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FUCHSIAN EMBEDDINGS IN THE BIANCHI GROUPS 

BENJAMIN FINE 

1. Introduction. If d is a positive square free integer we let Od be the ring 
of integers in Q(\/ — d) and we let Td = PSL2(Od), the group of linear 
fractional transformations 

z' = az + blcz + d, ad — be = 1 

and entries from Od {if d = 1, ad — be = ± 1 } . The 1̂  are called 
collectively the Bianchi groups and have been studied extensively both as 
abstract groups and in automorphic function theory {see references}. Of 
particular interest has been Tx - the Picard group. Group theoretically T, is 
very similar to the classical modular group M = PSL2(Z) both in its total 
structure [4, 6], and in the structure of its congruence subgroups [8]. Where 
Tj and M differ greatly is in their action on the complex place C. M is 
Fuchsian and therefore acts discontinuously in the upper half-plane and 
every subgroup has the same property. In distinction T} (and Td in general) 
is nowhere discontinuous in C [14], and therefore contains no Fuchsian 
subgroups of finite index. A question then is how Fuchsian subgroups are 
embedded in T, and in 1 .̂ What we prove is that to obtain a torsion-free, 
non-free Fuchsian subgroup F of Tj, (in particular a faithful Fuchsian 
representation of a Riemann surface group), F must be embedded in T, in 
such a way that F has cyclic intersection with every conjugate in T} of the 
modular group M. Maskit [17], Mennicke [19], and Fine [4] have used 
the Picard group to generate faithful representations of surface groups. An 
identical embedding property is shown to hold for Td, d = 2, 7, 11 while 
the remaining cases require some modification. If F is Fuschian and has 
torsion and is embedded in 1 ,̂ d = 1, 2, 7, 11, then we show that F is finite 
or a free product of cyclics unless it has a certain intersection property 
with the modular group. Finally we show that for all non-real subrings R 
of C, PSL2(R) will contain no normal Fuchsian subgroups. 

2. Preliminaries. In this section we recall some definitions and facts that 
will be crucial to the subsequent development. A Fuchsian group F is a 
discrete subgroup of PSL2(R) or a conjugate in PSL2(C) of a discrete 
subgroup of PSL2(R). Equivalently a Fuchsian group can be defined as a 
discontinuous (and therefore discrete) subgroup of PSL2(C) which maps 
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a circle C and the interior of C on itself. C is called the fixed circle of the 
group F. 

Since conjugation preserves traces, the transformations 

z' = az + b/cz + J 

in a Fuchsian group F all have real trace. Thus the transformations in a 
Fuchsian group are either elliptic (trace with absolute value less than 2), 
hyperbolic (trace with absolute value greater than 2) or parabolic (trace of 
±2) . The fix points of hyperbolics and parabolics in F must lie on the 
fixed circle C, while the fixed points of elliptics in F are inverse with 
respect to C. Finally elements of finite order must be elliptic. If F consists 
solely of hyperbolic transformations we call F a hyperbolic Fuchsian group. 
Similarly for parabolic Fuchsian groups and elliptic Fuchsian groups. 

If a Fuchsian group is finitely generated it possesses a standard 
presentation [14], 

F= (el9...ek,pl9...pt,al9bl9 . . . ag9 bg9 

g \ 
e\l = 1, / = 1, . . . k9 ex . . . ekpx .pt YL [ai9 bt] = 1 ) . 

The e]9. . . ek are the elliptic generators, px . . .pt the parabolic generators 
and <2f, b{9 . . . a , b the hyperbolic generators. If t > 0 then F is a free 
product of cyclics [14]. If k = 0, F is torsion-free and is then either a 
free group or has a presentation 

F = lal9b]9... ag9 bg9 I I [ai9 bt] = 1 J. 

This is isomorphic to the fundamental group of a Riemann surface of 
genus g. We will denote this by <j> and call any group which is iso
morphic to <j> a surface group. Thus a torsion-free Fuchsian group is either 
a free group or a surface group. By a Fuchsian surface group we mean a 
Fuchsian group in the sense defined earlier which is also a surface group. 
Many of our embedding results apply to general surface groups as well as 
Fuchsian groups. 

