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ISOMORPHIC GROUP RINGS OVER DOMAINS

BY
ISABELLE ADJAERO AND EUGENE SPIEGEL

ABSTRACT. Let R and S be rings, G and H abelian groups, and RG
and SH the goup rings of G and H over R and S respectively. In this
note we consider what relations must hold between G and H or between
R and S if the group rings RG and SH are isomorphic. For example, it is
shown that if R and S are integral domains of characteristic zero, G and
H torsion abelian groups such that if G has an element of order p then
p is not invertible in R, and RG and SH are isomorphic, then the rings R
and S are isomorphic and the groups G and H are isomorphic.

Let R be a commutative ring, G an abelian group, and RG the group ring of G
with coefficients in R. If x € RG, then x = }_ ;r,g withr, € R, g € G and
rg = 0 for all but a finite number of g. The homomorphism ¢ : RG — R defined by
Yr(x) = 31, is called the augmentation homomorphism. For x € RG we will often
denote Yg(x) by c(x) and call this quantity the content of x.

If A is either a commutative ring or an abelian group and p is a prime, let A, =
{x € A|x*" = 1 for some integer n}. A, is the set of p torsion elements of A. Here 1
denotes the identity of A. In the group ring RG, let Vg, =V, = {x € RG|x € (RG),
and c(x) = 1}. V,, is called the normalized p torsion of RG.

If x € (RG)p, x is a p torsion element in RG and so 1r(x) = c(x) is a p torsion
element in R. There is, then, and element X € V, with x = c(x)x. This representation
of x shows that (RG), is the direct product of R, and V,,.

We let Supp G denote the set of all primes p for which G, is a nontrivial group, and
let R* represent the unit group of the ring R. May ([3], p.493 and 497) has determined
sufficient conditions on R to guarantee that G, is a direct summand of V,,. We list his
result in lemma 1.

LemMa 1. Let R be an indecomposable ring of characteristic 0 and G be an abelian
group. Suppose that SuppG NR* = 0. If p € SuppG, then G, is a direct summand
of Vp. If, in addition, R is an integral domain, then G, =V, for every prime q.

If G is an abelian group, we let T(G) denote the torsion subgroup of G. ¢, will
represent a primitive n root of unity chosen so the ¢, = ¢, for all m and n. Let p,(x)
denote the n* cyclotomic polynomial. If r is an element of the ring R and p,(r) = 0,
we will call r a primitive n™ root of unity.
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THEOREM 2. Let R be an integral domain of characteristic 0, S a ring, and G and
H abelian groups with SuppG N R* = (. Suppose that RG ~ SH. Then T(H) is
isomorphic to a direct summand of T(G).

Proor. Let ¢ : RG — SH be the given isomorphism and let p € SuppG. By
Lemma 1, RG, is the direct product of R, and G,. Also RG ([3], p. 489) contains no
nontrivial idempotents and so the same must be true of ¢(RG) = SH and thus, S has
no nontrivial idempotents. In particular S is an indecomposable ring of characteristic
0. p = ¢(p) is neither a unit nor a zero divisor of SH, since p has similar properties
in RG. Hence SuppG N S* = .

Let g € SuppH. Then there is an element # € H, of order ¢, and an element
u € RG such that ¢(u) = h. Since u is a torsion element u = ag with g € T(G) and
a € T(R*). u? = 1 implies that g =1 and o? = 1. If g = 1, then &/ = 1, a« # 1
in the domain R implies « satisfies p,(x) = 0, i.e. /' + a2 +---+1 = 0. But
then p(u) = p(a) = h satisfies h9~' + k972 + ... + 1 = 0 which contradicts the linear
independence of 1,h,h2,...,h% ! over S. Thus g # 1 and g € SuppG. We can now
conclude that Supp H NS* = (). From Lemma 1, V,, is the direct summand of H,, and
T, for some subgroup T, of V,, and so (SH), is the direct product of S,,T, and H,.
Since ¢((RG),) = (SH), we have that R, X G, ~ S, x T, X H,, for any p € SuppG.
Because R is an integral domain, R, is either isomorphic to a cyclic group of order
p* for some k = 0, or is isomorphic to Z(p™). In either case we claim S, contains a
direct summand isomorphic to R,.

Proof of claim: Suppose R contains a primitive p™ root of unity G- Then ¢, €R,
and (, satisfies p,((,) = 0. Hence 95¢((,) also satisfies p,(x) = 0. Thus ys¢ is
injective on ({,) and so on R,. In particular, S, contains a subgroup A = ¥5¢(R,)
isomorphic to R,. We must check that A is a direct summand of S,,.

