a rigorous treatment. For long-term
response (with initial stresses and transients ignored), the
linear constitutive equation becomes

2
9jj = 2”"1‘j + {n = Eﬁ]ekksij (1)
where p,n are shear and bulk viscosity, and i é;; are
stress- and strain-rate tensor components (rectangular

Cartesian coordinates in the {,j directions), 8;; is the
Kronecker delta. Equation (1) represents a linear,
compressible Newtonian viscous fluid neglecting the static
pressure term. The static term is not necessary for
describing alpine snow (Salm, 1967) because a state of rest
is not possible. We believe Equation (1) represents a
sufficiently accurate linear representation of alpine snow for
engineering applications. For alpine snow deforming slowly,
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strains due to viscous creep will exceed initial elastic strains
by several orders of magnitude.

Information about values of bulk viscosity is scarce,
but it is natural to relate the shear and bulk viscosity to
the wviscous Poisson’s ratio described by Reiner (1946,
1949):

3 =25
A G — (2)
2(3n + p)

Values for v have been summarized by Salm (1977) and
estimates of p have been given by Haefeli (1967). This pair
of parameters can be used to describe linear creep
deformation in general but, for plane-strain solutions, v will
be the only parameter to appear.

Both p and n may depend on snow density,
temperature, structure, and time for a linear theory. For a
non-linear formulation, they may also depend on invariants
of the stress- and strain-rate tensor (a case not considered
in this paper).

SNOW GLIDING

The boundary conditions at positions where the
snow-pack is in contact with the ground are crucial in
determining structure forces when the ground is smooth and
wet. Snow glide (slip of the entire snow-pack over sloping
ground) can be initiated when the interface temperature
between the snow-pack and the ground is at 0°C and for
slope angles in excess of 15°. When vigorous gliding takes
place, the highest forces on structures are produced, and
therefore no serious model would exclude this force
component,

The fundamental problem of snow gliding is to relate
the snow-pack drag to the glide velocity. The present
theory contains the assumption that glide occurs by creep
over the ground-roughness elements. When the interface is
at 0°C, there is a guaranteed presence of free water. This
condition implies that the velocity field is tangential to the
interface at positions where the snow-pack contacts
roughness elements and that there is negligible shear stress
at all contact points. At positions for which the snow-pack
is not in contact with the interface, the drag is negligible
(McClung and Clarke, 1987). Assuming the deformation
field is governed by Equation (1), the tangential snow-pack
drag T, is related to the glide velocity U by

U U
o5 JUGEN - L )

A1 - A,y DF

where D™(x,y), the stagnation depth, is a function of the
geometry of the interface (x and p are up- and cross-slope
directions), and A4 is the area for which the snow-pack is
not in contact with the bed. If A4 = 0, expression (3)
reduces to the theory of McClung (1981) for which a
continuous, infinitesimal thin water film was assumed all
along the interface. McClung and Clarke (1987) provided
estimates of D*x,») for A #0. If A - = all the
interface-roughness obstacles are drowned and 7, = 0 (an
unstable condition). In practice, D* must be either measured
or calculated theoretically for the interface in question (see
McClung, 1975). For cases in which there is no glide,
D* = DA = 0,

PLANE-STRAIN SOLUTIONS

In this paper we compare field data from western
Norway (1976—present) with predictions at the centre of a
long retaining wall (avalanche defence structure) erected
perpendicular to the snow—earth interface on a long slope
without curvature (Fig. 1). The boundary condition at the
top of the snow-pack is taken as a free surface.

The plane-strain configuration is simple enough that
one-dimensional analytical solutions are available (e.g.
McClung, 1982; McClung and others, 1984) to describe the
average pressure on the face of the structure using
Equations (1) and (2). These solutions depend only on v,
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TOP OF SNOWPACK

GROUND

Fig. 1. Schematic of plane-strain configuration for measuring
creep pressures.

the slope angle, ¢, for a snow-pack with depth-averaged
density, p, and constant thickness, H.

One-dimensional equations (geometry in Figure 1), are
defined by depth-averaged quantities (denoted by a bar):

H

1
g, = -}-T.[ o_\,xd: : 4)
0

With D* and v taken as constant throughout the zone of
influence of the structure, the solution for the compressive
stress perpendicular to the structure is given by (McClung,
1982; McClung and Larsen, in press):

1
- 2 /i L T v A
o,(0) = [l —v] LT + ?] sin Y pgH + [1 _V]az(O) (3)

where ©.(0) is depth-averaged normal stress at the structure,
and g is acceleration due to gravity. In Equation (5), both
E:(O) and the dimensionless parameter L/H (defined by
McClung (1982)) depend on v, ¢, and the boundary
conditions on the structure.