3. The Picard group. If T{ is the Picard group, crucial to our discussion 
is the following result: 

THEOREM [6]. Tj is a free product with amalgamation 

Tx= Gx* G2 
M 

with 
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G, ~ S3 * A4, H ^ Z3 
// 

G2 ~ S3 * Z)2, 7/! - Z2 

a^d //ze amalgamated subgroup M is isomorphic to the modular group. 

Different results are obtained if the Fuchsian groups are torsion-free or 
not. Therefore in all cases we separate these two situations. Our first result 
is on torsion-free Fuchsian subgroups of Tx. 

THEOREM 1. Let F be a torsion-free Fuchsian subgroup of Tx. Then F is a 
free group unless it satisfies: 

a) F has at most cyclic intersection with all conjugates in Tx of the modular 
group M and 

b) F has non-trivial intersection with at least one conjugate of M. 

Proof. Suppose F is torsion-free and Fuchsian in Tx. Since 

r, = GX * G2, 
M 

if F has trivial intersection with all conjugates of M in Tx it follows from 
[12] or [21] that Fmust be a free product of free groups and subgroups of 
conjugates of Gx and G2. 

Now Gx and G2 are themselves free products with amalgamations of 
finite groups. These satisfy the "torsion-free subgroup property"; that is 
torsion-free subgroups must be free [9]. Thus since F is torsion-free, the 
subgroups of Gx and G2 contained in F must be free. F is then a free 
product of free groups and thus free. 

We must now show that if F has non-cyclic intersection with some 
conjugate of M then F is also free. 

Since F is Fuschian and torsion-free it contains only hyperbolic and 
parabolic maps. If it contains a parabolic, F is a free product of cyclics 
[14] and since it is torsion-free it must be free. Thus we can assume that 
F is totally hyperbolic. Our result is then a consequence of the fol
lowing lemma. 

LEMMA A. Let R be a subring of C such that R n R = Z. If F is a 
hyperbolic Fuchsian subgroup ofPSL2(R) and F H g~XMg is non-cyclic for 
some g e PSL2(R) (M is the Modular group) then F c g~]Mg. 

Proof, (lemma) Since R n R = Z we have 

PSL2(R) n PSL2(R) = PSL2(Z) = M. 

Now suppose that F Pi g~]Mg is non-cyclic for some g in PSL2(R). 
By conjugation we can suppose that we have a Fuchsian subgroup F* 

with F* n M non-cyclic. We show that F* c M and thus F c g~ lMg. 
Since F is totally hyperbolic so is its conjugate F*. Since F* n M is 
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non-cyclic and Fuchsian there exists two non-commuting hyperbolic 
elements T, U in F* n M. (Since abelian subgroups of Fuchsian groups 
are cyclic.) 

From [T, U] ¥* 1, it follows that T, U have at least 3 distinct fix points 
Z b Z2, Z3 for T and U would commute if their fix points coincided. 

Let C be the fix circle of F*. Since T, U are hyperbolic, Z l5 Z2, Z3 are on 
C. But T, U are in M s o Z , , Z2, Z3 are real; fix points of hyperbolic maps 
in M are real. Therefore C has 3 points in common with R so C must be 
the real line. 

Therefore the fix circle of F* is the real line R s o P c PSL2(R) and 

F* c PSL2(R) n PSL2(R) = M 

and then 

F c g~xMg. 

Now we can complete the proof of Theorem 1. 
If F is hyperbolic and has non-cyclic intersection with some conjugate 

of M and since 

Tx O PSL2(R) = M 

we have from Lemma A F c g~ M g for some g in Tx or F* c M 
by conjugation. 

But F* is a torsion-free subgroup of M and therefore must be free [20]. 
So F must be free. 

Theorem 1 has an interesting application to representations of surface 
groups in Tx. Maskit [17], Mennicke [19], and Fine [4], have all generated 
faithful representations of surface groups in T{. A result of [18] guarantees 
that there will be Fuchsian representations in Th although he does not 
explicitly construct any. (We call a representation of a group in PSL2(C) 
Fuchsian if the image is a Fuchsian subgroup of PSL2(C) ) . Recall that if 
g > 0, then the surface group of genus g, <J> is the fundamental group of a 
Riemann surface of genus g. As mentioned in Section 2, finitely generated 
Fuchsian groups are either free groups or surface groups if they are 
torsion-free. Thus we get. 

