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Abstract

We study the characteristic p analogue of M-groups, the so-called Mp-group Generalizing this
notion, we also consider the condition that the modular irreducible representations are induced
from representations of dimension < p, or even weaker, of dimension not divisible by p.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 20 C 05, 20 C 20.

1. Introduction

The starting point of this investigation was a paper by Okuyama [12] where
the notion of M,-groups was introduced, namely: a finite group is an M,-
group if the simple modules in characteristic p are monomial. An M-group
is an M),-group for every prime p, so we have a wide class of M,-groups by
the theory of M-groups. We will give a criterion for a group to be an M-
group which is related to a corresponding criterion for M-groups; also this
motivates the definition of “M-blocks”.

If a prime p is fixed it is natural not only to look at irreducible repre-
sentations which are induced from 1-dimensional representations, but also
at those which are induced from representations of dimension not divisible
by p. In the characteristic 0 situation we have, for example, that irreducible
characters of a p-solvable group which are in a p-block with quaternion-free
resp. modular defect group are p’-induced. This condition is rather weak to
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get conditions on the group, so we will consider the stronger condition that
the irreducible representations are induced from representations of dimen-
sion less than p. In the characteristic O case, then all composition factors of
the group have abelian Sylow p-subgroups; in the characteristic p case, we
get that the group is p-solvable if we also assume that the simple modules
have trivial sources. Furthermore, some results on M),-groups and monomial
representations are generalized, and it is shown how some characteristic 0
properties can be transferred to characteristic p.

For the following we fix some notation: G is always a finite group, p a
prime number and {F, R, K} is a p-modular splitting system for G, that is, R
is a complete discrete valuation ring with quotient field X of characteristic 0
and residue field F of characteristic p, such that K and F are splitting fields
for G and its subgroups. This last assumption will not always be needed
but we put it in here for the sake of simplicity. Moreover, RG-modules are
assumed to be R-free and finitely generated.

2. Criteria for M),-groups and M-blocks

First we want to state the basic definitions precisely.

DEFINITION 2.1. Let 4 € {F,K}. An AG-module V is called monomial if
V = WY for some 1-dimensional AH-module W, where H is a subgroup of
G. The group G is called an M-group if all simple K G-modules are mono-
mial, and it is called an M)-group if all simple FG-modules are monomial.
Furthermore, G is an M-group resp. M ,-group, if G and all subgroups of G
are M-groups resp. M)-groups.

Note that in general an M-group or M,-group need not be an M-group
respectively M ,-group; this is what makes the study of these groups difficult.
For the proof of our main criterion we use the following lemma which is a
characteristic p version of a lemma also used to prove a corresponding result
on M-groups (compare Dornhoff [2, 15.1], Huppert [6, V, 18.3]).

LEMMA 2.2. Let A be a class of finite groups such that

(1) if G € A, then all subgroups and factor groups of G are in #,

(2) if G € A is not abelian, then there exists A A G, A ¢ Z(G) such that
all simple F A-modules are 1-dimensional.
Then all groups in # are M,-groups.

PrOOF. Let G € .#. We proceed by induction on the order of G. Let
V be a simple FG-module. If ker V' # 1, then V is a simple F(G/kerV)-
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module, and by induction and (1), V is monomial. So we can assume that
kerV = 1. Abelian groups are M,-groups, so we can assume that G is not
abelian. By (2) we have 4 < G, A ¢ Z(G), such that all simple F 4-modules
are 1-dimensional. Hence V4 = @ V;, where the V; are all 1-dimensional. As
A ¢ Z(G) and ker V = 1, the V; cannot all be isomorphic. Otherwise, take
a € A\Z(G), then a acts as a scalar on V', but as V is faithful, this implies
a € Z(G). Contradiction. So V = WY, where W is a simple F U-module,
U < G. By (1), U € #, so by induction, W is monomial and hence V is
monomial. Then, clearly, G is an M,-group.

REMARK 2.3. In the lemma above, (2) may be replaced by

(2) If G € # is not abelian, then there exists A I G, 4 £ Z(G) such that
A has a normal Sylow p-subgroup P with 4/P abelian.

In fact, (2) and (2') are equivalent, but we need only that (2') implies (2).
Also the following trivial extension is useful.

(2") If G € A is not abelian, then G is an M,-group or there exists 4 < G,
A € Z(G) such that 4 has a normal Sylow p-subgroup P with 4/P abelian.

