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Abstract

We present EMUSE (Evolutionary Map of the Universe Search Engine), a tool designed for searching specific radio sources within the extensive
datasets of the EMU (Evolutionary Map of the Universe) survey, with potential applications to other Big Data challenges in astronomy. Built
on a multimodal approach to radio source classification and retrieval, EMUSE fine-tunes the OpenCLIP model on curated radio galaxy datasets.
Leveraging the power of foundation models, our work integrates visual and textual embeddings to enable efficient and flexible searches within
large radio astronomical datasets. We fine-tune OpenCLIP using a dataset of 2,900 radio galaxies, encompassing various morphological classes,
including FR-I, FR-II, FR-x, R-type, and other rare and peculiar sources. The model is optimised using adapter-based fine-tuning, ensuring
computational efficiency while capturing the unique characteristics of radio sources. The fine-tuned model is then deployed in the EMUSE,
allowing for seamless image and text-based queries over the EMU survey dataset. Our results demonstrate the model’s effectiveness in retrieving
and classifying radio sources, particularly in recognising distinct morphological features. However, challenges remain in identifying rare or
previously unseen radio sources, highlighting the need for expanded datasets and continuous refinement. This study showcases the potential of
multimodal machine learning in radio astronomy, paving the way for more scalable and accurate search tools in the field. The search engine is
accessible at https://askap-emuse.streamlit.app/ and can be used locally by cloning the repository at https://github.com/Nikhel1/EMUSE.
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1. Introduction

The Evolutionary Map of the Universe (EMU; Hopkins et al.,
2025) survey, conducted with the Australian Square Kilometre
Array Pathfinder (ASKAP; Johnston et al., 2007; DeBoer et al.,
2009; Hotan et al., 2021), highlights the transformative role
of modern radio interferometers in cosmic exploration. Over
its five-year duration, the survey aims to detect more than
20 million compact and extended radio galaxies, providing
an unprecedented dataset that will significantly enhance our
understanding of galaxy evolution and the Universe’s history.
Additionally, such extensive data are expected to unveil new
astrophysical phenomena and offer deeper insights into the
origins of radio emissions. However, achieving these scientific
objectives requires moving beyond conventional data mining
techniques. Instead, innovative approaches are needed to anal-
yse, organise, and classify the vast amounts of radio galaxy
data, leveraging multiwavelength observations to unlock the
survey’s full potential.

In recent years, machine learning has become a power-
ful tool for analyzing data from the next generation of radio
telescopes (e.g. Mostert et al., 2021; Gupta et al., 2022; Walms-
ley et al., 2022; Segal et al., 2023; Alegre et al., 2022; Gupta

et al., 2023; Lochner et al., 2023; Gupta et al., 2023; Slijepcevic
et al., 2024; Mohale & Lochner, 2024; Gupta et al., 2024a;
Lastufka et al., 2024; Gupta et al., 2024b; Riggi et al., 2024;
Lochner & Rudnick, 2025; Mostert et al., 2024; Lao et al.,
2025; Gupta et al., 2025). These techniques have significantly
accelerated both the discovery of new radio morphologies and
the detection, classification, and cataloguing of radio sources.
Beyond the approaches employed in these studies, emerging
models with multimodal capabilities offer new opportunities to
enhance the analysis of Big Data from radio telescopes. For in-
stance, foundation models, which are large-scale deep learning
architectures pre-trained on diverse datasets, can be adapted for
radio astronomy tasks. These models, such as Generative Pre-
training Transformer (GPT; Brown et al., 2020), Contrastive
Language-Image Pre-training (CLIP; Radford et al., 2021),
and vision-language models like Gemini (Team et al., 2023),
have demonstrated remarkable capabilities in cross-modal un-
derstanding and pattern recognition. By leveraging foundation
models, we can further improve the detection, classification,
and retrieval of radio sky data. Their ability to integrate in-
formation from multiple data modalities (e.g., radio, infrared,
optical) enables more robust source identification and classifi-
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cation (e.g. Jia et al., 2021; Alayrac et al., 2022; Radford et al.,
2021; Ramesh et al., 2022; Rombach et al., 2022). Additionally,
their adaptability through fine-tuning and zero-shota learning
(e.g., Bommasani et al., 2021; Yu et al., 2022; Touvron et al.,
2023) allows for more efficient exploration of large-scale sur-
veys, making them valuable tools for future radio astronomy
research.

Pre-training multimodal foundation models requires vast
image-text datasets and significant computational resources.
The lack of open-source models in this domain further hinders
progress. Recently, Parker et al. (2024) pre-trained a multi-
modal model on galaxy data using optical imaging and spectral
information, applying it to downstream tasks. Similarly, Riggi
et al. (2025) pre-trained a small vision language model on
radio images and image-caption pairs with a focus on down-
stream generative tasks. However, research on multimodal
model pretraining suggests that while pretraining strategies
influence downstream performance, the primary objective of
pre-training should be to develop robust, generalizable fea-
tures rather than domain-specific ones. Domain adaptation is
generally more effective when achieved through fine-tuning
on task-specific datasets (see, e.g., Fayou et al., 2024; Man-
zoor et al., 2023). Notably, Tanoglidis & Jain (2024) employed
GPT-4o and LLaVA-NeXT pre-trained models for zero-shot
classification of low-surface-brightness galaxies and artifacts, as
well as for morphological galaxy classification. Their findings
indicate that, with natural language prompts, these models
achieved high classification accuracy (typically above 80%)
without additional fine-tuning. Thus, leveraging a pre-trained
model trained on general real-world data is a promising ap-
proach for fine-tuning domain-specific tasks while eliminat-
ing pre-training costs. In a recent work, Cherti et al. (2023)
trained CLIP using the public LAION dataset (Schuhmann
et al., 2022), which includes an English image-text subset of
2.32 billion real-world samples, to produce OpenCLIP—a
large, publicly available image-text model—using approxi-
mately 1,520 NVIDIA A100 GPUs. This enables the design
of downstream tasks using OpenCLIP as a foundation model
pre-trained on a vast image-text dataset.

In this work, we develop a framework to fine-tune the
OpenCLIP model on the RadioGalaxyNET dataset (Gupta
et al., 2024a) derived from the Evolutionary Map of the Uni-
verse first pilot survey (EMU-PS1 Norris et al., 2021a) using a
single H100 GPU. We then leverage the fine-tuned model to
develop EMUSEb (Evolutionary Map of the Universe Search
Engine), an application that performs similarity search on the
first-year observations of the EMU main survey (Hopkins
et al., 2025). EMUSE enables users to explore data and identify
similar radio sources through image or text-based queries, al-
lowing for rapid searches of specific radio source classes. This
capability is crucial for building statistically robust samples of
well-known categories, such as FR-I and FR-II galaxies, as
well as for discovering additional examples of rare and peculiar

aAn approach where a model is trained to recognise or classify objects,
concepts, or tasks it has never seen during training.

bhttps://github.com/Nikhel1/EMUSE

systems. Such samples are essential for investigating population
properties, analysing the distribution of morphological types,
and tracing their evolution across cosmic time. Additionally,
EMUSE lays the groundwork to develop advanced tools for
rapidly extracting meaningful insights and discovering new
phenomena from the Big Data produced by next-generation
multiwavelength surveys.