COROLLARY 1. Suppose F c Tj with F Fuchsian. If F = <j> (Fprovides a 
faithful Fuchsian representation of $ in Tx) then F has non-trivial 
intersection with some conjugate of the modular group and cyclic {possibly 
trivial) intersection with all conjugates of M. 

Since surface groups do not decompose as free products the first part of 
the corollary applies to any representation of <f> in Tx. That is 

COROLLARY 2. If A c Tx with A ~ <j> then A has non-trivial intersection 
with some conjugate of the modular group M. (A need not be Fuchsian). 

https://doi.org/10.4153/CJM-1987-067-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-067-1


1438 BENJAMIN FINE 

If F has elliptic elements, that is F has torsion, the situation becomes 
somewhat more complicated. First we prove a general embedding result 
which is an extension of Lemma A. This will be used in analyzing the cases 
with torsion. This result was suggested by the referee. 

LEMMA B. Let G be a subgroup ofPSL2(C) and suppose that H and F are 
Fuchsian subgroups of G. Suppose that H is the Fuchsian stabilizer in G of 
the circle C; that is H is the subgroup of G which fixes C and maps the 
interior of C on itself Then F c H or F Pi H is cyclic. 

Proof. Since both F and H are Fuchsian, F n H is also Fuchsian. If 
F Pi H is non-elementary (that is has infinitely many limit points) 
then F C\ H must contain at least two non-commuting hyperbolic 
elements. This follows from the fact that the limit points are the closure 
of the hyperbolic fixed points [14]. Suppose T, U are hyperbolic with 
[ r , U] ^ 1 and r , U e F O H. Then as in Lemma A, T, U must have at 
least three distinct fixed points on the fixed circle C of H. But then C must 
also be the fixed circle of F. Since H is the Fuchsian stabilizer in G of C it 
follows that F c H. 

Now suppose that F n H is elementary; F n H has 0, 1 or 2 limit 
points. Since F n H is Fuchsian there are 4 possibilities; parabolic cyclic, 
hyperbolic cyclic, elliptic cyclic or a group generated by two elliptic 
transformations of order 2 whose product is hyperbolic. Abstractly this is 
Z2 * Z2. The group generated by two elliptics of order 2 whose product 
is parabolic is elementary but does not appear as a Fuchsian group. We 
show that in the last case F c H. Suppose Tx, T2 generate F n / / w i t h 
Tx = T2 = 1 and TXT2 hyperbolic. Then the fixed points z b z2 are the only 
limit points of F Pi H. These then must be interchanged by Tx. However 
given two points which are interchanged by an elliptic transformation 
there is a unique invariant circle passing through them. This must then be 
the fixed circle of F which is also the fixed circle of H. As above then 
F c H. 

COROLLARY. Let R be a subring of C such that R n R = Z and 
suppose that F is a Fuchsian subgroup of PSL2(R). Then if F Pi g~ M g is 
non-cyclic for some g in PSL2(R) then F c g~~ Mg. 

Proof. Since R n R = Z it follows that the Fuchsian stabilizer of 
the real axis in PSL2(R) is the modular group M. The corollary then 
follows directly. 

We now handle the case of a Fuchsian subgroup with torsion. 

THEOREM 2. Let F be a finitely generated Fuchsian subgroup ofTx. 
1) If F has trivial intersection with all conjugates in Tx of the modular 

group M then F is either finite or a free product of cydies. 
2) If F has non-cyclic intersection with some conjugate of M then F is a 

non-trivial free product of cy dies. 
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3) The possible finite Fuchsian groups which can appear are the cyclic 
groups Z2 and Z3. 

Proof. Suppose F has trivial intersection with all conjugates of M. 
As in the proof of Theorem 1, F must then be a free product of free 

groups and conjugates of subgroups of G} and G2. 
Since finitely generated Fuchsian groups are not non-trivial free 

products unless they are free products of cyclics we conclude that F is a 
free product of cyclics or F is a conjugate of a subgroup of Gx or G2. 