Before we state our criterion, which is related to a similar result on M-
groups obtained by van der Waall [17], we recall some definitions.

DEFINITION 2.4. (a) A class # of finite groups is called a formation if it
satisfies

(1) & is closed with respect to factor groups,

(2) if G/N and G/M are in &, then so is G/(N N M).
Furthermore, a non-empty formation .# is called saturated if G/¢(G) € &
always implies G € & .

(b) A 2-group is called quaternion-free if the quaternion group of order 8
is not isomorphic to a homomorphic image of a subgroup of this group.

A p-group, for p # 2, is called modular if its subgroup lattice is modular.
(This is equivalent to saying that no extra-special p-group of order p3 and
exponent p is involved.)

THEOREM 2.5. Let & be a saturated formation of groups, subgroup closed
and consisting of M,-groups only. Let N be a normal solvable subgroup of G
such that

(i) G/INeF, and

(i1) The Sylow q-subgroups of N are quaternion-free for ¢ = 2, and are
modular for q # 2, except possibly for g = p.

Then G is an M,-group.
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ProoFr. For the sake of completeness we give all the details even though
some parts are the same as in the characteristic 0 result (see [17]). We apply
Lemma 2.2 with (2”) to the class of all groups satisfying the conditions of
the theorem.

First to (1). Let H < G, then HN N < H is solvable, satisfies (ii) and
H/(HN N) ~ HN/N < G/N, so H/(HNN) € . Let M <4 G then
NM/M 4 G/M and NM/M ~ N/(M N N) satisfies (ii). Furthermore,
(G/IM)/(NM/M)~G/NM ~ (G/N)/(NM/N)e ¥.

Now to (2). If N is abelian and not in Z(G), (2") is trivially satisfied. So
suppose N is abelian and N C Z(G). As G/N is an M,-group, it is solvable
(see Section 3). Thus G is solvable. By a result of Gaschiitz [6, VI, 7.10b]
every solvable group contains .# -covering groups, whenever # 1is saturated.
By Lubeseder’s theorem {6, V1, 7.25] a saturated formation of solvable groups
is locally defined. Hence we can apply a result by Carter, Hawkes and Shult
which says that in this situation, G abelian implies that # -covering groups
of G are the complements of G in G [6, VI, 7.15]. By our assumptions,
G¥ C NC Z(G), s0o G~ G” x D, where D is an & -covering group of G. As
D and G¥ are M,-groups, so is G.

So we can now assume that N is not abelian. Suppose N is not nilpotent
and let 1 # H < N be minimal with N/H nilpotent. Since H is characteristic
in N itis normal in G. If H is abelian, then we are done, because if H C Z(G)
then H C Z(N) and N is nilpotent, contradiction. So suppose H is not
abelian and let 4 be the smallest non-trivial member of the derived series of
H. Since H is solvable, A is abelian, and A4 is normal in G as it is characteristic
in H. If A ¢ Z(G) we are done. So assume 4 C Z(G), and hence 4 C Z(N).

Now by (3, 8] PN Z(N)NH =1 for all P € Syl (N), g # p. So A must
be a p-group. Now consider the next member B of the derived series of H
(since H is not abelian, such a B exists). Then 4 4 B, B/A is abelian and
B is normal in G. As B is not abelian, B ¢ Z(G). Thus we can take B for
the normal subgroup in (2”). If N is nilpotent, at least one of the Sylow
subgroups is not abelian. If the Sylow p-subgroup is not abelian, this is a
normal subgroup of G satisfying (2”). So suppose a Sylow g-subgroup for
g # p is not abelian, say Q. Clearly Q < G.

By [17, 1.26 and 1.2.7] we have that there exists an abelian characteristic
subgroup L in Q with L ¢ Z(Q). Hence L is normal in G and satisfies
L ¢ Z(G).

Of course, to apply this theorem, we want to have interesting classes &
which satisfy the hypothesis. For this we use the following result which again
corresponds to a result on M-groups (see [3], [6]).
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THEOREM 2.6. Let G be a finite group and suppose G has a normal subgroup
N such that

(i) G/N is g-supersolvable for all q # p, and

(ii) N is solvable and has abelian Sylow gq-subgroups for all q # p.
Then G is an My,-group.

