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ISOMORPHIC GROUP RINGS OVER DOMAINS 

BY 

ISABELLE ADJAERO AND EUGENE SPIEGEL 

ABSTRACT. Let R and S be rings, G and H abelian groups, and RG 
and SH the goup rings of G and H over R and S respectively. In this 
note we consider what relations must hold between G and H or between 
R and S if the group rings RG and SH are isomorphic. For example, it is 
shown that if R and S are integral domains of characteristic zero, G and 
H torsion abelian groups such that if G has an element of order p then 
p is not invertible in R, and RG and SH are isomorphic, then the rings R 
and 5 are isomorphic and the groups G and H are isomorphic. 

Let R be a commutative ring, G an abelian group, and RG the group ring of G 
with coefficients in R. If x G RG, then x = YlgeG rg8 w* tn rg ^ &-> 8 ^ G anc* 
rg = 0 for all but a finite number of g. The homomorphism ipR : /?G —• /? defined by 
ijjR(x) = Xrg is called the augmentation homomorphism. For x G RG we will often 
denote IPR(X) by c(x) and call this quantity the content of x. 

If A is either a commutative ring or an abelian group and p is a prime, let Ap = 
{x G A\xp" = 1 for some integer n}. Ap is the set of p torsion elements of A. Here 1 
denotes the identity of A. In the group ring RG, let VR# = Vp = {x G RG\x G (RG)P 

and c(x) = 1}. V̂  is called the normalized p torsion of RG. 
If x G (RG)P, x is a /? torsion element in /?G and so V/?C*) = c(x) is a /? torsion 

element in R. There is, then, and element x G Vp with x = C(JC)I. This representation 
of x shows that (RG)P is the direct product of Rp and Vp. 

We let Supp G denote the set of all primes p for which Gp is a nontrivial group, and 
let R* represent the unit group of the ring R. May ([3], p.493 and 497) has determined 
sufficient conditions on R to guarantee that Gp is a direct summand of Vp. We list his 
result in lemma 1. 

LEMMA 1. Let R be an indecomposable ring of characteristic 0 and G be an abelian 
group. Suppose that Supp G HR* = 0. If p G Supp G, then Gp is a direct summand 
of Vp. If in addition, R is an integral domain, then Gq = Vq for every prime q. 

If G is an abelian group, we let T(G) denote the torsion subgroup of G. Çn will 
represent a primitive nth root of unity chosen so the Ç£n = Çn for all m and n. Let pn(x) 
denote the nth cyclotomic polynomial. If r is an element of the ring R and pn{r) = 0, 
we will call r a primitive nth root of unity. 
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THEOREM 2. Let R be an integral domain of characteristic 0, S a ring, and G and 
H abelian groups with SuppG D R* = 0. Suppose that RG ~ SH. Then T(H) is 
isomorphic to a direct summand ofT(G). 

PROOF. Let (f : RG —• SH be the given isomorphism and let p G SuppG. By 
Lemma 1, RGP is the direct product of Rp and Gp. Also RG ([3], p. 489) contains no 
nontrivial idempotents and so the same must be true of p(RG) — SH and thus, S has 
no nontrivial idempotents. In particular S is an indecomposable ring of characteristic 
0. p = tp(p) is neither a unit nor a zero divisor of SH, since p has similar properties 
in RG. Hence SuppG H S* = 0. 

Let q G Supp//. Then there is an element h G / / , of order #, and an element 
u G /?G such that (f(u) = /z. Since « is a torsion element u = ag with g G T(G) and 
a G !(/?*). uq = 1 implies that gq = 1 and a* = 1. If g = 1, then ofl = 1, a ^ 1 
in the domain /? implies a satisfies pq(x) = 0, i.e. a'7"1 + aq~2 + • • • + 1 = 0 . But 
then (f(u) = (f(a) = h satisfies hq~l + hq~2 + • • • + 1 = 0 which contradicts the linear 
independence of 1, /z, /z2 , . . . , hq~x over S. Thus g ^ 1 and g G Supp G. We can now 
conclude that Supp// DS* = 0. From Lemma 1, Vp is the direct summand of Hp and 
7^ for some subgroup Tp of V ,̂ and so (SH)P is the direct product of 5P, 7), and //p. 
Since (p((RG)p) = (SH)P we have that Rp x Gp ~ Sp x Tp x Hp for any /? G SuppG. 
Because R is an integral domain, Rp is either isomorphic to a cyclic group of order 
pk for some k ^ 0, or is isomorphic to Z(p°°). In either case we claim Sp contains a 
direct summand isomorphic to Rp. 

Proof of claim: Suppose R contains a primitive pth root of unity Ç,. Then ^ G Rp 

and (̂  satisfies pp(Ç,) = 0. Hence Vw(Ç?) also satisfies pp(x) = 0. Thus V w is 
injective on (< )̂ and so on Rp. In particular, Sp contains a subgroup A = xf)s(p(Rp) 
isomorphic to Rp. We must check that A is a direct summand of Sp. 