Suppose by conjugation that F c G, or F c G2. If F is not finite or a 
free product of cyclics then by the Fenchel-Fox Theorem [15] F contains 
a torsion-free F-group (surface group) of finite index. But as remarked 
in the proof of Theorem 1, Gx and G2 satisfy the torsion-free subgroup 
property; that is torsion-free subgroups must be free. Thus if F c G, or 
F c G2 or a conjugate of these it must be finite or a free product of 
cyclics. This proves part 1) of the theorem. 

The proof of part 3) follows using the same analysis. A finite subgroup 
must be conjugate to a subgroup of the factors; thus it must be conjugate 
to a subgroup of S3, A4 or D2. However finite Fuchsian groups must be 
cyclic giving only the possibilities Z2 or Z3. 

Now suppose that Fhas non-cyclic intersection with some conjugate of 
M. By conjugation we can assume a Fuchsian group F* with non-cyclic 
intersection with M. 

Since Tx n PSL2(R) = Mi t follows from the corollary to Lemma B that 
either F* c M o r P Pi M is cyclic. Since the intersection is non-cyclic F* 
is contained in M. Therefore T7* is either finite or a free product of cyclics. 
Since F* is non-cyclic in M it cannot be finite so i7* must be a non-trivial 
free product of cyclics. By conjugation F is then also a non-trivial free 
product of cyclics. 

Lemma B and its corollary can also be used to consider the Fuchsian 
triangle groups in PSL2(R) where R is a subring of C with R n R = Z. 

Recall that a triangle group T = T(m, n, p) is a group with a 
presentation of the form 

(u, v: um = vn = (uv)p = 1>. 

A Fuchsian triangle group is a Fuchsian group which provides a faithful 
representation of a triangle group. These are precisely the Fuchsian groups 
with signatures (m, n,p\ 3; 0); that is those Fuchsian groups generated by 
three elliptic maps. We will use F-triangle group to denote a Fuchsian 
triangle group. We then have from the corollary to Lemma B and from 
Theorem 2: 
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COROLLARY 3. (1) If R is a subring of C with R n R = Z and T is an 
F-triangle subgroup ofPSL2(R), then T must have at most cyclic intersection 
with all conjugates of M in PSL2(R). 

(2) In Tj an F-triangle group must also have non-trivial intersection with at 
least 1 conjugate of M. 

Proof The triangle groups do not decompose as free products of cyclics. 
Thus if T is an F-triangle group and T had non-cyclic intersection with M 
it would decompose. This handles part (1). Further if in Tj it had trivial 
intersection with all conjugates of M it follows from the proof of Theorem 
2 that it either decomposes as a non-trivial free product of cyclics or is 
finite; both impossible for F-triangle groups. 

3. The Euclidean Bianchi groups. If d = 1, 2, 3, 7, 11 the ring Od has a 
Euclidean algorithm. For d = 2, 7, 11 the groups are HNN groups while T3 

does not decompose as either an HNN group or a free product with 
amalgamation [6]. In this section we show that the results on embedding 
Fuchsian groups in Tj can be extended to these groups, with again the 
modular group playing a prominent role. A similar result does not follow 
directly for T3. First: 

THEOREM 3. Let F be a torsion-free Fuchsian subgroup ofTd,d = 2, 7, 11. 
Then F is free unless it has at most cyclic intersection with all conjugates of 
M in Td and non-trivial intersection with at least one conjugate of M. 

Proof Let F be torsion-free and Fuchsian in 1 ,̂ d = 2, 7, 11. If F 
contains parabolics it must be a free group so suppose that F is totally 
hyperbolic. 

Since Td n PSL2(R) = M Lemma A applies so if F n g~xMg is 
non-cyclic for some g in Td then F c g~ Mg. Since F is torsion-free it then 
must be free as in the proof of Theorem 1. 

Next suppose that F c Td intersects all conjugates of the modular group 
M trivially. 

From [6] we have that for d = 2, 7, 11, Td is an HNN group with 
respective base groups K2, K7, Kx x. The free part in each case has rank 1 
and each has a single associated subgroup isomorphic to the modular 
group M. Further generators can be chosen so that in terms of these 
generators the associated subgroup is precisely M. 