BOUNDARY CONDITIONS ON THE STRUCTURE:
PLANE-STRAIN SOLUTIONS

The boundary conditions at the face of structures buried
in snow covers are unknown. However, it is possible to
place bounds on them. Regardless of the conditions of
traction or displacement parallel to the structure, the creep
velocity perpendicular to that structure may be taken as
u = 0 along the face.

For a rough structure in a cold snow-pack, the vertical
creep velocity may be approximated as v = 0. The pair of
boundary creep velocities (u = v = 0, will be referred to as
the no-slip condition. This condition is to be expected from
results on snow gliding, glide is not observed on a rough
surface unless free water (wet snow) is available. The
no-slip condition implies a shear stress along the structure
face and causes the maximum force to occur at an angle
(rather than perpendicular) to the structure.

At the other extreme, for a smooth structure lubricated
by free water, a traction-free condition 7,, = 0 along the
structure is expected. This pair of conditions (¥ = T,, = 0)
is called the traction-free condition. For the intermediate
case (both slip and traction occur parallel to the structure),
a relation analogous to that in Equation (5) may be
appropriate. This situation is not explored here explicitly; it
should produce pressures intermediate between the no-slip
and traction-free conditions which bound the problem.

In order to make a comparison with field data, it is of
interest to predict the forces perpendicular and parallel to
the structure (shear forces) as well as the maximum
principal stress.

(i) Traction-free boundary condition

The traction-free boundary condition is the easier of the
two extremes to model in one dimension. Also, two-
dimensional finite-element solutions show that the normal
forces are not appreciably changed from their values
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without the presence of the wall, and therefore the
depth-averaged normal stress is approximately

3,(0) = + pgH cos §. (6)

An extensive series of finite-element solutions (McClung and
Larsen, in press) showed that an empirical expression for
L/H (traction-free condition) is

B i 5 (7)
= +12.

o)

With Equations (5)~(7), the depth-averaged value of o,(0)
(or maximum principal stress, El) is given by:

Ex(O)_ 2 D* i*- 1 v g
,T;gH_ = H+H sm¢+21_vcos¢.()

The two terms in Equation (8) result from gravity loads
applied parallel and perpendicular to the slope, respectively.
These terms may be calculated separately by application of
gravity loads (body forces) in these directions. nEquation (SD)
was derived from solutions in the ranges 25 € § € 55 ;
0 £v €04, and 0 ¢ D*/H £ 3 (see McClung (1982) for
an explanation of these ranges). Maximum stresses
determined by wusing Equation (8) compare with two-
dimensional finite-element solutions within a few per cent
(Figure 2 gives examples). For the traction-free condition,
the resultant force is perpendicular to the face of the
structure with a magnitude given by Equation (8).

(ii) No-slip boundary condition

Field data show that, in general, the resultant force is
not perpendicular to the face of the structure (e.g.
Kummerli, 1958). This result is expected physically; if slip
along the structure is inhibited, shear force will be present
causing the resultant force to have a component
perpendicular to the slope. In general, the face of a
structure will not be completely traction-free, and we feel
that the no-slip boundary condition (1 = v = 0) is a close
approximation to conditions encountered in the field except
when the snow-pack is melting rapidly.

Numerical solutions show that the no-slip condition is
more complex than the traction-free condition to model.
Not only are shear forces produced on the structure but the
normal forces in the vicinity of the structure are
significantly reduced from their values when a structure is
not present; a simple estimate such as approximation (6) is
not available,
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Fig. 2. Comparison of maximum principal stress as a
function of the constant-density (depth-averaged)—
stiffness model for the traction-free boundary condition
D* = 0. (..) Model predictions; (0) finite-element
calculations.
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We have evaluated Equation (5) numerically using finite-
element solutions to get an approximate empirical expression
for 8,(0). If the form of Equation (8) is retained (McClung
and Larsen, in press), L/H is given by:

E_af. Jb 1[¢ "
72N g A P A

which completes the definition of &,(0) in Equation (8).