ProoOF. We use Lemma 2.2. So let .# be the class of all groups with the
properties above. Clearly, .# is closed with respect to subgroups and factor
groups. Now we will prove (2'), so we can assume that G € .# is non-abelian.

Case 1. N does not have a normal Sylow p-subgroup P with P/N abelian.
Let A4 be largest possible among the normal subgroups of G contained in N
which do have a normal Sylow p-subgroup with abelian quotient. If 4 ¢
Z(G), we are done.

So assume now that 4 C Z(G), and thus 4 C Z(N). Consider N/4 Q G/A.
Let B/A be minimal among the non-trivial normal subgroups of G/A4 lying
in N/A. As N is solvable, B/4 must be abelian. Thus B’ C A C Z(B),
which implies that B is nilpotent. As B < N and N has abelian Sylow g-
subgroups for ¢ # p, B has a normal Sylow p-subgroup P with B/P abelian,
contradicting the choice of 4.

Case 2. N has a normal Sylow p-subgroup P with N/P abelian. If N ¢
Z(G), (2') is satisfied. So we can assume that N C Z(G). As G/N is g-
supersolvable for all ¢ # p, we have aseries N =Gy Cc G C---Cc G, =G
where G; 9 G and |G, : G| is prime or a p-power. As G is not abelian,
there exists i € {0,...,r} with G; C Z(G) and Gy € Z(G).

If |Giy1: Gy is prime, then Gy, is abelian, and we are done. So assume
|Gis1: Gi| is a p-power. Then G = G;P, where P is a Sylow p-subgroup of
Giy1. AsG; C Z(G), P 4Gy and Gi.1/P=GP/P ~ G,‘/Gi N P is abelian.
Hence G;,, is a normal subgroup of G as required in (2').

Let .7, be the class of all finite groups which are g-supersolvable for all
g # p, and let .4, be the class of all finite groups which are g-nilpotent
for all ¢ # p, that is, groups which are nilpotent modulo a {normal) Sylow
p-subgroup.

CoRroLLARY 2.7. (a) The classes #, and ¥, are saturated subgroup-closed
formations of M,-groups.

(b) If G is a solvable group which has abelian Sylow q-subgroups for all
q # p, then G is an M,-group.

PROOF. It only remains to prove that #, and .#; are saturated formations.
This follows from [6, VI, Section 8] respectively [6, VI, Section 7].
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ExaMPLE 2.8. The group G = SL(2, 3) illustrates both parts of the corol-
lary above: G is 3-supersolvable (and has abelian Sylow 3-subgroups), hence
G is an M,-group. Note that G is not 2-supersolvable (and the Sylow 2-
subgroup is not abelian) and it is not an Mj-group.

REMARK 2.9. (a) Combining Corollary 2.7(a) with Theorem 2.5 gives The-
orem 2.6 with abelian in (ii) replaced by quaternion-free, respectively modu-
lar. But by a result of Seitz and Wright [15] this is no more general than the
original statement of 2.6.

(b) Using results of Rigby [5] proved that Theorem 2.6 is even true if
condition (i) is replaced by the more general condition

(i) G/N is solvable and all g-chief factors of G/N and its subgroups have
odd degree, for all g # p.

But the resulting class of groups is not a saturated formation. Nevertheless
(though not as an application of Theorem 2.5) by modifying Gow’s proof we
also get the result mentioned in (a) with (i) replaced by (i’), using again the
fact that non-abelian quaternion-free, respectively modular, p-groups have
non-central abelian characteristic subgroups. (Here the Seitz-Wright result
cannot be applied!) We state this as

THEOREM 2.10. Let G be a finite solvable group, and suppose G has a
normal subgroup N such that

(i) all q-chief factors of G/N and its subgroups have odd degree, for all
q #p, and

(ii) N has quaternion-free, respectively modular, Sylow q-subgroups for all

q#p- .
Then G is an My,-group.

In the results above, the general translation principle from characteristic
0 to characteristic p was to omit the restriction on the Sylow p-subgroups.
Now we may go only half-way and assume that not the Sylow p-subgroups but
the defect groups of a given p-block satisfy certain assumptions. Of course,
we are then talking about the characteristic 0 situation, and we now define
M-blocks.

DEFINITION 2.11. Let B be a p-block of G. Then B is called an AM-block
if all irreducible characters in B are monomial.