Now since F intersects all conjugates of M trivially and since M is the 
only associated subgroup we have from the Karrass-Solitar subgroup 
theorems on HNN groups [14] that F i s a free product of a free group and 
conjugates of subgroups of the base. 

If d = 2, the base K2 is itself a free product with amalgamation [6]. 
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K2 = Hx * H2 
H 

with 

Hx = Z)2, H2 = A4 and H = Z2. 

Since F is torsion-free its intersections with conjugates of K2 are also 
torsion-free. However K2 is a free product with amalgamation of finite 
groups and thus K2 has the torsion-free subgroup property. 

Therefore F is a free product of free groups and thus must be free. 
An identical argument works for T7 and r n . From [6] we have the 

structure of the base groups K7 and Kx x. 

Kj = Hx * H2 
H 

with 

Hx = S3, H2 = S3 and H = Z2 

and 

Kxx = Hx * H2 
H 

with 

Hx = A4, H2 = A4 and if = Z3. 

Thus both of these bases are free products with amalgamation of finite 
groups and thus have the torsion-free subgroup property. 

As in T, the non-torsion-free cases must be modified slightly. 

THEOREM 4. Let F be a finitely generated Fuchsian subgroup of Td with 
d =2,7 or II. 

1) If F has trivial intersection with all conjugates in Td of the modular 
group M the F is either finite or a free product of cydies. 

2) If F has non-cyclic intersection with some conjugate of M then F is a 
non-trivial free product of cy dies. 

3) The possible finite Fuchsian subgroups which can appear are the cyclic 
groups Z2 and Z3 in all three cases. 

Proof Let F be finitely generated and contained in T2, T7 or r n . 
If .Fis Fuchsian and has non-cyclic intersection with some conjugate of 

M then the corollary to Lemma B holds and F c g~ Mg. Thus F must be 
finite or a free product of cyclics. Since it has non-cyclic intersection with 
a conjugate of M it cannot be finite so it must be a non-trivial free product 
of cyclics. This handles part 2). 

Further a finite subgroup of an HNN group must be conjugate to a 
finite subgroup of the base. The finite cyclic subgroups of the base groups 
in all three cases are Z2 or Z3. Since a finite Fuchsian group must be cyclic 
if F is finite it must be one of these. 

https://doi.org/10.4153/CJM-1987-067-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-067-1


1442 BENJAMIN FINE 

Next suppose F is Fuchsian, F c Yd and F has trivial intersection with 
all conjugates of M. Since Td is an HNN group with single associated 
subgroup M, from the Karrass-Solitar subgroup theorems it follows that F 
is a free product of free groups and subgroups of conjugates of the base. 
As before since finitely generated Fuchsian groups are not free products 
unless free products of cyclics, then F is either a free product of cyclics or 
F c g~]Kdg where Kd is the base. 

By conjugation we can assume a conjugate F* c Kd. If F* is not finite 
or a free product of cyclics it is an F-group. By the Fenchel-Fox Theorem 
it contains a surface group of finite index. But each of the base groups K2, 
K7 and Ku have the torsion-free subgroup property. Therefore in this case 
F must be finite or a free product of cyclics. 

The remaining Euclidean case d = 3 must be handled differently since 
Karrass-Solitar [6] have shown that T3 is not a free product with 
amalgamation or an HNN group. However Brunner, Lee and Wielenberg 
[3] have shown that PGL2(03) is a triangular product (see [3] for 
terminology) and T3 is of course a subgroup of PGL2(03). In particular 
PGL2(03) has the structure 

Although PGL2(03) has finite factors, triangular products do not 
necessarily satisfy the torsion-free subgroup property and there are 
non-free torsion-free subgroups of T3 [2]. Therefore the same type of 
analysis as in the other Euclidean cases does not go through. However 
Lemmas A and B are still valid so: 

THEOREM 5. Suppose F c T3 is Fuchsian. Then ij F has non-eyelie 
intersection with some conjugate of M then F is a non-trivial free product 
of cyclics. 