The paper is organised as follows. In Section 2, we provide
details on the EMU survey, infrared observations and object
detection-based EMU catalogues. Section 3 is dedicated to the
foundation models and our fine-tuning approach. Section 4
provides comprehensive information about the EMUSE appli-
cation. Our findings are summarised in Section 5, where we
also outline directions for future research.

2. Data

This section presents an overview of the EMU survey, infrared
observations, and the catalogues generated through object
detection used in this study.

2.1 EMU Observations

The Evolutionary Map of the Universe (EMU) (EMUc; Hop-
kins et al., 2025) is a large-scale radio survey being con-
ducted with the Australian Square Kilometre Array Pathfinder
(ASKAP; Hotan et al., 2021) to map the southern sky. ASKAP,
located at Inyarrimahnha Ilgari Bundara, MRO, consists of 36
antennas, with most within a 2.3 km diameter and six extend-
ing to 6.4 km baselines. The survey includes 853 tile footprints
from 1,014 observations, with 692 tiles having 10-hour inte-
grations and 161 tiles observed twice for 5-hour integrations.
EMU covers declinations from –11◦.4 to the south celestial
pole and selected equatorial regions up to δ = +7◦.0, observ-
ing in the 800–1088 MHz band, centred at 944 MHz. The
RMS noise ranges from 25 to 55 µJy/beam, with a 13′′ × 11′′
beamwidth. By 2028, EMU aims to detect up to 20 million
radio sources over 2π sr of the sky. This study uses data from
EMU’s first-year observations (see Gupta et al., 2025, for de-
tails), covering 160 tiles ( 4,500 square degrees). Data collection
commenced in late 2022, with validated data arriving between
February 2023 and March 2024. The dataset, accessed via the
CSIRO Data Access Portal (CASDAd), consists of image tiles
and Selavy-based catalogues (Whiting & Humphreys, 2012)
with Scheduling Block IDs (SBID) from 45638 to 59612. We
use restored images at a uniform 15′′ resolution per beam (iden-
tified by the "conv" filename suffix in CASDA). For the 160
tiles in the first-year dataset, this amounts to approximately 3
million detected radio sources. Each tile is analysed indepen-
dently rather than combined into super mosaics, which may
lead to duplicate detections in overlapping regions.

2.2 Infrared Observations

In addition to the EMU observations, we generate correspond-
ing 160 tiles for the AllWISE dataset from the Wide-field

chttps://emu-survey.org/
dhttps://research.csiro.au/casda/
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Infrared Survey Explorer (WISE) (Wright et al., 2010; Cutri
et al., 2021) using the Montage image mosaic softwaree. WISE
conducted an all-sky infrared survey across four bands–W1,
W2, W3, and W4–at wavelengths of 3.4, 4.6, 12, and 22 µm,
respectively. This study focuses on the W1 band from All-
WISE, which provides a 5σ point source detection limit of 28
µJy and an angular resolution of 8.5′′.

2.3 Catalogues from RG-CAT Pipeline

We use the RG-CAT catalogue construction pipeline (Gupta
et al., 2024b), which integrates the Gal-DINOf object de-
tection framework (Gupta et al., 2024a) to catalogue radio
sources systematically. Gal-DINO is designed to detect ra-
dio galaxies and identify their probable infrared hosts. It is
trained on 5,000 radio galaxies, including 2,800 from the Ra-
dioGalaxyNET dataset (Gupta et al., 2024a), spanning FR-I,
FR-II, FR-x, and R-type classifications based on peak separa-
tion and total extent (Fanaroff & Riley, 1974). FR-I galaxies
have a peak-to-extent ratio below 0.45, FR-II above 0.55, FR-
x between 0.45 and 0.55, and R-type sources show resolved
double jet emission with a single visible central peak (ratio =
0; Norris et al. submitted). The dataset is further expanded
in Gupta et al. (2024b) with 2,100 compact/unresolved galax-
ies and 100 rare morphologies, including bent-tailed galaxies,
cluster halo emissions, and Odd Radio Circles (ORCs; Norris
et al., 2021b). Gal-DINO refines bounding box and keypoint
predictions for identifying radio sources and their infrared
hosts. The performance evaluation yields an average precision
with 50% intersection over union (IoU), i.e., AP50, of 73.2%
for bounding boxes and 71.7% for keypoints, with 99% of cen-
tral bounding boxes achieving IoU > 0.5 and 98% of keypoints
located within < 3′′ of their true host positions (see Gupta et al.,
2024b). We extend RG-CAT from EMU PS1 to the first-year
EMU main survey tiles, generating 8′× 8′ cutouts for approxi-
mately 3 million Selavy-based sources. Each cutout is analysed
with Gal-DINO to extract bounding boxes, categories, and
confidence scores, assembling a catalogue per tile. Compact
sources are catalogued individually, while extended galaxies
are grouped. A detailed catalogue of radio sources and host
galaxies will be presented in Gupta et al. (in preparation), while
this study focuses on extended radio sources including rare
morphologies.

3. Foundation Models and Fine-tuning

Foundation models capture broad, transferable knowledge and
can be fine-tuned to perform specific tasks in astronomy using
relatively small amounts of labelled data. In this work, we fine-
tune OpenCLIP, a multimodal foundation model, using radio
source images and their corresponding textual descriptions.
This enables the model to learn the unique visual and semantic
features of radio sources. As a result, it can support downstream
tasks such as retrieving similar images based on a query image

eImplementation available at: https://github.com/Nikhel1/wise_mosaics
fhttps://github.com/Nikhel1/Gal-DINO

or a text prompt. In this section, we discuss multimodal foun-
dation models and provide details on fine-tuning OpenCLIP
for the radio source dataset. Figure 1 provides an overview of
our framework.

3.1 Multimodal Foundation Models

Foundation models have recently gained significant attention
for their ability to integrate and process multiple modalities,
such as images and text, within a unified framework. Mul-
timodal image-text foundation models, in particular, have
demonstrated remarkable capabilities in bridging the gap be-
tween vision and language, enabling applications like image
captioning and visual question answering (e.g., Ramesh et al.,
2022; Rombach et al., 2022). These models are typically pre-
trained on large-scale datasets containing paired image-text
data, such as captions or descriptions, using self-supervised
learning techniques (e.g., Wang et al., 2021; Cherti et al.,
2023). The self-supervised training paradigm leverages the
inherent alignment between images and their corresponding
textual descriptions to learn rich, joint representations with-
out requiring explicit human annotations for every task. For
instance, models like CLIP (Contrastive Language–Image Pre-
training; Radford et al., 2021) and ALIGN (Jia et al., 2021)
employ contrastive learning objectives, where the model learns
to maximise the similarity between embeddings of matching
image-text pairs while minimising it for non-matching pairs.