An approximate expression for T(0) (depth-averaged
shear stress on the structure) has also been derived from
finite-element calculations:

B L g~ %[#} o o} 0

pgH

A note of caution applies to approximations (9) and (10);
they are not as accurate as Equation (7) for the
traction-free boundary condition and therefore (finite-
element solutions are preferable. Errors of up to 15% may
be expected using approximation (10) but the errors are less
than 10% for total resultant force on the structure.

For the no-slip boundary condition, the vertical stress is
derived from plane-strain solutions with é,. = 0:

5,(0) = ‘iv 5.(0) an

1

to complete the definition of stresses in expressions (8)—11).
The maximum principal stress (o) is not equal to o,(0) for
the no-slip boundary condition but it can be calculated by
standard methods using expressions (8), (9), (10), and (11).
Figure 3 gives an example,

RESULTANT FORCE AND DIRECTION

When a structure is erected perpendicular to a slope, the
stress components of interest are ,(0) and T(0). The
magnitude of the resultant force (per wunit area) is

op = [3)6(0)2 i r(oﬁ}* (12)

and its direction may be defined (Haefeli, 1948)

7(0)
tang = ———. (13)
a,(0)
1.0 T T T T T T J,
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Fig. 3. Model comparison for the sahe conditions L8 in
Figure 2 for the no-slip boundary condition ¢ = 45,
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The ratio in Equation (13) has been estimated in the field
(Kiimmerli, 1958). Salm (1977) has given a range for tane
from field measurements. With ¢ = 37°, D* = 0, tane
= 0.7 for low-density snow and tane = 0.3 for high-density
snow. From Bader’s data (Salm, 1977), with v = 0.0
(low-density snow) and v = 025 (high-density snow),
calculations using expressions (5), (9), and (10) give tane =
0.61 and tane = 0.29, respectively. For these same
assumptions, finite-element calculations give tane = 0.77
(v =0.0) and tane = 0.36 (v = 0.25). The agreement is
surprisingly good for the linear, depth-averaged density
case.

COMPARISON WITH FIELD DATA

Our data were taken from a low-altitude high-latitude
site in western Norway. The region is classed as a maritime
climate regime and strong wind-packing effects are present.
The experimental procedures have been given by Larsen and
others (1985). The pressure data consist of maximum (op,)
and average pressure (op), estimated at the centre of a 15'm
long avalanche-defence structure erected perpendiculag to the
slope. The incline at the site is almost constant (25 ) for a
long distance up-slope. Although the ground surface
up-slope from the structure is fairly smooth rock up-slope
from the structure, measurements have shown that glide is
negligible (D* = 0). We also measured snow-pack properties
near the site, including p and H.

Since most of our data were taken when the snow-pack
temperature was below 0°C (mid-winter), we believe that
the no-slip boundary condition is physically more realistic
than the traction-free condition. Similar data from Switzer-
land (Salm, 1977) show clearly that the resultant force is
not perpendicular to the structure, indicating the presence
of shear forces and very little slip on the face of the
structure.

A regression analysis of the field data gives

0.65pgH

Or

r* = 0.70, S, = 1.61 kPa, N =53

(14)

where r is the correlation coefficient, S, is the standard
error, and N is the number of data points.

To compare with the model, consider first the average
pressure op on the face of the structure. For either
boundary condition, the ratio GR/EgH should depend only
on v and ¢. From data reviewed by Salm (1977), we regard
the extreme range of v as 0-0.4 for depth-averaged
densities varying between 200 and 600 kg/m®,  Finite-
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263 © il
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Fig. 4. Comparison of oy versus pgH (both in kPa) for
measurements (o) and finite-element solutions for the
ranges of expected structure boundary conditions and V.
( ), no slip; (..), traction-free. Constant-density
(depth-averaged) and stiffness are assumed and D¥ = 0.
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element calculations show that the mean value of our data
(UR/BgH = 0.64) implies v = 0.4 and a range of 0-0.45 for
the no-slip boundary condition. From Equations (14), the
ratio OR/EgH is near 0.65 by regression analysis. For the
traction-free boundary condition, the ratio op/pgH = 0.75
for v = 0.4.