4. The non-Euclidean cases. The remaining Od, d ^ 1, 2, 3, 7, 11 are 
non-Euclidean. A method to compute presentations for Td = PSL2(Od) in 
all cases was given by Swan [22]. These methods depend on developing a 
geometric Blanchi diagram for Td. (See [22] for terminology.) Several cases 
were explicitly worked out by Swan and more recently by Floge [10]. In 
these cases (d = 5, 6, 10, 19), Td can again be described as an HNN group 
or free product with amalgamation. However the modular group, while 
appearing either as one of several associated subgroups or as part of the 
amalgamated subgroup does not have the pivotal role in the structure of Fd 
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that it has in the Euclidean cases. Therefore we cannot conclude that a 
non-free, torsion-free Fuchsian subgroup must have cyclic intersection 
with all conjugates of M. Whether it is possible to have a faithful Fuchsian 
representation of <J> in 1̂  with trivial intersection with all conjugates of M 
is an open question. However Lemmas A and B are valid for all the Td so 
we can extend Theorem 5. 

THEOREM 5'. For all d > 0, d square-free, if F is Fuchsian and F c Td 

then 
(1) If F has non-cyclic intersection with some conjugate of M in Td and F is 

torsion-free then F is free. 
(2) If F has non-cyclic intersection with some conjugate of M in Td then 

F is a non-trivial free product of cyclic s. 

The non-Euclidean cases are precisely those where 

PE2(Od) * PSL2(Od) 

where PE2(Od) is the projective elementary group. This is the subgroup 
of PSL2(Od) generated by the images of the elementary matrices. If 
d ¥= 1, 2, 3, 7, 11 it was shown in [4] that all the PE2(Od) are isomorphic. 
In [4] it was shown that for all d ¥= 1, 2, 3, 7, 11 PE2(Od) has the 
presentation 

PE2(Od) = (a, U u\ a2 = (at)3 = 1, u~ltu = t) 

where a is the transformation z' = —\/z,tisz' = z -f 1 and u is 
zf = z + w where {1, w} constitute an integral basis for Od. There
fore {a, t} generate the modular group M for all d and thus PE2(Od) is an 
HNN group whose base is the modular group. Further it has free part of 
rank 1 and its only associated subgroup is a free group of rank 1. If F is 
Fuchsian and contained PE2(Od) and if F has trivial intersection with all 
conjugates of M in PE2(Od) it must be a free group. From [14] if a 
subgroup of an HNN group has trivial intersection with all conjugates of 
the base it must be a free group. Therefore: 

THEOREM 6. If F is a Fuchsian subgroup of PE2(Od) with d ¥= 1, 2, 3, 7, 
11 then 

(1) If F has trivial intersection with all conjugates of M is must be a 
free group. 

(2) If F has non-cyclic intersection with some conjugate of M then F is a 
non-trivial free product of cydies. 

Since PF2(Od) n PSX2(R) = M part (2) follows from Lemmas A 
and B. 

5. Normal Fuchsian subgroups. Our final result shows that no Fuchsian 
subgroup of a Bianchi group can be normal. In fact PSL2(R) contains no 
normal Fuchsian subgroups for any non-real subring R of C. 
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THEOREM 1. If R is a non-real subring of C then PSL2(R) contains 
no normal Fuchsian subgroup. 

Proof. Let G = PSL2(R) and suppose F c G is Fuchsian with fixed 
circle C. 

Since R is a subring of C, 1 Œ R and thus G contains the translation 

T:z' = z + \. 

If F were normal in G then T~]FT = i7 and thus T~] FT is also Fuchsian 
with the same fixed circle as i7. However T~ i<T fixes T(C) and the 
interior of T(C) since i7 fixes C and its interior. The same argument 
applies to show that Tn(C) is also a fixed circle for F. 

Since all of the fix points of the elements of F are either on C or inverse 
to C and Tn(C) translates C parallel to the real axis and T"(C) is also a 
fixed circle of F it follows that C must be a line parallel to the real axis. 

However R is assumed to be non-real so there is a non-real element w in 
R. Therefore the non-real translation U:z' = z + w is in G. Conjugating F 
by the powers { Un } and using the same argument as above we get that if 
F were normal in G its fixed circle C would be a line parallel to the 
direction of the translation z' = z + w. Since w is non-real this is not 
parallel to the real axis and therefore F cannot be normal. 