In contrast, GPT-based multimodal models extend the
autoregressive language modelling paradigm of GPT to incor-
porate visual inputs (e.g., Alayrac et al., 2022). These models
are trained to predict the next token in a sequence, enabling
them to generate coherent text conditioned on both textual
and visual inputs. Unlike CLIP, which focuses on alignment,
GPT-based models emphasise the generation of text based
on multimodal inputs. Gemini represents a unified architec-
ture that aims to seamlessly integrate multiple modalities into
a single cohesive model (Team et al., 2023). Unlike CLIP,
which separates vision and language encoders, and GPT-based
models, which primarily extend language models to handle
visual inputs, Gemini is designed to natively process multiple
modalities (e.g., text, images, audio, video) within a single
architecture. Similarly, models like MultiMAE (Multi-modal
Multi-task Masked Autoencoders Bachmann et al., 2022) use
masked reconstruction tasks, where parts of the input (e.g.,
patches of an image or words in a sentence) are masked, and the
model is trained to reconstruct them based on the remaining
context.

3.2 Fine-tuning Foundation Model

The success of multimodal image-text foundation models lies
in their ability to generalise across diverse tasks and domains by
leveraging the complementary information in both modalities.
By pre-training on vast amounts of image-text pairs, these
models capture intricate cross-modal relationships, enabling
them to excel in downstream tasks with minimal fine-tuning
(e.g., Yu et al., 2022; Cherti et al., 2023; Touvron et al., 2023).
Furthermore, the self-supervised nature of their training al-
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Figure 1. Overview of EMUSE (Evolutionary Map of the Universe Search Engine). Starting with the open-source OpenCLIP model, which is
pre-trained on approximately 2.3 billion image-text pairs from the LAION dataset, we further fine-tuned it using an image-text dataset of extended
radio sources in the EMU-PS1 survey. The fine-tuned model is then used to generate image embeddings of EMU sources based on PNG images from
the EMU and AllWISE surveys at the positions of extended radio sources identified in the RG-CAT catalogue. The fine-tuned model, along with the
generated image embeddings and catalogue metadata – which includes sky position, integrated flux, and host galaxy information – is integrated
into the EMUSE application framework to retrieve similar sources. EMUSE facilitates the search of the embedding database and outputs a table of
EMU survey radio sources that are similar to a given image or text prompt. The search engine is accessible at https://askap-emuse.streamlit.app/
and can be used locally by cloning https://github.com/Nikhel1/EMUSE.
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Figure 2. Model accuracy evaluated on the test set after each epoch.
Error bars represent the variance, calculated by fine-tuning and testing
the model 10 times with randomly drawn training and test sets.

lows them to scale effectively with increasing data and com-
putational resources, leading to emergent capabilities such as
zero-shot or few-shot generalisation (e.g., Bommasani et al.,
2021; Jia et al., 2021; Wang et al., 2021; Alayrac et al., 2022).
Despite their successes, several challenges persist. These include
the need for high-quality, diverse datasets for pre-training and
the substantial computational resources required to train and
deploy large-scale models. The limited availability of open-
source multimodal foundation models has also hindered their
adoption in specialised fields like astronomy. However, recent
collaborative efforts have led to the release of open-source
multimodal pre-trained models, making them accessible to the
broader research community.

In this study, we use the OpenCLIP (Cherti et al., 2023), an
open-source multimodal foundation model, trained on 2.32 bil-
lion real-world image-text pairs sourced from the publicly ac-
cessible LAION dataset (Schuhmann et al., 2022). OpenCLIP
is based on the CLIP architecture (Radford et al., 2021). Open-
CLIP employs a Contrastive-Captioning (CoCa; Yu et al.,
2022) framework that combines contrastive learning and gen-
erative captioning into a single unified model. Contrastive
learning aligns image and text embeddings in a shared latent
space. Generative captioning produces descriptive captions for
images. This dual-objective approach allows OpenCLIP to
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serve as a strong foundation model for both discriminative and
generative multimodal tasks. LAION is one of the largest open
datasets for vision-language research, containing diverse and
noisy web-scraped data that enable the model to learn robust
cross-modal representations. By leveraging this vast amount of
paired data, OpenCLIP achieves strong performance across a
variety of tasks, including zero-shot image classification, cross-
modal retrieval, and visual question answering. Fine-tuning
OpenCLIP for specific downstream tasks is facilitated by its
modular architecture and compatibility with widely used deep
learning frameworks such as PyTorch. Users can refine the
model by updating all parameters or employing parameter-
efficient approaches, such as linear probing or adapter-based
fine-tuning. In linear probing, only a task-specific classifica-
tion head is trained while keeping the pre-trained weights
fixed. This makes it a computationally efficient strategy, par-
ticularly for applications with limited labelled data. For more
complex tasks, full fine-tuning enables the model to adapt its
learned representations to the specific characteristics of the
target domain. Furthermore, OpenCLIP allows for customisa-
tion through modifications to its training pipeline, providing
flexibility to explore alternative objectives, optimisers, and data
augmentation techniques.

We use the RadioGalaxyNET dataset (Gupta et al., 2024a)
to fine-tune the pre-trained OpenCLIP model. The dataset
includes 2,800 FR-I, FR-II, FR-x, and R-type radio galax-
ies, along with their corresponding infrared hosts. Following
(Gupta et al., 2024b), we incorporate an additional category
containing 100 peculiar sources and other rare morphologies.
For each of these radio sources, we generate 4′ × 4′ image
cutouts from the EMU-PS1 survey and corresponding cutouts
from the AllWISE survey. The host galaxy position is used as
the cutout centre, ensuring that the full extent of the radio
emission is captured. These cutouts are saved as PNG (Portable
Network Graphics) images, with the first two channels con-
taining radio cutouts. Data clipping is applied between the
50th percentile level and the maximum values of the 99th and
99.9th percentiles for the first and second channels, respectively.
The third channel contains the AllWISE W1 band image. We
expand the labels for these radio galaxies by incorporating
morphological descriptions and textual variations (see exam-
ples in Table A5), and by adding additional information based
on their subcategories (Norris et al., submitted). For instance,
an FR-II radio galaxy that exhibits a bent-tailed structure is
labelled as: “An image of an FR-II or Fanaroff-Riley type II
radio galaxy with edge-brightened lobes bent at an angle."
Similarly, an ORC, an extragalactic, edge-brightened ring-
like radio structure surrounding a distant host galaxy, typically
lacks detectable emission at other wavelengths beyond its host
but can exhibit diffuse radio emission within the bright ring
structure (Norris et al., 2025), and is labelled as: “An image of a
peculiar radio galaxy classified as an Odd Radio Circle." Addi-
tional sub-categories include HyMORS (hybrid morphology
radio sources), which exhibit an FR-I appearance on one side
of the core and an FR-II appearance on the other; DDRGs
(double-double radio galaxies), often interpreted as "restarted"
radio galaxies; resolved star-forming radio galaxies; as well

as core-dominated radio galaxies where the radio emission
associated with the host galaxy is significantly brighter than
the lobes.
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Figure 3. The top panel shows the confusion matrix comparing ground
truth labels to predicted labels for each main category. The displayed
values are averaged over 10 training iterations. The bottom panel shows
the UMAP projection generated from the image embeddings produced
by the model’s image encoder, illustrating that different ground truth
categories cluster in distinct regions. The plotted points include test
sets from all 10 training iterations.

