
1
Tensors and Their
Subparts

Tensors are multiway arrays and serve as useful tools for data representation and analysis.
Tensor decompositions are similar in spirit to matrix decompositions, such as principal
component analysis (PCA), singular value decomposition (SVD), and nonnegative matrix
factorization (NMF). If we consider that a matrix might generically represent objects (rows)
and attributes (columns), the addition of multiple measurements at different times or in
different scenarios can produce a multiway array that we refer to as a tensor. In 1952,
Cattell proposed that data might be organized as

object feature scenario× × .

The tensor in this case might look like what we see in Fig. 1.1.
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Figure 1.1 Prototypical format of the tensor in data analysis.

The different scenarios might consist of measurements at different times or under different
conditions. Furthermore, there is no reason to be constrained to organizing data into 3-way
arrays.

The focus of this chapter is on understanding and manipulating tensor objects. A tensor
is a multidimensional array, but it is oftentimes useful for considerations of storage or
computation to view it in other ways, rearranging its entries as a vector or a matrix. We
can potentially exploit structure such as sparsity or symmetry. Moreover, we can consider
particular subparts of the tensor, called fibers, slices, and hyperslices. We describe several
example tensors that we will revisit throughout the book. We close this chapter with a
preview of the two main tensor decompositions discussed in this book: Tucker and CP.
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4 1 Tensors and Their Subparts
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(a) Vector x ∈ Rn is a
tensor of order 1.

Xm

n

(b) Matrix X ∈ Rm×n is a
tensor of order 2.

Xm

n

p

(c) Tensor X ∈ Rm×n×p is
of order 3.

Figure 1.2 Tensors of order one, two, and three.

1.1 What Is a Tensor?
A tensor is a d-way array, where d is referred to as the order of the tensor. Let’s talk about
how tensors relate to the known realm of vectors and matrices. First, a bit of notation. We
denote the set of real values as R. We represent scalars throughout as lowercase letters.
We generally use the letters i, j, k, ℓ as indices into arrays and the letters m,n, p, q, r, s to
represent sizes. We assume that indices start from 1 (rather than 0). Additionally, we use
the shorthand [n] ≡ { 1, . . . , n }, and we write [m]⊗ [n] = { (i, j) | i ∈ [m], j ∈ [n] }.
Definition 1.1 (Tensor) A tensor is a d-way array, and d is the order of a tensor.

A vector is a one-dimensional array of numbers that represents a collection of measure-
ments. In machine learning, a feature vector is the set of measurements that is used to
characterize an object. We represent vectors throughout by lowercase boldface roman let-
ters. If x is a real-valued vector of size n, then we write x ∈ Rn. Entry i ∈ [n] of x is
denoted as x(i) or compactly as xi. A vector is a tensor of order 1.

A matrix is a two-dimensional array of numbers, such as a collection of feature vectors. We
represent matrices throughout by uppercase boldface roman letters. If X is a real-valued
matrix of size m × n, then we write X ∈ Rm×n. For instance, given a set of m objects,
each of which has n features, the matrix entry X(i, j) would represent the jth feature of
object i. More generally, entry (i, j) ∈ [m] ⊗ [n] of X is denoted as X(i, j) or compactly
as xij . A matrix is a tensor of order 2.

Definition 1.2 (Higher Order) A d-way tensor is called higher order if d ≥ 3.

If we have a three-dimensional array of numbers, then we have a higher-order tensor.
Tensors of order 3 or greater are denoted throughout by uppercase bold Euler roman letters:
X. Figure 1.2 shows a vector, a matrix, and an order-3 tensor. If X is a real-valued tensor
of sizem×n×p, then we write X ∈ Rm×n×p. For instance, given a set ofm objects, each
of which has n features, measured under p different scenarios, the tensor entry X(i, j, k)
would represent the jth feature of object i measured in scenario k. More generally, entry
(i, j, k) ∈ [m] ⊗ [n] ⊗ [p] of X is denoted as X(i, j, k) or compactly as xijk. We refer to
each dimension as a mode. We say that mode 1 is of size m, mode 2 of size n, and mode
3 of size p. If all modes have the same size, we call the tensor cubical.