6. Closing questions. For the non-Euclidean Bianchi groups our 
methods left open the question as to whether there can be Fuchsian 
subgroups which have trivial intersection with all conjugates of M and are 
not free products of cyclics. We close by stating this formally. 

(1) Is it possible to find a Fuchsian subgroup F c Td, d ¥= 1, 2, 3, 7, 11 
which has trivial intersection with all conjugates of M and is not a free 
product of cyclics? 
or 

(2) Is it possible to find a faithful Fuchsian representation of <j> (for 
some g > 1) in 1^ which has trivial intersection with all conjugates 
of M. 

Acknowledgement. I would like to thank the referee for many helpful 
comments and especially for suggesting Lemma B and its proof. 

R E F E R E N C E S 

1. L. A. Best, On torsion-free discrete subgroups of PSL2(C) with compact orbit space, Can J. 

Math . 23 (1971) , 451-460. 

2. A. M. Brunner, M. Frame , Y. W. Lee and N . J. Wielenberg, Classifying torsion-free 

subgroups of the Picard group, Trans , of the A. M. S. 282 (1984), 205-235. 

3. A. M. Brunner, Y. W. Lee and N. J Wielenberg, Polyhedral groups and graph 

amalgamation products, to appear . 

4. B. Fine, The structure of PSL2(R); R the ring of integers in a Euclidean quadratic 

imaginary number field, Ph .D . thesis, New York Universi ty (1973). 

https://doi.org/10.4153/CJM-1987-067-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-067-1


F U C H S I A N E M B E D D I N G S 1445 

5. The structure of PSL2(R), Ann. of Math . Study. 79 (1974), 145-170. 

6. The H N N and generalized free product structure of certain linear groups, Bull. 

A . M . S. 81 (1975), 413-416. 

7. Fuchsian subgroups of the Picard group, Can. J. Math . 28 (1976), 481-486. 

8. Congruence subgroups of the Picard group, Can. J. Math . 32 (1979), 1474-1481. 

9. Groups whose torsion-free subgroups are free, Bull. Acad. Sin. 12 (1984), 31-36. 

10. D . Floge, Zur struktur der PSL2 uber einegen imaginar quadratischen Zahlringen, Math Z. 
/ ^ J (1983), 255-279. 

11. F. Grunewald and J. Schwermer, Free non-abelian quotients of SL2 over orders of 

imaginary quadratic number fields, J. of Alg. 69 (1981), 162-175. 

12. A. Karrass and D. Solitar, The subgroups of a free product of two groups with an 

amalgamated subgroup, Tran. A. M. S. 150 (1970), 227-255. 

13. Subgroups o / H N N groups and groups with one defining relation, Can. J. Math . 23 

(1971), 627-643. 

14. J. Lehner, Discontinuous groups and automorphic functions, Math Surveys 8 (Amer. Math. 

Soc., Providence R. I., 1964). 

15. R. Lyndon and P. Schupp, Combinatorial group theory (Springer-Verlag, New York, 

1977). 

16. W. Magnus , A. Karrass and D. Solitar, Combinatorial group theory (Wiley Interscience, 

New York, 1966). 

17. B. Maskit , On a class of Kleinian groups, Ann. Academia Scient. Fennicae I, 
Mathemat ica , Helsinki (1969), 1-7. 

18. C. Maclachlan, Fuchsian subgroups of the groups PSL2(Od), to appear. 

19. J. Mennicke, A note on regular coverings of closed orientable surfaces, Proc. Glasgow 

Math . Soc. 5 (1969) , 49-66. 

20. M. Newman , Integral matrices (Academic Press, New York, 1972). 

21 . J. P. Serre, Trees (Springer-Verlag, New York, 1980). 

22. R. G. Swan, Generators and relations for certain special linear groups, Adv. in Math. 6 

(1971), 1-77. 

23. H. Waldinger, On the subgroups of the Picard group, Proc. A. M. S. 16 (1965), 

1375-1378. 

Fairfield University, 
Fairfield, Connecticut 

https://doi.org/10.4153/CJM-1987-067-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-067-1