Using the radio and infrared image cutouts of sources
along with the expanded text descriptions, we fine-tune the
pre-trained OpenCLIP model on a single NVIDIA H100 GPU
for 100 epochs, which takes approximately 1.5 hours. We em-
ploy adapter-based fine-tuning, which allows the model to
adapt its learned representations to the characteristics of radio
sources. Given that OpenCLIP combines both the contrastive
and generative sides into a single unified architecture, we focus
solely on the contrastive side during fine-tuning. This ap-
proach encourages embeddings of matching image-text pairs
to be close together while pushing non-matching pairs apart,
thereby enabling zero-shot retrieval tasks for EMU data. To
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evaluate the model’s performance, we split the radio source
dataset into an 80:20 ratio for training and testing. The train-
ing and testing data are randomly sampled from the full set 10
times, and the OpenCLIP model is trained separately on each
iteration of the randomly selected training data. The trained
models are then tested on independently selected test data, also
drawn randomly 10 times. Figure 2 presents the accuracy over
100 training epochs. The error bars reflect the variance in test
results across the 10 training iterations. The figure indicates
that accuracy exceeds 50% after a single epoch and gradually
increases to 84 ± 3% after 100 epochs. Notably, while the
model is trained on images paired with their expanded text de-
scriptions, we assess its accuracy using only the main categories
– FR-I, FR-II, FR-x, R, and Peculiar – during testing. Top
panel of Figure 3 shows the confusion matrix for these main
categories. The values shown are averaged across 10 training
iterations. The results demonstrate that the fine-tuned model
predicts these categories with high accuracy overall, although
there is greater confusion between FR-I and FR-x sources.
This is expected, as the primary distinction between these
two categories lies in the peak-to-extent ratio (as described in
Section 2.3). In contrast, confusion is much lower for the Pe-
culiar category, despite it having the smallest training sample
size. Bottom panel of Figure 3 displays the Uniform Mani-
fold Approximation and Projection (UMAP, McInnes et al.,
2018) projection of image embeddings from the model, with
points representing sources in test sets across all 10 training
runs. This highlights how different ground truth categories
form distinct clusters, while also revealing overlaps that align
with the patterns seen in the confusion matrix. Additionally,
although the accuracy and confusion matrix evaluations are
based on training with 80% of the data, we fine-tune the final
model using 100% of the radio source dataset. This ensures
that all available image-text pairs are utilised to train the final
model used for the EMU search engine.

4. EMUSE Application

We develop EMUSE (Evolutionary Map of the Universe Search
Engine), a tool that employs similarity search using the fine-
tuned model described in the previous section. We use cata-
logues generated by the RG-CAT pipeline (see Section 2.3),
which employs the Gal-DINO object detection model to pro-
cess each EMU tile. We filter extended radio sources classified
as FR-I, FR-II, FR-x, R, and Peculiar from the catalogues.
From the 160 tiles observed during the first year of the EMU
survey, we identify approximately 170,000 such extended ra-
dio sources where the prediction confidence score exceeds the
minimum estimated threshold of the Gal-DINO model. Using
the sky positions from the catalogues, we generate cutouts
from the EMU and AllWISE surveys, which are saved as radio-
radio-infrared channel PNG images. The fine-tuned model is
then used to generate image embeddings for each PNG. Addi-
tionally, we store the corresponding catalogue metadata for
each image embedding, including source positions, integrated
radio flux, and the potential host name from the CatWISE
catalogue (Marocco et al., 2021), as provided by the RG-CAT

pipeline. Note that the potential host details provided here
are based on estimates from the Gal-DINO model within the
RG-CAT pipeline and have not been verified through visual
inspection.

EMUSE implements a zero-shot retrieval framework, en-
abling the model to generalise its knowledge to unseen classes
or tasks without explicit training on those specific classes.
In this work, we use the fine-tuned OpenCLIP multimodal
model, which has been trained to produce aligned embeddings
for images and text. Specifically, we generate embeddings for
approximately 170,000 EMU survey radio sources from PNGs
with radio and infrared channels, using the fine-tuned model.
These embeddings replace the original images, which require
over 150 GB of storage and are difficult to search efficiently
for multiple queries. In contrast, the embeddings occupy only
a few hundred megabytes, making the search engine viable.
These embeddings are stored in a database and can be queried
using either text queries (e.g., “radio galaxy with jets”) or image
queries (e.g., a sample image of a radio source). The zero-shot
capability arises from the model’s ability to retrieve similar
sources based on the semantic alignment of embeddings in the
shared latent space, without requiring additional training on
specific classes or queries.

For a given text query, the input is first tokenised using the
OpenCLIP tokeniser, and its embedding is obtained through
the fine-tuned model’s text encoder. For an image query, the
input image undergoes preprocessing using OpenCLIP’s stan-
dard pipeline, which includes resizing to 224 × 224 pixels,
conversion to RGB and then to Pytorch tensor, and normalisa-
tion with the model’s predefined mean and standard deviation
values. The resulting image is then passed through the fine-
tuned model’s image encoder to generate its embedding. To
search for similar sources, we compute the similarity between
the query embedding (either derived from a text or an image
query) and the precomputed embeddings of the EMU survey
source images as

S(q, ei) =
q · ei

||q|| ||ei||
, (1)

where:

• q ∈ Rd : The embedding of the query (text or image) in
the shared latent space.

• ei ∈ Rd : The embedding of the i-th image in the database
(i = 1, 2, . . . ,N).

• S(q, ei): The cosine similarity function measures the align-
ment between the query and image embeddings, nor-
malised between 0 and 1.

The top-k most similar image embeddings are retrieved as

top-k = arg max
i∈{1,2,...,N}

S(q, ei). (2)

The information corresponding to these top-k embeddings
is then fetched from the RG-CAT catalogue metadata. This
includes the EMU tile SBID where the source is located, its RA
(deg), Dec (deg), integrated flux density (mJy), and potential
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host galaxy names from the CatWISE catalogue, along with
the probability describing the estimated similarity between
the query embedding q and the image embedding ei. The
following sections discuss examples of text and image queries.

4.1 Text Queries

We evaluate the zero-shot retrieval capability of the fine-tuned
OpenCLIP model using various queries, presenting two exam-
ples for brevity. The application is publicly available, allowing
readers to submit their queries. For instance, we search for
“A bent-tailed radio galaxy". Table A1 displays the EMUSE
output, listing the top 50 most similar radio sources along with
their potential host galaxies from RG-CAT. The number of
displayed sources can be adjusted by modifying the minimum
probability threshold and the desired number of results in
the interface. Using the positions in Table A1, we present all
50 corresponding images in Figure A1, demonstrating that
the fine-tuned model can efficiently retrieve bent-tailed ra-
dio sources across the EMU survey. For the second query,
“Resolved star-forming radio galaxies", the EMUSE results
are shown in Table A2 and Figure A2, further highlighting
the model’s ability to identify and classify such morpholo-
gies. While these examples showcase the model’s capability
to interpret text queries and retrieve relevant image data, this
performance is directly attributed to the fine-tuning applied in
this work. Sources absent from the fine-tuning dataset – such
as cluster relics and supernova remnants – may not be retrieved
effectively.

Figure 4. Example image queries for EMUSE. These figures are screen-
shots from the EMU-PS1 image, taken while being viewed in CARTA.
The left panel shows an FR-II radio galaxy, while the right panel displays
ORC J2103-6200 (Norris et al., 2021b).