THEOREM 2.12. Let G be a finite solvable group and suppose G has a normal
subgroup N such that
(i) all chief factors of G/N and its subgroups have odd degree,
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(i1) N has quaternion-free, respectively modular, Sylow q-subgroups, for all
q #p.
Then any p-block of G with quaternion-free, respectively modular, defect group
is an M-block.

ProoF. Using Fong reduction we may assume that the defect groups of
the p-block are Sylow p-subgroups, so we have to show that G is an M-group.
Since (i) and (ii) also hold for subgroups and factor groups of G, it suffices to
prove that a faithful primitive irreducible character of G is linear. Let y be
such a character. Set H = Fit N, so H =[]}, Qi, where the Q; are the Sylow
subgroups of H. Suppose H is not abelian, so Q; is not abelian for some i.
As Q; is quaternion-free respectively modular, it has an abelian non-central
characteristic subgroup L. Of course, L is also non-central and characteristic
in H. So L is a normal abelian subgroup of G, and hence must be central in
G, as we have a faithful primitive irreducible character of G, a contradiction.
Thus H is abelian, and so H C Z(G). This forces N = H to be abelian and
central in G, and therefore all chief factors of G and its subgroups have odd
degree. But using Rigby’s result [13] it is easy to prove that such groups are
M-groups (see Gow [5]).

REMARK 2.13. In particular, taking N = G we see that p-blocks with
quaternion-free, respectively modular, defect groups are M-blocks if all Sylow
g-subgroups of G, for all ¢ # p, are quaternion-free, respectively modular.

Using van der Waall’s criterion for M-groups [17], we get similarly

THEOREM 2.14. Let F be a saturated subgroup-closed formation of M-
groups. Let G be a finite group and suppose G has a solvable normal subgroup
N such that

(i) G/INe &, 4

(i) N has quaternion-free, respectively modular, Sylow q-subgroups, for all
q#p.

Then any p-block of G with quaternion-free, respectively, modular defect group
is an M-block.

3. p’-induced representations

In this section we want to study groups for which all irreducible repre-
sentations are p’-induced, that is, they are induced from representations of
dimension not divisible by p. This is an obvious generalization of the notion
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of M-groups, respectively M),-groups, and it is also a natural extension of the
class of those groups whose irreducible representations are all of p’-degree.
Using the classification of the finite simple groups, Michler [11] proved that
these last groups are characterized by the (obviously sufficient) condition that
the Sylow p-subgroup is normal (for characteristic p), respectively normal
and abelian (for characteristic 0). It seems to be more difficult to character-
ize the groups where all irreducible representations are p’-induced, since this
property is not inherited by normal subgroups.

But at least we have the sufficient condition that the simple FG-modules
are all p’-induced if G is p-solvable. This was proved by Tsushima [16] and
also by Gow [5]. The converse of this does not hold: for the group As all
simple modules in characteristic 5 are 5'-induced. Here we give a sufficient
condition for the characteristic O case, even for a block, which generalizes a
result of Gow [5].

THEOREM 3.1. Let G be a p-solvable group, B a p-block of G with D as a
defect group. Suppose G has a normal subgroup N such that

(i) the p-chief factors of G/N and all its subgroups have odd degree,
(i) N N D is quaternion-free, respectively modular.
Then all irreducible characters in B are p'-induced.

ProoF. We may assume that K is algebraically closed. Let y be an ir-
reducible character in B. We prove the assertion by induction on x(1);
of course, we may assume that p divides x(1). Set H = Oy(G). Then
Xn = e ; p; for some e € N and irreducible characters ¢; of H, which are
all conjugate. Suppose T = T(p;) < G. Then x = ¢¢ for some irreducible
character ¢ of T, and ¢ lies in a block B; with D as a defect group. Set
Ny = NnNT,so N;is normal in T and 7'/N, satisfies (i). Moreover, N;ND is
quaternion-free, respectively modular. So by induction ¢ is p’-induced, and
hence so is x.

Thus we can now assume that G = T(¢;). In this situation, D is a Sylow p-
subgroup of G and (ii) says that N has quaternion-free respectively modular
Sylow p-subgroups. We may also assume that y is faithful and, by induction,
primitive.