○ A tensor is a d-way array. We refer to d as the order of the tensor and
the different ways as modes. We say a tensor is higher-order if d ≥ 3.
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1.2 Slices and Hyperslices 5

Table 1.1 Notation for scalars, vectors, matrices, and higher-order tensors

Description Size Order Notation Entry

Scalar 1 0 x x
Vector n 1 x x(i) or xi

Matrix m× n 2 X X(i, j) or xij

3-way tensor m× n× p 3 X X(i, j, k) or xijk

4-way tensor n1 × n2 × n3 × n4 4 X X(i1, i2, i3, i4) or xi1i2i3i4

d-way tensor n1 × n2 × · · · × nd d X X(i1, i2, . . . , id) or xi1i2···id

Example 1.1 (Tensor Entries) As an example, consider the 2× 2× 2 tensor X, such that

1 5

6 3

9 9

8 2
X = .

It has eight entries:

x111 = 8, x211 = 9, x121 = 2, x221 = 9,

x112 = 6, x212 = 1, x122 = 3, x222 = 5.

Exercise 1.1 How many entries are in a tensor of size 100× 80× 60?

Tensors can go beyond third order. If we have a fourth-order tensor, we begin to run out
of letters. So, for a fourth-order tensor, we would likely resort to subscripts on the sizes
and indices. If X ∈ Rn1×n2×n3×n4 , then X is a fourth-order tensor. This is difficult to
visualize, but we can think of it as an array of third-order tensors or a matrix of matrices.
Its entries are indexed as (i1, i2, i3, i4) or xi1i2i3i4 . For a d-way tensor X, its size can be
specified as n1 × n2 × · · · × nd, and its entries would be indexed by d-tuples of the form
(i1, i2, . . . , id) ∈ [n1] ⊗ [n2] ⊗ · · · ⊗ [nd]. In this case, mode 1 is size n1, mode 2 is size
n2, and so on. More generally, the size of mode k ∈ [d] is nk.

Exercise 1.2 (a) Consider a 3-way tensor of size 512 × 512 × 512. If each entry is a
double precision value that requires 8 bytes of memory, how many gigabytes of memory
are need for a tensor (note that a gigabyte is 230 bytes). (b) What about a 4-way tensor of
size 512× 512× 512× 512?

We summarize the notation for tensors in Table 1.1. Because of the awkwardness of tensor
notation using many levels of subscripts, this book will generally describe things first in
terms of 3-way tensors of size m× n× p to establish the concepts, and then generalize to
d-way tensors of size n1 × n2 × · · · × nd.

1.2 Slices and Hyperslices
A slice of a tensor is a 2-way subtensor, which is a matrix. For a third-order tensor, we can
give names to all the different 2-way slices.
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6 1 Tensors and Their Subparts

Definition 1.3 (Slices of 3-way Tensor) Let X be a 3-way tensor of size m × n × p. The
ith horizontal slice is a matrix of size n × p given by X(i, :, :). The jth lateral slice is a
matrix of size m × p given by X(:, j, :). The kth frontal slice is a matrix of size m × n
given by X(:, :, k).

The three types of slices for 3-way tensors are shown in Fig. 1.3. For a tensor of size
m × n × p, the horizontal slices are X(i, :, :) for all i ∈ [m] and of size n × p. Likewise,
the lateral slices are X(:, j, :) for all j ∈ [n] and of size m × p. Finally, the frontal slices
are X(:, :, k) for k ∈ [p] and of size m×n. The frontal slices can be denoted as Xk if there
is no ambiguity. Tensors are often displayed in terms of their frontal slices.

(a) Horizontal slices, X(i, :, :). (b) Lateral slices, X(:, j, :). (c) Frontal slices, X(:, :, k).

Figure 1.3 Two-way slices of 10× 8× 6 tensor. Dark colors correspond to higher indices.

Example 1.2 (Three-way Tensor Slices) Consider the tensor X of size 3× 3× 2 given by

1 4 1

5 6 4

6 9 5

4 3 9

8 2 1

3 9 1

X = .