Additionally, text-based queries in EMUSE currently un-
derperform compared to image-based queries. For example, a
simple search for “odd radio circle” returns no results above a
probability threshold of 0.9, while a more descriptive prompt,
such as “An image of a peculiar radio galaxy classified as an
Odd Radio Circle”, successfully retrieves relevant sources. Con-
versely, concise text like “FR-II” yields meaningful matches,
whereas longer, more complex phrases, such as “An image of
an FR-II or Fanaroff-Riley type II radio galaxy with edge-
brightened lobes bent at an angle”, often result in inconsistent
or unrelated outputs. This inconsistency stems from the sensi-
tivity of the model to phrasing and its reliance on the limited
and sparse textual descriptions used during fine-tuning. Since
the alignment between text and image embeddings depends

heavily on how descriptions are written, the model struggles
to interpret astronomy-specific language without sufficient
contextual variety. While adding a broader range of textual
descriptions could help, this approach is constrained by variabil-
ity in human annotation styles. A more scalable and effective
solution may involve augmenting the training data with lan-
guage rewrites (Fan et al., 2023) and paraphrasing techniques
(Kim et al., 2024) or by leveraging large language models to
generate richer and more diverse textual descriptions (e.g.,
Nguyen et al., 2023; Yu et al., 2024; Chen et al., 2024). These
strategies could enhance the model’s ability to interpret dif-
ferent forms of scientific language and better align them with
corresponding visual features, and should be explored in future
work.

4.2 Image Queries

For image-based queries, we demonstrate two examples: an
FR-II radio galaxy and ORC J2103-6200 (Norris et al., 2021b).
We use EMU-PS1 images, open them in CARTAg, and cap-
ture screenshots of these sources (see Figure 4). These screen-
shots are then used as query inputs to search the EMU survey.
For the FR-II source shown in the left panel of Figure 4, the
corresponding EMUSE results are presented in Table A3 and
Figure A3. Notably, most of the retrieved sources exhibit emis-
sion from the core, which is consistent with the query image.
Additionally, their sky orientation closely matches that of the
input query, further demonstrating the model’s effectiveness
in retrieving morphologically similar sources.

The EMUSE results for the ORC J2103-6200 image query
are shown in Table A4, and in Figure A4. The first four sources
include a starburst radio ring galaxy (SRRG), an ORC candi-
date, another SRRG, and a radio source without a plausible
host galaxy, as also identified in Gupta et al. (2025). Although
the training set for fine-tuning included only two ORCs, the
model successfully retrieves a known ORC candidate, sev-
eral half-ring-like structures, and potential GLAREs (Galaxies
with Large-scale Ambient Radio Emission; Gupta et al. 2025),
which may represent an evolutionary stage of ORCs. This
demonstrates the potential of EMUSE for discovering such
rare radio sources, which will be enhanced by incorporating
a larger training sample of these sources in future updates to
the model. Further multi-wavelength visual inspections are
needed to categorise the remaining sources in the figure. Due
to the limited training data for ORCs, the model also retrieves
resolved star-forming radio galaxies and other radio sources
occupying similar embedding spaces to the image query. How-
ever, it also identifies Wide Angle Tailed (WAT) sources and
other diffuse emissions, highlighting the need for more ORC
examples in the training data.

Note that when a screenshot is used as a query input to
a model trained on 3-channel images, the information in the
image is typically replicated across all three channels to match
the expected input format. Although the screenshot may lack
the multi-channel radio and infrared details present in the
training data, the model often still performs reasonably well.

ghttps://cartavis.org/

https://doi.org/10.1017/pasa.2025.10064 Published online by Cambridge University Press

https://cartavis.org/
https://doi.org/10.1017/pasa.2025.10064


8 Nikhel Gupta1 et al.

This is likely because high-level structural features, such as
morphology and spatial patterns, are still available. While the
resulting embeddings may not capture the full richness of
the original data, such as distinguishing between resolved
spirals and ORCs, they can still yield meaningful similarity
results. Additionally, we find that different image queries –
such as screenshots of this ORC taken from various sources
(e.g., academic papers) or images of other previously identified
ORCs and ORC candidates – yield different sets of sources in
the similarity space. A comprehensive future study of similar
sources obtained from various queries will help expand the
catalogue of such rare systems.

5. Conclusions

We explore the application of multimodal foundation models in
the field of radio astronomy, specifically leveraging the power
of OpenCLIP, an open-source pre-trained multimodal model,
to classify and retrieve radio sources from the EMU survey.
Radio astronomy, with its vast and complex datasets, benefits
from advanced machine learning techniques that can efficiently
process large amounts of data and provide insights into the
nature of celestial objects. This paper aims to enhance the
identification and retrieval of different types of radio galaxies
by using the OpenCLIP model, which integrates both visual
and textual information in a shared embedding space. The
motivation behind this study is to bridge the gap between
machine learning and astronomy, allowing for more accurate
and efficient searches within large radio source databases.

In this work, we fine-tune the OpenCLIP model on a
dataset of 2,900 radio galaxies from the RadioGalaxyNET
dataset, which includes various morphological classes, such as
FR-I, FR-II, FR-x, R-type, and peculiar radio sources. The
fine-tuning is performed using adapter-based methods, en-
suring that the model adapts effectively to the specific char-
acteristics of radio sources while maintaining computational
efficiency. The model is trained to map radio and infrared im-
ages to a shared latent space alongside their associated textual
descriptions. Through this process, the model learns the com-
plex relationships between image features and text, making
it capable of performing zero-shot retrieval tasks without the
need for additional task-specific training.

The fine-tuned OpenCLIP model is then integrated into
the EMUSE (Evolutionary Map of the Universe Search Engine)
application, enabling the efficient search and retrieval of radio
sources from the EMU survey. By converting the images of
radio sources into compact embeddings, the model reduces the
data storage requirements and makes searching across large
datasets feasible. The application allows users to query the
database using both text and image-based inputs, providing
a flexible and powerful tool for identifying and classifying
radio galaxies. Notably, the zero-shot retrieval capabilities of
the model allow it to generalise to new types of radio sources,
making it adaptable to future discoveries without the need for
retraining.

The results from the evaluation of the model demonstrate
its effectiveness in retrieving radio sources based on both text

and image queries. In particular, the model performs well in
retrieving sources with specific morphological features. Addi-
tionally, the image query functionality highlights the model’s
ability to recognise and retrieve similar sources with matching
morphological features, even for complex objects like Odd Ra-
dio Circles. However, certain categories of radio sources–such
as supernova remnants, planetary nebulae, cluster relics, etc.–
which were absent from the fine-tuning dataset may not be
retrieved as accurately. This limitation highlights the impor-
tance of continuously expanding the training data to include a
wider range of radio source types.