If /?p ~ Zip00), then A, being a divisible subgroup, is a direct summand of Sp. 
So suppose now Rp is a finite cyclic group of order pk. Let t G Sp and suppose 
r^ G 4̂ — {1} with y-minimal. Then f1 is a solution of /y(x) = 0 for some /, and 
so Ms a solution of ppi+j(x) = 0. Since t is then a /?/+yth root of unity, we have that 
/ +y ^ /:. Let <̂A generate Rp and a = c(</?(<̂ *)) generate A. Since f̂  is a solution of 
pp/(jc) = 0we can write f* = a^'1* with (s,/?) = 1. So ^ = (as{pk~HY. This says 
that A is a pure subgroup of Sp, which is also bounded. From ([2], p. 18), A is a direct 
summand of Sp. This completes the proof of the claim. 

Write Sp as PA x pB with pA~Rp. Then 

(*) Rp x Gp ~ pA x pB x Tp x Hp 

If Rp is finite, Walker's theorem ([4], p. 900) permits us to cancel the Rp and Ap 

from (*) giving Gp ~ pBxTpxHp, while if Rp ~ Z(p°°) we can cancel Rp and^A from 
(*) since Rp is a divisible group. In either case we have that Gp ~ pB x Tp x Hp and 
Hp is isomorphic to a direct summand of Gp. Since T(G) ~ (&PGP and T(H) ~ (BpHp 

the theorem is now established. 
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COROLLARY 3. Let R and S be integral domains of char 0 and G and H abelian 
groups such that RG ~ SH. Suppose that SuppG HR* = 0. Then T(G) ~ T(H). 

PROOF. Let p G SuppG. From Lemma 1, (RG)P = Rp x Gp. As in the proof of 
Theorem 2 Supp// HS* = <p and so again by Lemma 1 (SH)P = Sp x Hp. Since S 
is an integral domain, Sp is either isomorphic to a cyclic group of order pk for some 
£ ^ 0, or to Z(p°°). Neither of these groups has any nontrivial direct summands. But 
the theorem shows that Rp is a direct summand of Sp. Hence Sp ~ Rp or Rp ~ {1} 
and Sp is not the trivial group. In the latter case, Sp would then contain a pth root of 
unity while R does not, contradicting a conclusion in the proof of the theorem. Hence 
Rp ~ Sp and by Walker's theorem Hp ~GP. D 

In general we cannot say that R and S must be isomorphic even if 7(G) ~ T(H). We 
can take, for example, any nonisomorphic torsion free abelian groups A \ and A2 and 
a torsion group B. Let C = Ax 0A 2 0 £ . Then ZC ~ Z(A\)(A2 ®B) ~ Z(A2)(^i <g>£). 
If R = Z(A{), S = Z(A2), G = A2 0 B and H = Ax 0 B, then the integral domains R 
and S are not isomorphic even though ZG ~ SH and the hypotheses of Corollary 3 
are met. However, even though G/T(G) is not isomorphic to H/7(//), we still have 
R(G/T(G)) ~ S(H/T(H)). We check this, in some generality, in the following 

THEOREM 4. Let R and S be integral domains of char 0, and G and H abelian 
groups such that RG ~ SH. Suppose that SuppG Pi R* = 0 and T(G) is a direct 
summand ofG, then R(G/T(G)) ~ S(H/T(H)). 

PROOF. Let <p : RG —* SH be the given isomorphism. As before (p((RG)p) = (SH)P, 
and (RG)P = RpxGp, (SH)p = SpxHp with Rp ~ Sp by the proof of Corollary 3. Also, 
we have T((RG)*) = T(R*)T(G) and we may define the map n : T(R*)T(G) —• 7(G) 
given by ir(rg) = g with r G 7(7?*), g G 7(G). Let h G 7(//), then (p~l(h) = rhgh with 
r* G TX/Og/* € 7(G). Define V : 7(7/) —> 7(G) by xp(h) = gh. ^ is a homomorphism 
since it is the composite of (f~l restricted to 7(7/) and 7r. We check that ifi is an onto 
isomorphism. 

Suppose h G T(H) and xp(h) = 1. Then ^~x(h) = rA with r* G 7(/T). Suppose /z 
is of order n, then r/, G /?, with /? an integral domain, is an nth root of unity, and so 
rh satisfies the equation pn(x) = 0. But then h satisfies pn(x) = 0 which contradicts 
the linear independence of 1, /*, /*2,..., hn~x over S. Hence n — 1 and X/J is injective. 
To check xjj is onto, it is sufficient to check that tjj(Hp) = Gp for each prime p. Fix 
/? G SuppG. Let A = (p~l(Hp). Since (p(Rp x Gp) = Sp x Hp we have that 

RP'GP „ SP'HP „ c 
A ~ Hp -*" 

if h G Hp with h ^ I, then (f~l(h) cannot be a root of unity and thus satisfy a 
cyclotomic equation, since h does not. So A P[RP = {e}. Then 

^ RP RP 

A ~RpnA~ " 
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Since Rp ^ Sp, and this group which must be either a cyclic group of order pk 

for some k, or Z(p°°), does not contain a proper subgroup isomorphic to itself, we 
can conclude that A • Rp = Rp • Gp because ARp/A is a subgroup of RPGP/A. Thus 
TT(A) — Gp and \I)(HP) — Gp. This shows i/> to be a surjective isomorphism. 