Since its third mode is size 2, it has two frontal slices, each of size 3 × 3, i.e., the size of
the first two dimensions. So, we can specify X by listing its frontal slices:

X(:, :, 1) =



3 9 1
8 2 1
4 3 9


 and X(:, :, 2) =



6 9 5
5 6 4
1 4 1


 .

The middle horizontal and last lateral slices are

X(2, :, :) =



8 5
2 6
1 4


 and X(:, 3, :) =



1 5
1 4
9 1


 .

Exercise 1.3 For the tensor in Example 1.2: (a) What is X(1, :, :)? (b) What is X(3, :, :)?
(c) What is X(:, 1, :)? (d) What is X(:, 2, :)?

Exercise 1.4 For the tensor in Example 1.1, list all the (a) horizontal, (b) lateral, and
(c) frontal slices.
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1.2 Slices and Hyperslices 7

We can generalize the concept of frontal slices to a tensor of order d for d > 3 as follows:
A frontal slice of a tensor holds every index fixed except the first two. This is convenient
for display because the frontal slices are matrices.

Definition 1.4 (Frontal Slices of d-way Tensor) The frontal slices of a d-way tensor X

of size n1 × n2 × · · · × nd are given by X(:, :, i3, i4, . . . , id) for all (i3, i4, . . . , id) in
[n3]× [n4]× · · · × [nd].

Example 1.3 (Frontal Slices) Consider the 4-way 3× 4× 3× 2 tensor Y given by

Y(:, :, :, 1) =
5 5 4 8

2 7 5 4

9 7 2 5

3 5 6 5

1 2 1 3

4 9 9 9

4 5 3 8

8 9 1 7

1 7 5 5
, Y(:, :, :, 2) =

1 3 8 2

7 6 9 8

9 3 9 5

4 5 1 7

7 6 1 5

2 4 4 7

6 4 5 9

3 5 4 4

7 3 6 7
.

The tensor Y has six frontal slices as follows:

Y(:, :, 1, 1) =



1 7 5 5
8 9 1 7
4 5 3 8


 , Y(:, :, 1, 2) =



7 3 6 7
3 5 4 4
6 4 5 9


 ,

Y(:, :, 2, 1) =



4 9 9 9
1 2 1 3
3 5 6 5


 , Y(:, :, 2, 2) =



2 4 4 7
7 6 1 5
4 5 1 7


 ,

Y(:, :, 3, 1) =



9 7 2 5
2 7 5 4
5 5 4 8


 , Y(:, :, 3, 2) =



9 3 9 5
7 6 9 8
1 3 8 2


 .

Exercise 1.5 Only frontal slices are defined for any order. (a) How many frontal slices does
a tensor of size m× n× p× q have? (b) How about a tensor of size n1 × n2 × · · · × nd?

More generally, fixing a single index in an arbitrary-order tensor yields a hyperslice. In
other words, we define a hyperslice to be the subtensor defined by fixing a single index,
and we call this a mode-k hyperslice. For example, if X is a 4-way tensor of size m×n×
p × q, then the mode-2 hyperslices are X(:, j, :, :) for all j ∈ [n]. For third-order tensors,
mode-1 hyperslices are called horizontal, mode-2 hyperslices are called lateral, and mode-3
hyperslices are called frontal. However, we name the mode-k hyperslices only in the 3-way
case.

Definition 1.5 (Mode-k Hyperslice) The mode-k hyperslice of a d-way tensor X of size
n1 × n2 × · · · × nd is a (d − 1)-way tensor of size n1 × · · · × nk−1 × nk+1 × · · · × nd.
The jth mode-k hyperslice is given by X(:, ..., :, j, :, ..., :).

Exercise 1.6 Let Y be the 4-way 3 × 4 × 3 × 2 tensor in Example 1.3. (a) What is the
size of Y(1, :, :, :)? (b) Write out Y(1, :, :, ℓ) for each ℓ ∈ { 1, 2 }. (c) What is the size
of Y(:, 4, :, :)? (d) Write out Y(:, 4, :, ℓ) for each ℓ ∈ { 1, 2 }. (e) What is the size of
Y(:, :, 2, :)? (f) Write out Y(:, :, 2, ℓ) for each ℓ ∈ { 1, 2 }.
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8 1 Tensors and Their Subparts

1.3 Tensor Fibers

○ Tensor fibers are the generalization of matrix rows and columns.
Tensor fibers are always oriented to be column vectors.