Figure 4 shows a comparison of the data with
calculations (units are in kPa) for both boundary conditions
for the range 0 < v € 0.4. These comparisons show that
v = 0.0 does provide a good lower bound on our data, but
many of the data points lie outside the extreme limits
predicted for either boundary condition. It appears that the
mean of our data is close to the extreme limits predicted
by the linear constant-stiffness model. Bader and others
(1951) presented data indicating that Vv increases with
density from 0.1 to 0.25 for the density range in our
experiments. Since we have used a wider range of v in our
comparison, the underestimates of the model may be even
greater than indicated in Figure 4. If Bader’s data are
accepted as correct, the linear constant-stiffness model
underestimates the mean pressures by at least 20%.

Numerical calculations were performed to explore depth-
dependent density variations. Assuming a linear increase in
density with depth, these results showed almost no effect on
the average pressure and the maximum pressure changes
only slightly for either the no-slip or traction-free boundary
condition.

Sensitivity with respect to variations in snow-pack
stiffness may be analyzed using viscosity data summarized
by Haefeli (1967). He showed that the shear viscosity of
snow varies by approximately two orders of magnitude
(10191012 kg/m's) for densities in the range 300-500 kg/m>.
We also performed finite-element calculations with both
density and stiffness increasing linearly with depth for these
ranges. The results show (McClung and Larsen, in press)
that the predicted pressures are lower than for the
constant-stiffness model for either the traction-free or
no-slip boundary condition. For ¢ = 25°,  the ratio
og/pgH = 0.53 for the no-slip boundary condition with
linear variation in stiffness and density, and v = 0.40. This
ratio may be compared with oy/pgH = 0.68 for constant
stiffness and the values 0.64 (from the mean of our data)
and 0.65 (from the regression analysis).

Our data also contain important information about
maximum pressure on the structure. A regression analysis
gives

B, 2 l.480R,

? =091, S, = 1.36kPa, N = 55. (15)

_‘
1

For the constant density—viscosity model, the calculated ratio
(o, /og) declines from 139 to 1.18 as v increases from 0 to
0.4 (no-slip boundary condition). From finite-element
calculations, o,/op decreases from 1.54 to 1.46 for the
same range of v, if both density and stiffness increase
linearly with depth, thereby providing an excellent fit to
our data. For the less-realistic traction-free boundary
condition, the ratio decreases from 143 to 1.11 as v
increases from 0 to 0.4.

SUMMARY AND DISCUSSION

Our re-formulation of the constant viscosity—constant
density one-dimensional treatment of the plane-strain snow-
pressure problem is of both historical and practical interest.
The solution represents the analytical model first sought by
Haefeli (Bader and others, 1939) in his doctoral thesis. Also,
our analytical model is of practical interest, since it allows
average pressures to be roughly estimated using a
hand-calculator. It appears that this simple model under-
estimates our field data by about 20%.

The analytical model we have presented departs from
previous formulations, because initial stresses are not
accounted for. Instead, the long-term loads on the structure
are defined in terms of viscous stresses and strain-rates.
These assumptions have a long history in snow mechanics
(e.g. Mellor, 1975). We feel that the new model presents a
more accurate representation of the linear problem than our
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previous attempts which included initial stresses.

Comparison of field data with the two models (constant
and linearly varying stiffness and density) shows that
neither can explain the high values of average pressure or
the width of the data-scatter band. Since density variations
alone do not provide a consistent match to field data, we
believe that variations in stiffness (non-linear viscous
relations) are the key. Our attempt to vary the stiffness
(linear increase with depth) is the simplest approach
consistent with snow-deformation properties in the field
(McClung, 1975). It is encouraging that linear variations in
stiffness appear to match the ratio 0n/0g for our data.
Calculations assuming linear variation in stiffness with depth
(McClung and Larsen, in press) have shown that most of
the data are far in excess of the limits implied by the
expected upper range of v (0.4). It is tempting to attribute
the data which fall outside the limits in Figure 4 to data
scatter. However, the assumption of constant stiffness
(Fig. 4) will not allow an explanation of the high values of
0 /0g. We believe that a comprehensive explanation of the
field data will require a non-linear viscous relation. Until a
non-linear deformation law is formulated and applied, a
proper treatment of stiffness variations will not be possible.
Based on finite-element solutions and our data, we
recommend a safety factor of at least 25% over the
analytical model (constant stiffness) when expected values
for v (e.g. Bader and others, 1951) are applied. For
maximum pressure, our data indicate that values should be
considered to be 50% higher than predicted average
pressures,
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