Now if O,(N) is not abelian, it has an abelian non-central characteristic
subgroup L. As L is normal in G, and we have an irreducible faithful prim-
itive character of G, we obtain L C Z(G), contradicting the fact that L is
non-central in O,(N). Thus O,(N) is abelian and hence O,(N) C Z(G). First
we deal with the case that H is not abelian. We are in the situation where
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xH = e, with ¢ an irreducible character of H. As H is not abelian, ¢ is non-
linear since y is assumed to be faithful. Now we apply the Fong reduction
(see [4, Chapter X]), so the following holds.

There exists a central extension

17— éLG—»l

where Z is a cychc D -subgroup and G has a normal subgroup H = H such
that ZH = Zx H = f- Y(H). Furthermore, if W is the representatlon
aﬁ'ordmg X, V the representatlon aﬁ‘ordmg ¢, we have W = W Vv, where
W is an irreducible K (G/ H )-module and V is a KG-module with S V~) =

Thus dim ¥ = dimV = ¢(1) and dim W = e, and G is also p-solvable
and has all the required properties. As ¢(1) > 1, e < x(1) and by induction,
W is p'-induced. As ¢ is of p’-degree, this implies that W and hence x is
p'-induced.

Therefore, we may now assume that H is abelian. As y is assumed to
be faithful, this immediately gives H C Z(G). In particular, this implies
N C Z(G), so the p-chief factors of G/Z(G) are of odd degree. But as G
is non-abelian, 0,(G) must be non-abelian and then by [13], G must have a
Dp-chief factor of even degree, a contradiction.

To illustrate the above we look again at a simple example.

ExXAMPLE 3.2. Let G = SL(2,3). For p = 2, the Sylow 2-subgroup is
quaternion and there exist irreducible characters of degree 2 which are not
induced. For p = 3, the Sylow 3-subgroups are even cyclic, so all irreducible
characters are 3'-induced.

The p’-induction property is closely connected to the height O property.
First we need

DEFINITION 3.3. Let 4 € {R, F}. An indecomposable AG-module V with
D as a vertex is said to be of vertex-height 0 if (rank, V), = |G : D|,. (Here
n, denotes the p-part of the natural number n.)

PROPOSITION 3.4. (a) Let A € {R, F}. IfV is an indecomposable p’-induced
AG-module, then V is of vertex-height 0.

(b) If an irreducible character x of G is p’-induced, then y is afforded by an
RG-lattice of vertex-height 0.

PROOF. (a) Let V = W¢, where W is an indecomposable 4AH-module of

rank not divisible by p, H < G. Then W has a Sylow p-subgroup D of H as a
vertex, and a vertex P of V satisfies P < D < H. As |G: P|, < (rank V)p =
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|G: H|, = |G: D|p, we obtain P =g D and (rank V'), = |G : P|,, and we are
done.
(b) follows from (a).

COROLLARY 3.5. Let B be a p-block of G with abelian defect group. If x is
an irreducible p'-induced character in B, then x is of height 0.

Proor. By Knorr’s Theorem [10], all irreducible RG-lattices in B have the
defect groups as vertices, and hence the assertion follows from Proposition
3.4(a).

As Brauer’s height 0 conjecture has been proved for p-solvable groups by
Gluck and Wolf, we also get

COROLLARY 3.6. Let G be a p-solvable group, B a p-block of G with non-
abelian quaternion-free, respectively modular, defect group. Then B has an
irreducible RG-lattice with non-maximal vertex.

ProoF. By Theorem 3.1, all irreducible characters in B are p’-induced,
and hence by Proposition 3.4(a) are afforded by RG-lattices of vertex-height
0. But as the defect group of B is not abelian, there exists an irreducible
character in B which is not of height 0. So it has an R-form with non-
maximal vertex.

4. r-induced representations, r < p

In this section we want to derive properties of groups all of whose irre-
ducible representations are induced from representations of dimension less
than p. First a general theorem which is a characteristic p version of a result
of Isaacs [9].

THEOREM 4.1. Let G be a finite group, F a class of finite groups closed
under isomorphisms, subgroups and extensions. Let F denote the smallest
class of finite groups containing F and all p-groups which is itself closed un-
der isomorphisms, subgroups and extensions. If all simple F G-modules are
induced from simple modules over sections in &, then G€ .