Future work should focus on extending the model to ac-
commodate more complex datasets, enhancing its performance
on rare or previously unseen radio sources, and integrating it
with other astronomical databases to further expand its capa-
bilities. Future work should also focus on improving the ac-
cessibility of the EMUSE application by displaying the source
images from the catalogue generated through image and text
queries. This functionality can be implemented by retriev-
ing images via the cutout service, which is currently being
integrated into the CASDA server. While this study demon-
strates the model’s application using the first-year data from the
EMU survey, future efforts should incorporate observations
from the ongoing survey in the coming years. In addition,
incorporating more multiwavelength datasets will help refine
the classification of rare radio sources, improving the model’s
accuracy and applicability. The current approach relies on
RG-CAT catalogues, which in turn are derived from Selavy-
based catalogues. Consequently, sources missed by Selavy–such
as very faint objects–are also absent from our results. Future
research should explore catalogue-agnostic approaches to mit-
igate this limitation. Furthermore, with the increasing avail-
ability of open-source pre-trained models, whether trained on
astronomical or real-world data, future studies should inves-
tigate the adoption of newer architectures that may enhance
fine-tuning beyond OpenCLIP. By providing an efficient and
scalable solution for radio astronomy, this approach paves the
way for researchers to explore and classify the ever-growing
volume of radio data more effectively, ultimately advancing
our understanding of complex radio sources.

Data Availability

The OpenCLIP model with fine-tuning settings is available at
https://github.com/Nikhel1/Finetune_OpenCLIP. The radio
source images and labels used for fine-tuning are available at
https://doi.org/10.25919/btk3-vx79, while the exact images
and expanded text descriptions are available upon request. The
search engine is accessible at https://askap-emuse.streamlit.app/
and can also be used locally by cloning the repository and
following the steps provided at https://github.com/Nikhel1/E
MUSE, i.e., by running the command “streamlit run main.py".
The fine-tuned models, EMU survey radio source embeddings,
and catalogue metadata are accessible within “main.py".
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Table A1. Top-50 EMUSE output for text query, “A bent-tailed radio galaxy”.

SBID RA (Degrees) Dec (Degrees) Integrated Flux (mJy) CatWISE Potential Host Probability

47034 37.63730 -49.23537 8.27 J023032.95-491407.3 0.99

53218 251.15865 -61.97237 15.71 J164438.07-615820.5 0.99

51432 151.54313 -10.53717 23.71 J100610.35-103213.7 0.99

50419 137.03420 -5.72172 31.96 J090808.20-054318.1 0.99

51964 335.60979 -4.71453 51.79 J222226.34-044252.3 0.99

59804 138.76081 -16.81240 9.01 J091502.59-164844.6 0.99

46982 47.54216 -69.89382 14.76 J031010.11-695337.7 0.99

51962 209.24932 -8.51805 7.80 J135659.83-083104.9 0.99

59095 151.54427 -10.53891 25.03 J100610.62-103220.0 0.99

51852 329.42790 -4.31361 6.29 J215742.69-041848.9 0.99

54923 330.48922 -62.24350 5.05 J220157.41-621436.6 0.99

52145 115.69195 -56.67697 261.32 J074246.06-564037.0 0.99

59607 56.37160 -72.79562 6.41 nan 0.99

53557 355.02405 -69.47579 60.33 nan 0.99

54098 118.43152 -48.97921 8.79 J075343.56-485845.1 0.99

50417 249.27072 -73.72866 5.27 J163704.97-734343.1 0.98

54802 293.68269 -68.72743 12.80 J193443.84-684338.7 0.98

54770 77.56348 -9.15113 31.80 J051015.23-090904.0 0.98

59609 181.47904 0.76041 0.93 J120554.96+004537.4 0.98

51559 197.17494 -4.94096 87.75 J130841.98-045627.4 0.98

47034 41.25039 -50.51419 40.77 J024500.09-503051.0 0.98

50534 171.09989 -0.74536 1.49 J112423.97-004443.2 0.98

52161 332.68165 -10.94630 0.63 J221043.59-105646.6 0.98

53566 334.34896 -71.74171 2.21 nan 0.98

53218 251.11829 -61.97387 1.25 nan 0.98

46971 13.11986 -37.73006 47.53 J005228.76-374348.2 0.98

50181 133.86841 1.80529 2.29 J085528.41+014819.0 0.98

55325 333.19754 -8.31449 2.45 J221247.41-081852.1 0.98

46971 10.68130 -38.09499 36.30 J004243.51-380541.9 0.98

45781 334.95910 -57.38690 5.19 J221950.18-572312.8 0.98

54105 266.01302 -53.35766 5.58 J174403.12-532127.5 0.98

46946 32.10990 -53.65888 18.66 nan 0.98

46971 14.40059 -34.83221 5.28 J005736.14-344955.9 0.98

59609 181.08124 -0.31712 6.30 J120419.49-001901.6 0.98

54807 29.34617 -9.45147 279.85 J015723.08-092705.2 0.98

55325 335.34370 -11.61309 3.50 J222122.48-113647.1 0.98

52145 116.96675 -57.52042 10.44 J074752.02-573113.5 0.98

51962 208.93476 -7.27899 4.04 J135544.34-071644.3 0.98

46955 264.45051 -71.44783 11.33 nan 0.98

55325 332.58552 -10.21272 11.37 J221020.52-101245.7 0.98

54926 265.19108 -62.84665 1.35 J174045.85-625047.9 0.97

50423 30.06071 -28.35766 1.54 J020014.56-282127.5 0.97

50787 52.00056 -52.70249 0.37 J032800.13-524208.9 0.97

51818 304.85137 -56.85586 64.85 J201924.32-565121.0 0.97

47034 34.02686 -52.14808 1.38 J021606.44-520853.0 0.97

52125 299.83536 -59.08474 10.32 J195920.48-590505.0 0.97

51930 314.36795 3.41040 7.30 J205728.30+032437.4 0.97

46971 14.10576 -39.69648 106.41 nan 0.97

51931 83.41189 -57.68088 8.26 J053338.85-574051.1 0.97

53210 102.14236 -45.50372 8.87 nan 0.97

50049 130.24632 1.60090 29.77 J084059.11+013603.2 0.97
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RA: 37.6373
Dec: -49.2354

RA: 251.1586
Dec: -61.9724

RA: 151.5431
Dec: -10.5372

RA: 137.0342
Dec: -5.7217

RA: 335.6098
Dec: -4.7145

RA: 138.7608
Dec: -16.8124

RA: 47.5422
Dec: -69.8938

RA: 209.2493
Dec: -8.5181

RA: 151.5443
Dec: -10.5389

RA: 329.4279
Dec: -4.3136

RA: 330.4892
Dec: -62.2435

RA: 115.6920
Dec: -56.6770
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Figure A1. Top-50 EMUSE output for the text query, “A bent-tailed radio galaxy”. Positions in Table A1 are used here for 5′ × 5′ cutout images
with radio-radio-infrared (RGB) channels.
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Table A2. Top-50 EMUSE output for text query, “Resolved star forming radio galaxy”.