Tensor fibers are the analogs of matrix rows and columns. The main difference between
matrix rows and columns and tensor fibers is that tensor fibers are always oriented as col-
umn vectors when used in calculations. For a 3-way tensor of size m× n× p, we have the
following:

1. The mode-1 fibers of length m, also known as column fibers, range over all indices
in the first mode, holding the second and third indices fixed. In other words, there
are np column fibers of the form x:jk ∈ Rm.

2. The mode-2 fibers of length n, also known as row fibers, range over all values in
the second mode, holding the first and third indices fixed. In other words, there are
mp row fibers of the form xi:k ∈ Rn.

3. The mode-3 fibers of length p, also known as tube fibers, range over all values in
the third mode, holding the first and second indices fixed. In other words, there are
mn tube fibers of the form xij: ∈ Rp.

(a) Column fibers, x:jk. (b) Row fibers, xi:k. (c) Tube fibers, xij:.

Figure 1.4 Fibers of a third-order tensor of size 6× 5× 4.

Definition 1.6 (Fibers of a 3-way Tensor) Let X be a 3-way tensor of size m×n× p. The
column fibers are vectors of length m given by X(:, j, k). The row fibers are vectors of
length n given by X(i, :, k). The tube fibers are vectors of length p given by X(i, j, :).

The fibers for a third-order tensor are illustrated in Fig. 1.4. More generally, the mode-1
fibers of a third-order tensor X of size m× n× p are given by

x:jk =




x1jk
x2jk

...
xmjk


 ∈ Rm, xi:k =




xi1k
xi2k

...
xink


 ∈ Rn, xij: =




xij1
xij2

...
xijp


 ∈ Rp.

Exercise 1.7 For an m × n × p tensor: (a) How many column fibers are there? (b) How
many row fibers? (c) How many tube fibers?
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1.3 Tensor Fibers 9

Example 1.4 (Three-way Tensor Fibers) Consider the 3-way tensor X defined in Exam-
ple 1.2. Example mode-1, mode-2, and mode-3 fibers are, respectively,

X(:, 2, 2) = x:22 =



9
6
4


, X(1, :, 1) = x1:1 =



3
9
1


, and X(3, 2, :) = x32: =

[
3
4

]
.

Exercise 1.8 For the 3 × 4 × 2 tensor X given below, specify the following fibers:
(a) X(2, :, 2), (b) X(1, 4, :), (c) X(2, 3, :), (d) X(3, :, 1), and (e) X(:, 2, 1).

7 4 8 5

1 9 7 3

5 2 7 1

8 9 5 4

7 3 3 8

5 1 5 2

X = .

For a d-way tensor, a tensor fiber is a vector extracted from a d-way tensor by holding d−1
indices fixed. This is analogous to matrix rows and columns. Recall that each column in
a matrix ranges over all values in the first dimension, holding the second dimension fixed,
while each row in a matrix ranges over all values in the second dimension, holding the first
dimension fixed. In general, we say a fiber is a mode-k fiber if all indices are fixed except
the kth. For a general d-way tensor X of size n1 × n2 × · · · × nd, its mode-k fibers are
vectors of length nk.

Definition 1.7 (Mode-k Fiber) A mode-k fiber of a tensor is a vector produced by holding
all indices but the kth fixed.

The concept is straightforward even though the notation is intricate:

X(i1, . . . , ik−1, :, ik+1, . . . , id) =




X(i1, . . . , ik−1, 1 , ik+1, . . . , id)
X(i1, . . . , ik−1, 2 , ik+1, . . . , id)

...
X(i1, . . . , ik−1, nk, ik+1, . . . , id)


 ∈ Rnk .