PROOF. Let N = G} be the minimal normal subgroup of G with

G/N € ¥. We want to show that N = 1. If 0,(G) # 1, then G/O,(G) € F
by induction, so G € #. Thus we may assume O,(G) = 1.
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If N # 1, then there exists a simple FG-module S with N ¢ kerS. If
kerS # 1, then G/kerS € g by induction and hence N C kerS, a contra-
diction. Thus kerS = 1. Now choose S to be a faithful simple FG-module
of minimal dimension. By hypothesis, S = U¢, where U is a simple FH-
module, H < G, and H/ kerU € & .

We consider the module V = (Fy)¢. Clearly dimV < dimS. As Fg is
a composition factor of V', every composition factor of V' has dimension
< dimS. So by the choice of S, N is in the kernel of every composition
factor of V.

Since G/OP(N) is an extension of G/N € F by the p-group N/OP(N),
we have G/OP(N) € & and hence N = OP(N) is generated by p-regular
elements. Thus N C ker” C H. Now H/N € &, so M = H® C N.
But N/M < H/M € & implies N> = N C M, and thus N = M. As
H/kerUe & C 9,;,’ we obtain N = M C ker U and hence N C kerS = 1.

COROLLARY 4.2. If all simple FG-modules are induced from solvable sec-
tions, then G is solvable. In particular, M,-groups are solvable.

REMARK 4.3. Dornhoff [3] proved the corollary above in the characteristic
0 case. In a remark he states a more general result but not quite correctly.

For M,-groups there is an even more precise result, which was obtained
independently by Gow [5} and Okuyama [12]. For completeness we include
here a slightly more general version of this.

ProrosITION 4.4. Let G be a finite group, d an integer such that all simple
FG-modules of dimension < d are monomial. Let 1 =d, <dy <---<d, <d
be the dimensions occurring. If V is a simple F G-module of dimension d;, then
GPU) C ker V. (Here we set GPO = G, GPl) = OP[GPY—D), Grli—-D])

PrOOF. For i = 1 the assertion is clear. We proceed by induction. Let
i>1. Asd; <d, V is monomial, say ¥ = WC, where W is a 1-dimensional
FH-module, H < G. We consider the module (F)°. If S is any composition
factor of (Fy)%, then dimS < |G : H| = dim V, and by induction G?¢~1) C
kerS. As G?U—1) is generated by p-regular elements, GP(—1 C ker(Fy)¢ C H.
Therefore, G*) C OP(H') C ker W. As G?U) is normal in G, this implies
GPY) C ker V.

Now we want to use Isaacs’ Theorem [9], respectively our Theorem 4.1, to
arrive at the necessary conditions announced earlier. First we note
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LEMMA 4.5. Let G be a finite group, A € {R, F}, and V an indecomposable
AG-module.

(i) If V = LS, where L is an AH-module of p’-rank, and vx L C ker L, then
V is induced from a p'-section.

(ii) If V has trivial source and V = LS, where L is an AH-module of rank
less than p, then V is induced from a p'-section.

PrOOF. (i) is obvious. For (ii), we only have to show vx L C ker L. By
Proposition 3.4(b), a Sylow p-subgroup D of H is a vertex of V and L. As
V has trivial source, Lp|(45)p = @p\g/p 4:np and rank L < p implies
Lp = (rank L)Ap, so D C ker L.

PROPOSITION 4.6. Let G be a finite group of all of whose irreducible char-
acters are induced from characters of degree less than p. Then all composition
Jactors of G have abelian Sylow p-subgroups.

ProOF. Let F be the class of all finite groups whose composition fac-
tors all have abelian Sylow p-subgroups. Clearly, ¥ is closed with respect
to subgroups, isomorphisms and extensions. So it suffices to prove that all
irreducible characters are induced from sections in .# (by [9]). So let x be
an irreducible character of G. By hypothesis, y = ¢ for some irreducible
character ¢ of H < G with ¢(1) < p. Let D be a Sylow p-subgroup of H, so
@p is a sum of linear characters and D’ C ker¢g. Thus H/ker ¢ has abelian
Sylow p-subgroups.

Note that for example all irreducible characters of A5 are induced from
characters of degree less than 5.

For the characteristic p result, we have to put in the extra assumption
that the simple modules have trivial source, which is trivially satisfied if the
simple modules are monomial.

ProOPOSITION 4.7. Let G be a finite group.

(i) If all simple F G-modules are induced from p'-dimensional modules with
vx C ker, then G is p-solvable.

(ii) If all simple F G-modules have trivial sources and they are induced from
modules of dimension less than p, then G is p-solvable.