SBID RA (Degrees) Dec (Degrees) Integrated Flux (mJy) CatWISE Potential Host Probability

51958 340.06634 -2.42481 6.32 nan 0.97

51964 340.06702 -2.42499 4.63 nan 0.96

59560 180.09821 -1.10006 212.74 J120023.57-010600.2 0.96

54773 11.94711 -11.46856 20.76 J004747.30-112806.8 0.96

59607 68.25520 -73.23706 54.31 J043301.24-731413.4 0.96

52125 298.60649 -58.71635 43.65 nan 0.96

59609 180.09846 -1.09651 2.03 nan 0.95

51959 100.18053 -58.52443 61.85 J064043.32-583127.9 0.95

53513 340.10107 -66.47889 1.77 J224024.25-662844.0 0.95

51574 283.00855 -57.32063 33.93 J185202.05-571914.2 0.95

51932 197.20163 -6.77416 34.15 nan 0.95

53313 3.62772 -7.16736 23.08 J001430.65-071002.4 0.94

46976 351.34005 -57.79137 23.85 J232521.61-574728.9 0.94

46925 35.01385 -64.60222 49.33 J022003.32-643607.9 0.94

59835 218.46783 5.45840 50.65 J143352.27+052730.2 0.94

51574 278.63108 -57.79277 39.97 J183431.45-574733.9 0.94

51948 197.51854 -46.43741 10.42 J131004.45-462614.6 0.94

51930 319.81097 6.02001 4.54 J211914.63+060112.0 0.93

52096 315.71100 3.94851 12.02 nan 0.93

54769 279.98512 -67.42562 14.59 J183956.42-672532.2 0.93

54770 74.19130 -10.59294 8.26 J045645.91-103534.5 0.93

50230 72.09941 -59.80035 54.35 J044823.85-594801.2 0.93

50182 210.52001 -1.35790 6.31 J140204.80-012128.4 0.93

50787 57.32923 -51.81883 9.22 J034919.01-514907.7 0.93

53314 113.84786 -66.35405 4.08 J073523.48-662114.5 0.93

46978 74.65443 -75.07876 3.33 nan 0.93

52121 311.94228 -65.08420 7.43 J204746.14-650503.1 0.92

51948 197.50475 -46.44542 0.75 nan 0.92

50230 73.21743 -59.74236 40.85 J045252.18-594432.5 0.92

54926 271.28683 -64.19840 0.78 J180508.83-641154.2 0.92

54802 295.97530 -70.63307 126.75 J194354.07-703759.0 0.92

52125 293.64487 -61.14600 4.34 J193434.77-610845.5 0.92

45761 328.32113 -59.49363 26.04 J215317.07-592937.0 0.92

46946 29.41844 -57.79017 48.72 J015740.42-574724.6 0.92

53566 330.52304 -71.08281 2.61 nan 0.92

46951 16.25826 -49.41661 165.21 J010501.98-492459.7 0.92

53211 219.57554 3.41044 13.33 J143818.13+032437.5 0.91

53566 346.08974 -71.48710 18.93 nan 0.91

51931 83.01161 -56.35367 45.12 J053202.78-562113.2 0.91

54098 114.32972 -52.74191 3.86 J073719.13-524430.8 0.91

46955 274.10770 -71.58137 19.48 J181625.84-713452.9 0.91

59246 185.17599 -0.86446 57.97 J122042.23-005152.0 0.91

46980 259.24811 -62.82057 29.04 J171659.54-624914.0 0.91

47130 36.12181 -44.60664 8.49 J022429.23-443623.9 0.91

51928 202.98277 -6.64210 32.91 J133155.86-063831.5 0.90

59612 327.96281 -69.08918 2.55 J215151.07-690521.0 0.90

51930 315.71009 3.94843 12.21 nan 0.90

52125 295.89349 -58.65578 181.12 J194334.43-583920.8 0.90

53313 7.80539 -10.48083 22.45 J003113.29-102850.9 0.90

54923 319.06100 -64.46230 4.87 nan 0.90

51948 199.74997 -47.90849 15.66 J131859.99-475430.5 0.90
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Figure A2. Top-50 EMUSE output for the text query, “Resolved star forming radio galaxy”. Positions in Table A2 are used here for 5′ × 5′ cutout
images with radio-radio-infrared channels.
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Table A3. Top-50 EMUSE output for image query shown on the left panel of Figure 4.

SBID RA (Degrees) Dec (Degrees) Integrated Flux (mJy) CatWISE Potential Host Probability