Example 1.5 (Four-way Tensor Fibers) Some example fibers from the 4-way tensor in
Example 1.3 are as follows:

Mode 1: Y(:, 2, 1, 1) =



7
9
5


 , Mode 2: Y(3, :, 3, 1) =




5
5
4
8


 ,

Mode 3: Y(2, 3, :, 1) =



1
1
5


 , Mode 4: Y(1, 2, 3, :) =

[
7
3

]
.
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10 1 Tensors and Their Subparts

Exercise 1.9 Let Y be the 4-way tensor in Example 1.3. Specify the following fibers:
(a) Y(:, 1, 3, 2), (b) Y(1, :, 2, 1), (c) Y(3, 3, :, 1), and (d) Y(1, 2, 2, :).

Exercise 1.10 For anm×n×p×q tensor: (a) How many mode-1 fibers are there? (b) How
many mode-2 fibers? (c) How many mode-3 fibers? (d) How many mode-4 fibers?

Exercise 1.11 For a tensor of size n1×n2× · · · ×nd, how many mode-k fibers are there?

1.4 Tensor Mode-k Unfolding
The elements of a tensor can be rearranged to form various matrices in a procedure referred
to as unfolding, also known as matricization. A particular unfolding of interest is the
mode-k unfolding defined as follows.

Definition 1.8 (Informal Definition of Mode-k Unfolding) The mode-k unfolding of a
tensor is a matrix whose columns are the mode-k fibers of that tensor, denoted as X(k).

We defer the precise definitions (which explain how the columns are ordered) until Sec-
tion 2.3. We illustrate the mode-k unfoldings of a 3-way tensor in Fig. 1.5.

(a) Mode-1 fibers. (b) Mode-1 unfolding.

(c) Mode-2 fibers. (d) Mode-2 unfolding.

(e) Mode-3 fibers. (f) Mode-3 unfolding.

Figure 1.5 Illustration of mode-k unfoldings of a 3-way tensor.
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1.5 Example Tensors 11

Example 1.6 (Tensor Unfolding) Consider the tensor X of size 3×3×2 from Example 1.2:

1 4 1

5 6 4

6 9 5

4 3 9

8 2 1

3 9 1

X = .

Its mode-1 and mode-2 unfoldings are

X(1) =



3 9 1 6 9 5
8 2 1 5 6 4
4 3 9 1 4 1


 and X(2) =



3 8 4 6 5 1
9 2 3 9 6 4
1 1 9 5 4 1


 .

Finally, its mode-3 unfolding is

X(3) =

[
3 8 4 9 2 3 1 1 9
6 5 1 9 6 4 5 4 1

]
.

Exercise 1.12 Let X be a tensor of size 10× 8× 6. What is the size of X(2)?

1.5 Example Tensors
We describe several tensors from real-world datasets to help us understand the prevalence
of tensor-formatted data. These examples will be used throughout the book. As much as
possible, we visualize the data in tensor format so that we can see the connection between
the data and its representation as a tensor.

1.5.1 Miranda Scientific Simulation Data
Computational fluid dynamics uses numerical simulations to understand the flow of liquids
or gases, with ubiquitous applications ranging from combustion engines to aerodynamics
of aircraft wings to weather prediction. Mathematically, the problem can be solved using
discretized partial differential equations. Direct numerical simulation is a technique that
solves fluid flow problems on a uniform Cartesian grid, stepping through time. The datasets
are massive since an n×n×n Cartesian grid generates n3 data for each timestep, resulting
in terabytes of data from even modest sized simulations.

Remark 1.9 (Tensor versus Cartesian indexing)
Tensors are indexed starting in the front upper left corner,
with the first index corresponding to the downward vertical
direction, the second index corresponding to the horizontal
direction, and the third index corresponding to the backward
lateral direction. In contrast, Cartesian coordinates start in
the back lower left corner, with the first index corresponding
to the lateral direction, the second index corresponding to
the horizontal direction, and the third index corresponding
to the vertical direction.

z

y

x

i

j

k
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12 1 Tensors and Their Subparts

Our data comes originally from Cabot and Cook (2006) via the Scientific Data Reduction
Benchmark (SDRBench) of Zhao et al. (2020). The simulation is a Rayleigh–Taylor in-
stability direct numerical simulation of the mixing of two fluids of different densities. The
calculation produces density measurements over time on a 3D uniform Cartesian spatial
grid of size 3072 × 3072 × 3072. In single precision, the density measurements from a
single timestep requires more than 13 GB of storage.