ProoF. This follows from Theorem 4.1 by using Lemma 4.5(i) resp. (ii).

REMARK 4.8. (a) “Trivial source” is really an extra condition, even in the
solvable case. Take again G = SL(2,3), p = 3. The simple FG-modules I,
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2, 3 are all induced from modules of dimension less than 3, but 2 does not
have trivial source.

(b) For the lattice version of Proposition 4.7(ii), the hypothesis “trivial
source” is too restrictive: if every irreducible character has an R-form of
rank less than p and has trivial source, then G is already a p'-group (use
Lemma 4.5 and Isaacs’ Theorem [9]).

(c) Assertion (ii) is not true without the assumption on the sources: take
again G = A4s, p = 5, here the simple modules are induced from modules of
dimension 1 and 3.

The existence of a faithful module of dimension less than p, together with
the “trivial source” property only for simple modules of small dimension,
has strong implications on the group.

PROPOSITION 4.9. Let G be a finite group, all of whose simple F G-modules
of dimension less than p have trivial sources. If there exists an F G-module V
with dimV < p and ker V a p-group, then G has a normal Sylow p-subgroup.

Proor. By induction on the order of G, we may assume that ker V' = 1.
Now take a faithful F G-module V' of minimal dimension.

If V is not simple, let V;, 1 < i < n, denote the composition factors of V.
Since dim V; < dim V', we have Y; = ker V; # 1 for all i. By induction, G/Y;
has a normal Sylow p-subgroup, and hence so has [], G/Y;. Now N =\, Y;
is a p-group, since otherwise N contains a p-regular element x # 1 and this
would lie in ker V' = 1, a contradiction. As G/N — [];G/Y;, G/N has a
normal Sylow p-subgroup, and hence so has G. Thus we can now assume
that V' is simple. But then Lemma 4.5(ii) immediately implies that G is a
p’-group.

As a corollary, we get a characteristic p version of a result on M-groups
(see Seitz [15]).

COROLLARY 4.10. Let G be a finite group, whose simple FG-modules of
dimension less than p are monomial. If there exists an FG-module V with
dimV < p and kerV a p-group, then G has a normal Sylow p-subgroup and
is solvable.

In particular, an M,-group with a faithful FG-module of dimension less
than p has a normal Sylow p-subgroup.

ProoF. To see that G is solvable, note that we may assume that V is sim-

ple, by using induction and the same arguments as in the proof of Proposition
4.9. Then the assertion follows from Proposition 4.4.
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ExampLE 4.11. The groups SL(2,3) and GL(2, 3) have faithful modules
of dimension 2 (for p = 3), but are not M3-groups. Their Sylow 3-subgroups
are not normal.

For M-groups it is well-known that normal Hall subgroups are again M-
groups [3]. The same holds for M,-groups (see [5]), but in fact we have

THEOREM 4.12. Let G be a p-solvable group, N a normal Hall subgroup of
G. Let & be any set of divisors of the order of N. If all simple F G-modules are
induced from modules of dimension in &, then the same holds for the simple
F N-modules.

ProoF. Let V be a simple F N-module. By the Mackey decomposition,
(V)N =T : N|@,cqr V> where T = Tg(V). By [7, VIL 9.7] there exists
a simple F T-module W with V ~ Wy. Then W¢ is a simple F G-module, so
W = UG, where U is a simple FH-module, H < G, with s =dim U in 9.
Then

s|IG: H=|G: T|dimW =|G : T|dimV.
Set # = {q prime, q t |N|} and denote by n, the n-part of the natural number
n. Then we get
|Gl.=|G : N|, |G : Hl=I|G : T|,
as s | |N| and N is p-solvable and hencg dimV | |N]. Thﬁps [H|lz =|T : N|
andso|H : HNN|=|T : N|. Set H=HNN and U = Uj;. Using the
Nakayama relations we obtain
dim Homg (U, (U®)z) = dim Homg(U¢, U®) = dim Homg((UH)%, UY).

Now this dimension is positive, since dim HomH((~J H U) = dim Homﬁ(f] R U )
is positive. As we have

USn=Wn=@Pwv=@v-,

G/T G/T
there must be some x € G with
0 # dim Homy (¥, V* =) = dim Homy (U, V).
But
PN _ .ﬁ=|G:H|=|G:H||H:H|
dimU" =s|N : H| SIGINI s G : M|

—slG : H||T : N| —sIG : H|

“CIG:TIT Nl TUIG T
and V* is simple, hence UV = V* and thus also V is induced from a module
of dimension s in &.