50786 316.61292 -4.78572 10.53 J210627.10-044708.6 1.00

53293 18.19064 -32.22042 5.78 J011245.75-321313.5 1.00

52219 202.43153 -4.45410 45.05 J132943.56-042714.7 1.00

50413 214.07986 -30.43106 89.79 J141619.16-302551.8 1.00

46959 248.13356 -67.51922 15.87 nan 1.00

51956 215.66485 -32.45638 16.27 J142239.56-322722.9 0.99

46943 217.75088 -27.24095 8.59 J143100.21-271427.4 0.99

52145 110.91825 -56.29562 6.02 J072340.37-561744.2 0.99

54105 262.17056 -58.22261 33.48 J172840.93-581321.3 0.99

51948 202.43108 -45.65679 39.95 J132943.45-453924.4 0.99

50049 128.88849 -0.12402 76.55 J083533.23-000726.4 0.99

46984 226.25434 -29.33961 92.99 J150501.04-292022.5 0.99

53293 16.15859 -32.80721 19.25 J010438.06-324825.9 0.99

51845 135.19085 -65.74613 24.90 J090045.80-654446.0 0.99

51430 316.38351 -8.14548 266.17 J210532.04-080843.7 0.99

51948 200.09450 -48.31177 26.21 J132022.68-481842.3 0.99

54769 278.69927 -70.52948 16.38 J183447.82-703146.1 0.99

51853 90.49432 -61.78667 19.35 J060158.63-614712.0 0.99

54926 260.52841 -65.20608 30.05 nan 0.99

51959 107.88512 -59.62079 56.10 J071132.42-593714.8 0.99

46966 25.48851 -47.38656 135.70 J014157.24-472311.6 0.99

59862 338.72276 -52.02211 17.26 J223453.46-520119.5 0.99

51559 196.72903 -6.66626 9.97 J130654.96-063958.5 0.99

53566 334.88363 -70.04507 99.03 J221932.07-700242.2 0.99

45761 331.92321 -58.53195 13.55 J220741.57-583155.0 0.99

53183 31.39560 -3.51602 14.33 J020534.94-033057.6 0.99

46984 225.38555 -26.05533 23.63 J150132.53-260319.1 0.99

59253 32.19052 -9.28769 8.62 J020845.72-091715.6 0.99

54944 317.80591 -58.32017 17.78 J211113.41-581912.5 0.99

46978 89.13536 -72.11116 145.02 nan 0.99

51927 103.99102 -55.89982 86.91 J065557.84-555359.3 0.99

54099 251.46808 -70.70401 4.41 J164552.33-704214.4 0.99

50182 207.68442 -1.60279 66.31 J135044.26-013610.0 0.99

51434 319.58953 1.68626 51.62 nan 0.99

53304 106.05205 -71.92890 21.78 J070412.49-715544.0 0.99

52179 309.15719 -19.99941 32.53 J203637.72-195957.8 0.99

53557 347.29875 -69.63885 21.84 nan 0.99

55326 40.19354 -4.85017 97.93 J024046.45-045100.6 0.99

59159 50.59763 -44.95993 12.03 J032223.43-445735.7 0.99

55326 38.39934 -6.26939 9.57 J023335.84-061609.8 0.99

53313 3.18376 -9.52691 24.55 J001244.10-093136.8 0.98

47136 27.32598 -49.39718 16.81 J014918.23-492349.8 0.98

54926 270.53502 -63.61610 20.11 J180208.40-633657.9 0.98

54802 301.48566 -68.00271 9.24 nan 0.98

51797 322.61649 -54.85862 380.63 J213027.95-545131.0 0.98

54104 123.48123 -56.99331 71.76 J081355.49-565935.9 0.98

46957 62.52834 -70.44637 26.79 J041006.80-702646.9 0.98

46980 261.24429 -66.32601 59.09 nan 0.98

51448 319.58879 1.68616 51.57 nan 0.98

51430 317.08857 -8.84341 38.37 J210821.25-085036.2 0.98

46925 31.93579 -66.12144 19.10 J020744.58-660717.1 0.98
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Figure A3. Top-50 EMUSE output for image query shown on the left panel of Figure 4. Positions in Table A3 are used here for 5′ × 5′ cutout
images with radio-radio-infrared channels.
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Table A4. Top-50 EMUSE output for image query shown on the right panel of Figure 4.

SBID RA (Degrees) Dec (Degrees) Integrated Flux (mJy) CatWISE Potential Host Probability

46984 227.02211 -25.77369 7.61 J150805.30-254625.2 1.00

50538 77.63662 -58.42155 2.17 J051032.78-582517.5 1.00

51956 211.64795 -34.31162 9.76 J140635.50-341841.8 0.99

51962 211.78771 -9.28361 4.36 J140709.04-091700.9 0.97

59094 49.29686 -52.15329 1.51 J031711.24-520911.8 0.97

46959 241.29206 -70.51253 0.62 J160510.09-703045.0 0.96

54773 11.76460 -11.87260 42.27 J004703.50-115221.3 0.96

50048 20.79271 -54.33171 0.95 nan 0.95

53304 105.78548 -70.59927 1.27 J070308.51-703557.3 0.94

46978 80.58389 -71.56971 11.67 J052220.13-713410.9 0.94

46955 266.63387 -68.26133 1.94 J174632.12-681540.7 0.94

50048 20.81822 -54.34069 3.21 nan 0.94

51434 318.06099 -0.39710 1.69 nan 0.94

54926 269.71410 -64.15688 0.87 J175851.38-640924.7 0.94

54098 118.77421 -49.65293 0.49 J075505.81-493910.5 0.93

45781 334.25553 -57.67611 3.50 nan 0.93

51430 316.07299 -8.07676 41.06 J210417.51-080436.3 0.93

59804 137.82948 -17.94543 14.55 J091119.07-175643.5 0.93

46951 16.90893 -51.46922 1.83 J010738.14-512809.1 0.92

45761 327.34774 -59.37191 4.03 nan 0.92

53210 99.31469 -48.46778 1.65 J063715.52-482804.0 0.92

59560 175.97084 -1.69125 7.73 J114353.00-014128.5 0.92

53313 5.20887 -9.26766 1.65 nan 0.92

54103 307.24684 -69.51609 0.89 J202859.24-693057.9 0.92

59253 32.81166 -7.86003 1.10 J021114.79-075136.0 0.92

53314 109.11890 -66.81888 1.75 nan 0.92

51574 281.18582 -57.64771 1.63 J184444.59-573851.7 0.91

52219 204.89026 -6.51725 0.64 J133933.66-063102.0 0.91

54098 117.49202 -51.49752 1.17 J074958.08-512951.0 0.91

46978 83.45844 -72.04856 185.75 J053350.02-720254.8 0.91

50427 245.71940 -64.27653 4.75 J162252.65-641635.5 0.91

54103 317.34480 -68.78581 1.43 nan 0.91

51931 82.57955 -56.87337 0.98 J053019.09-565224.1 0.91

51932 200.62191 -6.58950 3.34 J132229.25-063522.1 0.91

46951 15.08030 -53.06277 0.54 J010019.27-530345.9 0.91

50413 210.26688 -30.32623 47.21 J140104.05-301934.4 0.91

59253 31.31543 -11.52721 1.95 J020515.70-113137.9 0.90

51403 128.64065 -62.13250 2.77 J083433.75-620757.0 0.90

59612 327.61388 -69.70213 0.97 J215027.33-694207.6 0.90

59159 49.09901 -48.45771 2.08 nan 0.90

50180 12.24043 -47.22998 6.56 nan 0.90

51403 127.05199 -59.82145 2.69 nan 0.90

54926 271.28683 -64.19840 0.78 J180508.83-641154.2 0.90

51434 318.06051 -0.39312 0.84 J211214.52-002335.2 0.90

50049 128.60151 0.08055 3.78 J083424.36+000449.9 0.89

50413 215.14208 -29.25002 5.52 nan 0.89

45781 334.25606 -57.67157 1.04 nan 0.89

51797 319.29061 -55.94363 8.14 J211709.74-555637.0 0.89

52121 314.22566 -64.96138 4.06 J205654.15-645740.9 0.89

54099 257.05483 -71.22234 4.17 J170813.16-711320.4 0.89

46957 59.50084 -73.62135 2.93 nan 0.89
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Figure A4. Top-50 EMUSE output for image query shown on the right panel of Figure 4. Positions in Table A4 are used here for 5′ × 5′ cutout
images with radio-radio-infrared channels.
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Table A5. Examples of the expanded text descriptions for the main radio source classes. These, along with similar variations based on subcategories
and special features, are used to fine-tune the OpenCLIP model.

Main Category Expanded Text Descriptions

FR-I An image of FR-I; fr1; double lobed FR-I radio galaxy; Fanaroff-Riley type I radio galaxy; FR-I radio galaxies are characterized by
edge-dimmed radio morphology, where the brightest emission is near the core and gradually fades outward along the jets.

FR-II An image of FR-II; double-lobed FR-II; double-lobed FR-II type radio galaxy; double-lobed Fanaroff-Riley type II radio galaxy;
FR-II radio galaxies exhibit edge-brightened radio morphology, with the brightest emission located at the outer edges of the lobes,
often forming distinct hotspots.

FR-x An image of FR-X; frx; FRx radio galaxy that has morphology in-between FR-I and FR-II types but can’t be determined due to
lack of telescope sensitivity and resolution; Fanaroff-Riley type X, an intermediate type between type I and type II radio galaxies
with morphological structure in-between FR-I and FR-II types.

R An image of Single-Peak R/DJS; djs; double jet radio source; resolved DJS or R radio galaxy with a single peak visible in the
centre.

Peculiar An image of Complex/Peculiar; ORC; ORC that is an Odd Radio Circle; peculiar radio galaxy classified as an Odd Radio Circle;
ring-like structure seen in radio with no corresponding emission in other wavelengths.

https://doi.org/10.1017/pasa.2025.10064 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2025.10064

	Introduction
	Data
	EMU Observations
	Infrared Observations
	Catalogues from RG-CAT Pipeline

	Foundation Models and Fine-tuning
	Multimodal Foundation Models
	Fine-tuning Foundation Model

	EMUSE Application
	Text Queries
	Image Queries

	Conclusions
	Data Availability
	Acknowledgements
	References