20
48

z-
g

rid
p

o
in

ts

256 y-grid
points

25
6 x-g

rid

points

(a) (b) (c) (d)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Figure 1.6 Miranda tensor of size 2048 × 256 × 256, capturing the mixing of two fluids
of different densities. Color indicates density. (a) Outermost slices: the horizontal slice at
i = 1, the lateral slice at j = 256, and the frontal slice at k = 1. (b) Horizontal slices at
i = { 256, 512, . . . , 1792 }. (c) Lateral slice at j = 128. (d) Frontal slice at k = 128.

Our specific dataset is from a single time point and, in order to keep the memory require-
ments manageable, uses only a subset of the full spatial grid. Additionally, we remap the
Cartesian coordinates to tensor coordinates per Remark 1.9. The resulting tensor is of size

2048 z-grid points × 256 y-grid points × 256 x-grid points.

This tensor requires 1 GB of storage in double precision. The data is available for download
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1.5 Example Tensors 13

(approximately 300 MB of lossless compressed storage) at https://gitlab.com/
tensors/tensor_data_miranda_sim (Ballard et al., 2022).

○ Simulation data on a regular grid can be represented as a tensor.

We visualize the Miranda tensor in Fig. 1.6. The top horizontal slice is purely the high-
density fluid (density = 3) and the bottom horizontal slice is purely the low-density fluid
(density = 1), and the mixing happens in between. We show middle slices in each mode.

Exercise 1.13 Using slice notation, what are the 2D matrices being visualized in Fig. 1.6?

1.5.2 EEM Fluorescence Spectroscopy Data
In fluorescence spectroscopy, a chemical sample is excited, and the light that is emitted
is measured at several different wavelengths, resulting in an excitation–emission matrix
(EEM) of fluorescence intensities. When EEM data is gathered for a number of samples,
we obtain a 3-way tensor. This data can be used in analytical chemistry for estimating
chemical compound concentrations and spectra from multiple mixtures. It has applications,
for example, in environmental modeling. See Smilde et al. (2004, chapter 10.2) for further
details.

Our specific EEM example data has been curated from a series of fluorescence spec-
troscopy experiments as reported by Acar et al. (2014). The data has been preprocessed
to fill in missing data and replace negative entries as explained in the README file of
the data repository. (We revisit the raw data in our discussion of handling missing data
in Chapter 14.) All the entries are nonnegative. The data is available for download at
https://gitlab.com/tensors/tensor_data_eem (Kolda, 2021a).

The data comprises EEM measurements on 18 samples, each of which is a mixture of three
chemical compounds:

• valine–tyrosine–valine (Val-Tyr-Val), a peptide,
• tryptophan–glycine (Trp-Gly), a peptide,
• phenylalanine (Phe), an amino acid.

The intensities are measured at 251 emission wavelengths (250, 251, . . . , 500 nm) and 21
excitation wavelengths (210, 215, . . . , 310 nm). The 18 EEM profiles are shown in Fig. 1.8
as surface plots. The first three samples contain only a single compound, and each com-
pound creates a peak (a bright spot) centered at a different point. (These samples can be
removed to make the analysis more interesting.) Samples 4–18 are mixtures of the com-
pounds, so their profiles are, in a sense, weighted combinations of the first three. For
instance, the last mixture is a mixture of 3.75 parts Val-Tyr-Val and 5.00 parts Phe, so it
can be viewed as a weighted combination of the first and third profiles.

Stacking the emission–excitation intensity profile matrices yields the 3-way EEM tensor of
size

18 samples × 251 emissions × 21 excitations.

It is illustrated in Fig. 1.7.