If R, >~ Z(p™), then A, being a divisible subgroup, is a direct summand of S,,.
So suppose now R, is a finite cyclic group of order p*. Let r € S, and suppose
#” € A — {1} with j-minimal. Then #’ is a solution of pp(x) = 0 for some /, and
so ¢ is a solution of pp,;(x) = 0. Since ¢ is then a p'*th root of unity, we have that
[+ = k. Let G+ generate R, and a = c(p(G,+)) generate A. Since ' is a solution of
pyi(x) = 0 we can write 7 = a?™s with (s,p) = 1. So ' = (@*®"y’. This says
that A is a pure subgroup of S,, which is also bounded. From ([2], p. 18), A is a direct
summand of S,. This completes the proof of the claim.

Write S, as A X ,B with ,A ~ R,,. Then

() R, xG,~,AX,BxT,xH,

If R, is finite, Walker’s theorem ([4], p. 900) permits us to cancel the R, and A,
from (*) giving G, ~ ,B XT, xH,, while if R, ~ Z(p>°) we can cancel R, and ,A from
(*) since R, is a divisible group. In either case we have that G, ~ ,B X T, X H, and
H), is isomorphic to a direct summand of G,. Since T(G) ~ ®,G, and T(H) ~ ®,H,
the theorem is now established.
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CoroLLARY 3. Let R and S be integral domains of char O and G and H abelian
groups such that RG ~ SH . Suppose that SuppG N R* = 0. Then T(G) ~ T(H).

Proor. Let p € SuppG. From Lemma 1, (RG), = R, X G,. As in the proof of
Theorem 2 SuppH NS* = ¢ and so again by Lemma 1 (SH), = S, x H,. Since S
is an integral domain, S, is either isomorphic to a cyclic group of order p* for some
k 2 0, or to Z(p®). Neither of these groups has any nontrivial direct summands. But
the theorem shows that R, is a direct summand of S,. Hence S, ~ R, or R, ~ {1}
and S, is not the trivial group. In the latter case, S, would then contain a p™ root of
unity while R does not, contradicting a conclusion in the proof of the theorem. Hence
R, ~ S, and by Walker’s theorem H, ~ G,,. a

In general we cannot say that R and S must be isomorphic even if 7(G) ~ T(H). We
can take, for example, any nonisomorphic torsion free abelian groups A; and A, and
a torsion group B. Let C = A, ®A, ®B. Then ZC ~ Z(A)(A, ®B) ~ Z(A2)(A ®B).
IfR=2Z(A),S =2Z(A3), G =A,®B and H = A| @ B, then the integral domains R
and S are not isomorphic even though ZG ~ SH and the hypotheses of Corollary 3
are met. However, even though G/T(G) is not isomorphic to H /T(H), we still have
R(G/T(G)) ~ S(H /T(H)). We check this, in some generality, in the following

THEOREM 4. Let R and S be integral domains of char 0, and G and H abelian
groups such that RG ~ SH. Suppose that SuppG NR* = O and T(G) is a direct
summand of G, then R(G/T(G)) ~ S(H /T(H)).

Proor. Let ¢ : RG — SH be the given isomorphism. As before ¢ ((RG),) = (SH ),
and (RG), = R, xXG,, (SH), = S, xH, with R, ~ §, by the proof of Corollary 3. Also,
we have T((RG)*) = T(R*)T(G) and we may define the map n : T(R*)T(G) — T(G)
given by m(rg) = g with r € T(R*), g € T(G). Let h € T(H), then ¢~ !(h) = ryg;, with
rn € T(R*)gn € T(G). Define ¢ : T(H) — T(G) by ¥(h) = gn. ¥ is a homomorphism
since it is the composite of ¢! restricted to T(H) and 7. We check that ) is an onto
isomorphism.

Suppose h € T(H) and (k) = 1. Then 1~'(h) = r, with r, € T(R*). Suppose h
is of order n, then r, € R, with R an integral domain, is an n' root of unity, and so
ry satisfies the equation p,(x) = 0. But then A satisfies p,(x) = 0 which contradicts
the linear independence of 1,h,h%,..., """ over S. Hence n = 1 and 1 is injective.
To check 1 is onto, it is sufficient to check that y¥(H,) = G, for each prime p. Fix
p € SuppG. Let A = ¢~ '(H,). Since p(R, X G,) =S, X H, we have that

R,-G, S,-H,
—_—
A H,
if h € H, with h # 1, then ¢~'(h) cannot be a root of unity and thus satisfy a
cyclotomic equation, since & does not. So ANR, = {e}. Then

AR, R, _
A T RNAT?
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Since R, ~ S,, and this group which must be either a cyclic group of order p
for some k, or Z(p*™), does not contain a proper subgroup isomorphic to itself, we
can conclude that A - R, = R, - G, because AR, /A is a subgroup of R,G,/A. Thus
7(A) = G, and y(H,) = G,. This shows 1 to be a surjective isomorphism.

