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ON SEMISIMPLE CLASSES OF ASSOCIATIVE
AND ALTERNATIVE RINGS

by E. R. PUCZYfcOWSKI

(Received 3rd May, 1982)

In [6] Sands proved that the semisimple classes of associative rings are exactly the
coinductive and closed under ideals and extensions classes. This characterization was
transferred to the alternative case by Van Leeuwen, Roos and Wiegandt in [3].
Answering a question of [9], Sands [7] has recently proved that in the associative case
the condition of being closed under ideals can be replaced by the regularity of the class.
The same result for alternative rings has been proved by Anderson and Wiegandt in [2].
Thus the following result holds.

Theorem 1 ([2], [7]). A class M of associative or alternative rings is semisimple if and
only if M is

(1) regular, that is, if AeM then every non-zero ideal of A has a non-zero
homomorphic image in M;

(2) coinductive, that is, whenever a ring A contains a descending chain of ideals B( such
that n B( = 0 and A/B{ e M for each i then A e M;

(3) closed under extensions, that is, BeM and A/BeM imply AeM.

In the first part of this note we give a different proof of Theorem 1. Namely, we
remark that this theorem is an almost immediate consequence of a technical result
(probably a key-fact to all general theory of radicals of associative and alternative rings)
proved by Terlikowska-Ostowska in [8].

Theorem 1 plays the decisive role in investigations of properties of semisimple classes.
In Section 2 we present some results of this type.

In what follows we work in a universal class W of alternative rings, that is, W is a
non-empty, hereditary to sub-rings and homomorphically closed class. All considered
classes are supposed to be isomorphically closed and to contain the one-element ring
{0} subclasses of W.

For details of radical theory consult [10].

1.

To state the Terlikowska-Oslbwska result required for the proof of Theorem 1 we
need the following:

Definition (c.f. [8], Definition 2.1). An ideal / of an alternative ring A is said to be
q-ideal if A contains no ideals L,K such that L^I^K, K/Ixl/L and K2^I.

1

https://doi.org/10.1017/S0013091500022045 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500022045


2 E. R. PUCZYKOWSKI

Theorem 2. If J is an ideal of an alternative ring A and I is a q-ideal of J then I is an
ideal of A.

Proof. See Section 3 of [8].

Now we obtain Theorem 1 as a consequence of Theorem 2. Let M be a subclass of W
satisfying the conditions (l)-(3) and let U be the upper radical determined in W by M.
We will prove that M is equal to the semisimple class of U. The condition (2) and
Zorn's Lemma imply that any ring A contains a minimal ideal / such that A/1 e M. Let
us denote such a minimal ideal / by Ax and let A2 = (A1)1. Minimality of Ax and (3)
imply that A2 is an ideal of A if and only if Al=A2. But if U(A) = 0 and Al =̂0 then At

can be homomorphically mapped onto a non-zero ring in M, so A2j=A1. Hence to
show that U(A) = 0 implies AeM or, equivalently, Al=0 it is enough to prove that A2

is an ideal of A. This condition is obviously satisfied for zero-rings, so zero-rings are
17-semisimple if and only if they belong to M. Generally, in view of Theorem 2, it suffices
to prove that A2 is a q-ideal of Ax. Let K,L be ideals of Al such that L^A2^K,
A2/LxK/A2 and K2cA2. Now U(K/A2)=0 as K/A2 is an ideal of AJA2eM and all
rings of M are (/-semisimple. But (K/A2)

2 = 0 so K/A2eM. Thus A2/LeM too and by
(3) AJLeM. This contradicts minimality of A2.

Remark. In our proof, besides Theorem 1 we used the Anderson-Divinsky-Suliriski
[1] theorem asserting that the semisimple classes are closed under ideals. Let us observe
that to prove Theorem 2 in the associative case it is also enough to use the trick of their
proof. Namely, if / is not an ideal of A then for some aeA, al<fcl or Ia<fcl. Let us
assume that al £ I. If the ring A is associative then K = al + 1 and L = {x e 11 ax e 1} are
ideals of J and (al + l)2sl. Also I/LxK/I by the mapping f(i + L) = ai + 1. Hence /
cannot be a q-ideal of J.

For any class M s W, let M denote the semisimple closure of M, i.e. the smallest
semisimple class of W containing M. In [6], applying his characterization of semisimple
classes, Sands proved that the semisimple closure of a left strong class of associative
rings is left strong too. Using Theorem 1 we can show a wider class of properties of
rings inherited by the semisimple closure. In particular we obtain results like the ones
Rossa and Tangeman did in [5] concerning lower radicals.

A relation a on W will be called an //-relation (cf. [5]) if a satisfies the following
conditions:

(a) / a R imples / is a subring of R;
(b) I a R whenever / is an ideal of R;
(c) if / aR and / is a homomorphism on R then /(/) a f(R);
(d) if / a R and J is an ideal of R then I nJ a J.