○ Each sample produces an emission–excitation matrix, and the EEM
data from multiple samples is combined to form the EEM tensor.
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Figure 1.7 EEM tensor of size 18× 251× 21, highlighting a selection of lateral slices.
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Figure 1.8 Emission–excitation intensity profiles of EEM tensor. The profiles correspond
to horizontal slices of the EEM tensor, ordered from top (X(1, :, :)) to bottom (X(18, :, :)).
Each profile is labeled at right with concentrations of three chemical compounds (Val-Tyr-
Val / Trp-Gly / Phe). Each profile covers 21 excitation wavelengths (210, 215, . . . , 310 nm)
by 251 emission wavelengths (250, 251, . . . , 500 nm).
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1.5.3 Monkey BMI Neuronal Spike Data
We consider a dataset of monkey (Rhesus macaque) behavior using a brain–machine in-
terface (BMI) in a series of trials. The monkey BMI tensor data has been curated from
a series of experiments as reported in Vyas et al. (2018, 2020) and Williams et al. (2018)
and is available for download at https://gitlab.com/tensors/tensor_data_
monkey_bmi (Kolda, 2022a). In each of 88 experiments, a monkey moves a cursor to one
of four targets (at 0, 90, 180, and 270 degrees) and holds it there for 500 ms using a BMI
(Fig. 1.9).

Figure 1.9 The BMI task is to move the cursor from the center to one of four targets.

During this task, neuron spike data is collected. The time per trial varies, but we have
standardized every trial to 200 timesteps. Specifically, the data has been time-aligned so
that t = 0 is the start, t = 100 is time of target acquisition, and t = 200 is the end after
500 ms of holding the cursor at the target. The data has been additionally preprocessed to
smooth the spikes, remove trials for which target acquisition took more than 600 ms, and
remove neurons with little to no activity. The neurons are sorted by level of activity, from
greatest to least. The resulting tensor is

43 neurons × 200 timesteps × 88 trials.

The tensor is shown in Fig. 1.10.
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Figure 1.10 Monkey BMI tensor of size 43× 200× 88.

The 88 trials are split among the four targets as shown in Table 1.2.

The activities of several neurons across the trials are shown in Fig. 1.11. Each subimage
corresponds to a horizontal slice of the tensor, i.e., X(i, :, :) shows the activities of neuron
i. Within each figure, the individual lines correspond to tensor row fibers, i.e., X(i, :, k) is
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Table 1.2 Number of trials for each angle in the monkey BMI tensor

Angle 0 90 180 270
Count 20 28 21 19
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Figure 1.11 Activities of example neurons. For each neuron, thin lines correspond to ac-
tivity in each of 88 trials, color-coded by the target angle. Thick lines are averages. Times
1–100 are target acquisition, and times 101–200 are holding the cursor at the target.

the activity of neuron i in trial k. The lines are color-coded according to the target. For
each target, the average for all trials is shown as a thick line.

○
The recording from a single neuron in a single trial is a vector of observations
over time; the recordings of all neurons from a single trial forms a matrix; and

the collection of all (time-normalized) trials forms the monkey BMI tensor.

Exercise 1.14 Which type of fiber (row, column, or tube) corresponds to the reading of an
individual neuron from a single trial?

1.5.4 Chicago Crime Count Data
The Chicago crime data is statistics from public safety criminal activity reports in the city of
Chicago. The data is available at www.cityofchicago.org, and we are using a 4-way tensor
version corresponding to a single year of data, available at https://gitlab.com/
tensors/tensor_data_chicago_crime in file chicago_crime_2019.mat
(Kolda, 2022b).

The tensor modes correspond to 365 days (January 1 through December 31, 2019), 24
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Figure 1.12 Chicago crime tensor of size 365× 24× 77× 12.

hours, 77 communities, and 11 crime types. Entry X(i, j, k, ℓ) is the number of times that
crime ℓ happened in neighborhood k during hour j on day i. Hence, the tensor is formatted
as

365 days × 24 hours × 77 communities × 12 crime-types.

We have treated time as two-dimensional, splitting hours and days into two modes in order
to expose daily patterns in addition to longer-term trends. We can visualize the 4-way
tensor as an array of 3-way tensors as in Fig. 1.12a, and each 3-way subtensor is formatted
as in Fig. 1.12b.