Because T(G) is a direct summand of G, we can find a torsion-free subgroup U of
G with G = U - T(G).

Let 7: RG — RG be the R map defined by m(u) = u if u € U 7(g) = o~ ' ("' (g))
if g € T(G).

Since 1 is a surjective isomorphism, 7 is well defined. It is straightforward to check
that 7 is an automorphism of RG. Then ¢ = ¢7 is an isomorphism from RG onto SH
such that @(T(G)) = T(H). Let I, be the ideal of RF generated by {1 —g|g € T(G)}
and I, the ideal of SH generated by {1 — hlh € T(H)}. (I}) = I, and thus

R(G/T(G)) ~RG/I, ~ SH I, ~ S(H /T(H))

which establishes the result. O

COROLLARY 5. Let R and S be integral domains of characteristic 0, and G and H
torsion abelian groups such that RG ~ SH. Suppose that Supp G N R* = (). Then
G~Hand R~S.

Proor. The groups are isomorphic by Corollary 3 and the domains are isomorphic
by Theorem 4. O

Using the techniqueé of the previous results we can extend Theorem 7.2 of [1].

THEOREM 6. Let R be an integral domain of characteristic 0, S a ring, and G and H
torsion abelian groups. Suppose that Supp GNR* = 0, and that if p € Supp G, R does
not contain a p* root of unity. Then RG ~ SH, if and only if there exist subgroups
K,L of G with

(i) G = KL (internal direct sum)

(i) L~H

(i) § ~ RK

Proor. If such subgroups exist,
RG ~ (RK)L ~ SL ~ SH.

Conversely, suppose ¢ : RG — SH is the given isomorphism. If p € SuppG, by
Lemma 1, (RG), = R, X G,,. Suppose u € RG is a p™ root of unity. Then #” = 1 and
u satisfies p,(x) = 0. Write u = rg withr € R,g € G,. Then r” =1 and g? = 1. If
g # 1, then rg satisfies p,(x) = 0. This says that g satisfies n(x) = p,(rx) = 0 which
contradicts the linear independence of 1,g,g2,...,g7~! over R. Hence u = r and u
is a p” root of unity in R. We now can conclude that all solutions of pp(x) = 0 are
in R and there are either O or p — 1 of them, the latter case when R has a p root of
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unity. Because ¢ is an isomorphism, there are either 0 or p — 1 solutions of p,(x) = 0
in SH, and they are similarly all in S.

Let 1 # h € H, and write ¢~ '(h) = rxg, with r, € R, gy € G,. If " =1, then
rf" = 1 which implies R} = 1 since R does not contain a p? root of unity. Since
ry is either 1 or a p™ root of unity, ¢(r;) € S,. Let 7 be the projection map from
R, X G, — Gp, and L, = mp~'(H,).

If v € H, is such that m¢~!(v) = 1. Then ¢~ '(v) = r, with r, € R,. But then either
ry, = 1 or r, satisfies p,(x) = 0. This latter case contradicts the linear independence
of 1,v,v2,...,v"~! over S. Hence L, ~ H, and L = ©®L,, is isomorphic to H = ©H),.

Let 7y : H — (SH)* be the homomorphism defined by 7((h) = @ (ry)h for h € H,
and 7 : SH — SH the S-linear map extending 7. It is easy to check that 7 is an
automorphism of SH. Let ¢ = 7p. Then @ is an isomorphism of RG onto SH and
PpL)y=H.

Let I, be the ideal of RG generated by {1 —!|/ € L} and I, the ideal of H generated
by {1 —hlh e H}. $(I}) =1, and so R(G/L) ~RG /I, ~SH [l ~ S(H [H) ~§.

As in the proof of Theorem 2, S is indecomposible and so by Lemma 1, if p €
Supp G, there is a subgroup T, of V,, (in SH) such that V, = T, X H,. Then (SH), =
Sy xT, xHy, LetT =,®T, and K = {g € G|@(g) € S* x T}. K is a subgroup
of G and K NL = {1}. To complete the proof we need only check that KL = G. We
show that G, C KL. Let g € G,. Then ¢(g) = wyph, with w, € S, X H,, h, € H),.

Let I € L be such that ¢(I) = h, then g = (g/~")l and ¢(gl™") = ¢(g)pU™") =
wphphy! = wp. thus gI~! € K. This completes the proof. a
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