=dimV
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COROLLARY 4.13. Normal Hall subgroups of My-groups are M,-groups.
PROOF. M,-groups are p-solvable, so apply Theorem 4.12 with & = {1}.

REMARK 4.14. One can modify Dornhoff’s proof for M-groups [3] to ob-
tain a statement analogous to Theorem 4.12 also in the characteristic O case.

5. Green correspondence

Generalizing a result of Okuyama [12] on monomial simple F G-modules,
we want to investigate how the modules studied above behave with respect
to Green correspondence. For this we fix some more notation.

Let D be a p-subgroup of G, N = N;(D) and set

& ={Y <G|Y C DnD* for some x € G\N},
¥ ={Y <G| Y € NnD* for some x € G\N},
Z={YLXN|YnD< D}.

Furthermore, let f and g denote the Green correspondences with respect
to D (see for example Feit [4]), A € {R, F}.

In the paper mentioned above Okuyama proved the following. Let S be a
simple FG-module with vertex D. Then S has trivial source if and only if
f(S) is simple. Furthermore, if S is monomial then so is f(S).

Now it is natural to ask for a characterization of simple FG-modules S
with monomial Green correspondents f(.S), respectively simple F N-modules
U with monomial Green correspondents g(U). It turns out that we can
extend Okuyama’s result to r-induced modules, where r < p. In fact we only
need an easy property of modules of small dimension, which leads to the
following

DEFINITION 5.1. An AG-module L is called D-regular if all indecomposable
summands of Ly have vertex D. If, in addition, L is indecomposable and
has D as a vertex, L is called vertex-regular. If X is any p-group, L is called
X-isoregular if L is Y-regular for all Y < G isomorphic to X.

REMARK 5.2. Note that a module of rank r < p is X-isoregular for any
p-group X. So the statement of the next theorem looks somewhat nicer for
this particular case.

THEOREM 5.3. Let U be an indecomposable AN-module with vertex D,
r € N not divisible by p. Then the following are equivalent.
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(i) U is r-induced.

(11) There exists an AG-module V which is induced from a D-isoregular
module of rank r, such that V = g(U) & & -projectives.

(ii1) There exists an AG-module V' which is induced from a D-isoregular
module of rank r, such that Vy = U & ¥ -projectives.

(iv) There exists an AG-module V which is induced from a D-isoregular
module of rank r, such that Vy = U & Z -projectives.

PRrOOF. (i) implies (ii). Say U = LV, where L is an AH-module of rank r,
H < N. Then L is D-isoregular (since D is the Sylow p-subgroup of H) and
LG = (LN)¢ = U% = g(U) ® Z-projectives. Set V = LC,

(ii) implies (iii) follows directly from the properties of the Green corre-
spondence.

(iii) implies (iv) is trivial.

(iv) implies (i). Say ¥ = L, where L is a D-isoregular AH-module of
rank r, H < G. Decompose L¢ = €, Vi with indecomposable 4G-modules
V;. By assumption, there exists i such that V; |y= U & .Z"-projectives. Then
D must be a vertex of ¥; and V; = g(U) by [1]. As V; | L®, we have D < H*
for a suitable z € G. Now (L%)y = @\ g/n (Lizsan)” and (Lan)")p =
@Dy u:qn L5, which implies that (L)Y is Z-projective-free, as L is D-
isoregular. Since U is indecomposable, we must have U ~ (L. y)", so U
is r-induced.

COROLLARY 5.4. Let V be an indecomposable AG-module with vertex D.
If V is r-induced for r < p, then so is f(V).

For the converse, we can derive a somewhat technical condition from

THEOREM 5.5. Let V be an indecomposable AG-module with vertex D,
r € N not divisible by p. Then the following are equivalent. ‘

(i) V is induced from a D-isoregular module of rank r. /

(ii) There exists H < G and a D-isoregular AH-module L of rank r with
(V)= (Lynn)V, and L is indecomposable.

ProoF. (i) implies (ii) follows from the proof of 5.3(iv) implies (i).
(i) implies (i). f(V) = (Lu~n)" | (L%)n, and hence by [1] we must have
that D is a vertex for L and LC = gf(V) = V.
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