○ Time can be multidimensional. For example, hourly
data can be divided further into days, weeks, etc.

The tensor is sparse because it has only 230,591 nonzeros out of 8,094,240 entries; that
is, only 2.85% of its entries are nonzero. Storing X as a sparse tensor (i.e., storing each
nonzero and 4-tuple index) requires less than 15% of the storage of the dense tensor. To vi-
sualize the sparsity, consider the first mode-1 hyperslice, X(1, :, :, :), pictured in Fig. 1.12c.
It has only 861 nonzeros out of 22,176 entries.

We compute some statistics on the Chicago crime tensor. The number of crime reports
per day are shown in Fig. 1.13a. Crime reports are highest overall in the summer months,
with a peak during August 1–4, which so happens to correspond to the Lollapalooza 2019
festival in Grant Park. The day with the most reports overall is January 1, 2019, keeping
in mind that various factors affect the date of a crime report and the first of the year is
presumably a popular day to choose when the exact date is uncertain.

Figure 1.13b shows the cumulative crimes per hour, with hour 0 corresponding to midnight
to 12:59 a.m., and hour 23 corresponding to 11:00–11:59 p.m.. Crime reports are lowest in
the hours 1:00–7:00 a.m. and peak at noon.

Totals crime reports per type are listed in Fig. 1.13c. The preprocessing of the data removed
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Figure 1.13 Chicago crime report counts from January 1, 2019 to December 31, 2019.

any crimes that occurred fewer than 5000 times in the time period of the data. The crimes
are in order of overall prevalence, with theft corresponding to index 1, battery to index 2,
and so on down to weapons violation corresponding to index 12.

A heatmap of the total crime frequency (over all crime types) per community is shown in
Fig. 1.13d. This is not normalized by population. The majority of reports come from the
community area known as Austin in the West Side region of Chicago.

Exercise 1.15 Load the tensor data and recreate Figs. 1.13a and 1.13b.

1.6 A First Look at Tensor Decompositions
The goal of this book is to learn how to decompose tensors into representations that might
be smaller, more expressive, or some combination of these ideals. Like matrix decom-
positions, we seek a set of matrices/tensors that can be multiplied together appropriately
to reconstruct the input. Unlike matrix decompositions, tensor decompositions are rarely
exact representations and instead only approximations of the input. Most tensor decompo-
sitions can be viewed as generalizations of low-rank matrix approximations to higher-order
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data. We focus on two types of decompositions, Tucker and CP; we more briefly discuss
other decompositions in Chapters 8 and 17.

1.6.1 A First Look at Tucker Decomposition
A Tucker decomposition compresses a tensor by decomposing into a smaller core tensor
multiplied by a matrix in each mode.

≈
X

G

U

V

W

Figure 1.14 Tucker decomposition.

We visualize the 3-way case as in Fig. 1.14. Here X is the original 3-way tensor, G is the
core 3-way tensor, and the matrices U, V, W are the matrices that are multiplied with G

to approximate X. The tensor G can be interpreted as a compressed version of X, and the
matrices U, V, W are bases for the subspaces onto which X is projected for compression.

In Tucker, it is possible to choose the size of the compressed tensor to ensure that the
approximation error is below a user-specified error threshold. The challenge in the Tucker
decomposition is identifying the optimal subspaces for compression.

1.6.2 A First Look at CP Decomposition
A CP decomposition expresses a tensor as a sum of vector outer products. The summands
are called components. The vectors in the components are used for interpretation.

≈ λ1 b1 + λ2 b2 + · · ·+ λr br.

X

a1

c1

a2

c2

ar

cr

Figure 1.15 CP decomposition.

We visualize the 3-way CP decomposition in Fig. 1.15. Each component is the outer prod-
uct of three vectors. The vectors constituting the components are usually explanatory as to
the nature of the component.

In comparison to Tucker, CP decomposition is often viewed as more useful for interpreta-
tion. The challenges in CP decomposition are choosing an appropriate number of compo-
nents and computing the optimal solution.
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