Examples of //-relations are "subring of", "left ideal of" and "ideal of". Other
examples of //-relations are discussed in [5].
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If / a R then we say that / is a <r-subring of R. A class M £ W is said to be
(T-hereditary (a-regular) if any ff-subring of a ring from M is in M (any non-zero <r-subring
of a ring from M can be homomorphically mapped onto a non-zero ring in M).

The condition (b) guarantees that any <r-regular class is regular.
It can be easily checked that if a is an //-relation then so is <? = {(/, 4) | there exist

subrings / = /0 £ • • £ / „ = A such that /, _ t a /, for i = 1,..., n}.
Clearly M is cr-hereditary if and only if M is ff-hereditary.

Proposition 1. Any semisimple a-regular class M £ W is a-hereditary.

Proof. Let U £ W be the upper radical determined by M, AeM and la A. Since
[/(/) is an ideal of / then [/(/) a A. But M is ^-regular so if U(I) =f 0 then some non-zero
homomorphic image J of [/(/) is in M. This is impossible as J e U and all rings of M
are l/-semisimple. Thus U(I) = 0 and, since M is the semisimple class of U, I e M.

For a class M£ W, let EM = {A\A contains an ideal / such that / e M and A/1eM}
and PM = {A \ A is a subdirect sum of rings of M}.

The following proposition is straightforward.

Proposition 2. (a) The union of a collection of a-regular classes is a a-regular class. In
particular any class M £ W contains the largest a-regular class a(M);

(b) / / M is a a-regular class then so are EM and PM.

Proposition 2 and Theorem 1 imply immediately

Corollary 1. If M<^W is a semisimple class then so is a(M).

Corollary 2. / / a class M £ W is a-regular (a-hereditary) then so is M.

Proof. If the class M is a-regular then M£<r(M)£M. By Corollary 1 a(M) is a
semisimple class. Since M is the smallest semisimple class containing M then a(M) = M.
Thus M is (j-regular.

Now let M be cr-hereditary. Obviously M is a-regular. As in the preceding paragraph
M is ^-regular. But then Proposition 1 implies that M is a-hereditary. The result
follows.

We say that a radical S £ W is a cr-radical if any S-radical a-subring of a ring A e W
is contained in S(A). a-radicals are related to D-radicals defined in [4]. Namely, if / a A
and /* is the ideal of A generated by / then the condition (c) implies / a I*. Thus any a-
radical is a D-radical.

From Corollary 2 we obtain

Corollary 3. / / M £ W is a regular class then the upper radical UM £ W determined by
M is a a-radical if and only if M is a-regular.

Using Theorem 1 we can prove that some natural constructions of classes of rings
inherit semisimplicity. We present now some examples of such constructions.

For a ring A, let A° denote the zero ring on the additive group of A. For any class
MzW define M° = {AeW\A°eM}. Theorem 1, or the characterization of the
semisimple classes given in [3] yields immediately
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Proposition 3. / / M e W is a semisimple class then so is M°.

By comparison with Corollary 2, we obtain

Corollary 4. If M<=,W is a class such that M^M° then M £ M°.

In what follows W will be the class of all associative rings.
Let F be a ring free as Z-module, where Z is the ring of integers. As in Proposition 3

and Corollary 4, we obtain similarly

Proposition 4. (a) if M is a semisimple class then so is FM = {A \A (g)zFeM}.

(b) ifM^FM then M^FM.

Proposition 5. For any semisimple class M of rings the class Mx = {R | any non-zero
left ideal of R can be homomorphically mapped onto a non-zero ring in M} is semisimple.

Proof. It is easy to check that Mt is subdirectly closed and closed under extensions.
To prove that the class Mx is semisimple it is enough to show that Mt is closed under
ideals. Let / be an ideal of / leMj and L a non-zero left ideal of /. Then L + AL is a
non-zero left ideal of A and L is an ideal of L+AL. Also (L + AL)2^L. Since AeM1

then L + AL can be homomorphically mapped onto a non-zero ring BeM. Let
f:L + AL-*B be such a homomorphism. If L^Ker / then/(L) is a non-zero ideal of B.
But the class M is regular so /(L), and hence also L, can be homomorphically mapped
onto a non-zero ring in M. Thus let L s K e r / Then £2 = 0 and B=^]a6A/(aL). Now it is
easy to see that for any asA the mapping g:L^>f(aL) given by g{l) = f{at) is a ring
homomorphism. For some a e A, f(aL) 410. Certainly/(aL) is an ideal of B as B2=0.
Thus f{aL), and hence also L, can be homomorphically mapped onto a non-zero ring in
M. This ends the proof.

Remark. For any H-relation a and any class M of alternative rings we can define
Mx = {A e M | any non-zero c-subring of A has a non-zero homomorphic image in M}
and for n^2, Mn=(Mn_1)1. It can be easily checked that if the class M is semisimple
then CT(M) = P ) " = 1 Mn. This fact can be used to obtain Corollary 2, though it is still
unclear how many steps are necessary. It seems to be possible that in the case when
a = "left ideal of" the construction stops after a finite number of steps.
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