Because T(G) is a direct summand of G, we can find a torsion-free subgroup U of 
G with G = U - T(G). 

Let T.RG-^RGbe the /? map defined by 7(11) = u if « € U rig) = ^_1(V>_1(g)) 
i f*€7XG). 

Since ^ is a surjective isomorphism, r is well defined. It is straightforward to check 
that r is an automorphism of RG. Then (p = ipr is an isomorphism from RG onto SH 
such that (p(T(G)) = T(H). Let /! be the ideal of RF generated by {1 - g\g G 7(G)} 
and h the ideal of 5// generated by {1 — h\h G T(H)}. (p(J\) = h and thus 

R(G/T(G)) ~ RG/h ^ M///2 ^ S(H/T(H)) 

which establishes the result. • 

COROLLARY 5. Let R and S be integral domains of characteristic 0, and G and H 
torsion abelian groups such that RG ^ SH. Suppose that SuppG HR* = 0. Then 
G~H andR~S. 

PROOF. The groups are isomorphic by Corollary 3 and the domains are isomorphic 
by Theorem 4. • 

Using the techniques of the previous results we can extend Theorem 7.2 of [1]. 

THEOREM 6. Let R be an integral domain of characteristic 0,S a ring, and G and H 
torsion abelian groups. Suppose that SuppG OR* = 0, and that if p G SuppG, R does 
not contain a p2 root of unity. Then RG 2̂  SH, if and only if there exist subgroups 
K,LofGwith 

(i) G = KL (internal direct sum) 
(ii) L - H 
(iii) S ~ RK 

PROOF. If such subgroups exist, 

RG~(RK)L~SL~SH. 

Conversely, suppose (p : RG —+ SH is the given isomorphism. If p G Supp G, by 
Lemma 1, (RG)P = RpxGp. Suppose u G RG is a pth root of unity. Then up — 1 and 
u satisfies pp(x) = 0. Write u — rg with r G Rpg G Gp. Then rp = 1 and gp = 1. If 
g ^ 1, then rg satisfies pp(x) — 0. This says that g satisfies r\(x) — pp(rx) — 0 which 
contradicts the linear independence of l , g ,g 2 , . . . ,g /7_1 over R. Hence u = r and u 
is a pth root of unity in R. We now can conclude that all solutions of pp(x) = 0 are 
in R and there are either 0 or p — 1 of them, the latter case when R has a pth root of 
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unity. Because (p is an isomorphism, there are either 0 or p — 1 solutions of pp(x) = 0 
in SH, and they are similarly all in S. 

Let 1 ^ h G Hp and write (f~l(h) = rhgh with rh G Rp gh G Gp. If /^" =' 1, then 
r£" = 1 which implies RPh = 1 since /? does not contain a /?2 root of unity. Since 
rh is either 1 or a pth root of unity, (ffa) G Sp. Let ir be the projection map from 
RpXGp-^ Gp, and Lp = ir(p-l(Hp). 

If v G //^ is such that 7T(p~l(v) = 1. Then <p~l(v) = rv with rv G /?/?. But then either 
rv = 1 or rv satisfies pp(x) = 0. This latter case contradicts the linear independence 
of 1, v, v 2 , . . . , vp~l over S. Hence Lp ~ //p and L = 0Lp is isomorphic to H = Ç&Hp. 

Let T\ : H —> (SH)* be the homomorphism defined by r\(h) = (f(rh)h for h e Hp 

and r : SH —* 5// the S -linear map extending TI. It is easy to check that r is an 
automorphism of SH. Let (p — np. Then (p is an isomorphism of RG onto 5// and 
<p(L) = H. 

Let /i be the ideal of RG generated by {1 — l\l G L} and h the ideal of// generated 
by {1 - h\h G / / } . 0(70 = 72 and so /?(G/L) - RG/h ~ S////2 ~ 5( / / / / / ) ~ 5. 

As in the proof of Theorem 2, S is indecomposible and so by Lemma 1, if p G 
SuppG, there is a subgroup Tp of Vp (in SH) such that Vp — Tp x Hp. Then (57/)p = 
SpxTpx Hp. Let T = p 0 7P and ^ = {^G G|£(g) G 5* x 7}. A: is a subgroup 
of G and A^PlL = {l}. To complete the proof we need only check that KL — G. We 
show that Gp C KL. Let g G G .̂ Then <£(g) = uphp with UJP £ Sp x Hp, hp G 7/p. 

Let / G L be such that <£(/) = /*p then g = (g/ -1)/ and <£(g/_1) = £(g )<£>(/" *) = 
<jjphph~x — ujp. thus g/ - 1 G K. This completes the proof. D 
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