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Abstract

We have recently developed a simple algorithm for the classification of household and locomotive activities using the ratio of unfiltered to

filtered synthetic acceleration (gravity-removal physical activity classification algorithm, GRPACA) measured by a triaxial accelerometer.

The purpose of the present study was to develop a new model for the immediate estimation of daily physical activity intensities using

a triaxial accelerometer. A total of sixty-six subjects were randomly assigned into validation (n 44) and cross-validation (n 22) groups.

All subjects performed fourteen activities while wearing a triaxial accelerometer in a controlled laboratory setting. During each activity,

energy expenditure was measured by indirect calorimetry, and physical activity intensities were expressed as metabolic equivalents

(MET). The validation group displayed strong relationships between measured MET and filtered synthetic accelerations for household

(r 0·907, P,0·001) and locomotive (r 0·961, P,0·001) activities. In the cross-validation group, two GRPACA-based linear regression

models provided highly accurate MET estimation for household and locomotive activities. Results were similar when equations were devel-

oped by non-linear regression or sex-specific linear or non-linear regressions. Sedentary activities were also accurately estimated by the

specific linear regression classified from other activity counts. Therefore, the use of a triaxial accelerometer in combination with a

GRPACA permits more accurate and immediate estimation of daily physical activity intensities, compared with previously reported cut-

off classification models. This method may be useful for field investigations as well as for self-monitoring by general users.

Key words: Non-exercise activity thermogenesis: Accelerometry: Household activity: Locomotive activity: Metabolic

equivalents

Low physical activity (PA) levels in daily life are probably

correlated with obesity and other diseases(1). According to

the International Association for the Study of Obesity,

prevention of weight regain in formerly obese individuals

requires 60–90 min of daily moderate activity or lesser

amounts of vigorous activity, with 45–60 min of daily moder-

ate activity required to prevent the transition to overweight or

obese(2). In addition to exercise, non-exercise activity ther-

mogenesis, a much larger part of daily PA, may also contrib-

ute to obesity prevention(3,4). Therefore, assessment of the

type, quantity and intensity of PA is important for the devel-

opment of strategies to prevent obesity and chronic diseases.

However, accurate methods for the measurement of energy

expenditures (EE) induced by various PA under free-living

conditions are still under consideration.

At present, several methods are used for the measurement

of EE in a field setting(5,6). The doubly labelled water

method displays high accuracy for the measurement of 24 h

EE under free-living conditions. However, this method can

only evaluate total EE and cannot provide day-to-day or

minute-by-minute variations. Although questionnaires could

individually measure PA intensity and EE (as value by

intensity £ time) in addition to the PA type, the accuracy of

these methods is not sufficient(7). On the other hand, acceler-

ometers are objective, small, non-invasive tools for measuring

PA intensity and EE, with the potential to measure locomotive
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as well as household activities(8–10). Furthermore, activity

monitors such as accelerometers or pedometers may serve

as useful tools for promoting active life behaviour(11,12).

At the least, uniaxial and triaxial accelerometers can accu-

rately estimate the intensity of ambulatory activities(13–15).

However, the intensities of household activities such as

vacuuming and sweeping cannot be accurately estimated by

accelerometers, possibly leading to underestimation of total

EE by algorithms based on locomotive activities(14). Indeed,

different relationships between counts per minute and meta-

bolic equivalents (MET) observed for locomotive v. household

activities led to MET underestimation for household activi-

ties(13–15). Time spent in sedentary and light activities is also

underestimated by locomotion-based equations(16). Therefore,

accurate MET estimation for household and sedentary activi-

ties is required in addition to locomotive activity.

Recently, several studies have attempted to discriminate

between PA types using accelerometer counts(17–26). Although

these algorithms have improved accuracy for estimating the

MET of various activities compared with single regression

models, some limitations remain: percentage of correct classi-

fication was slightly lower in some types of PA(21,22); multiple

sensors make it difficult to continuously wear the device on

the body(26); estimation is a complex procedure requiring

large amounts of data, a barrier for applied researchers as

well as for the general public. An accelerometer-based algor-

ithm that accurately and immediately estimates PA intensity

would be a useful tool for assessing PA in free-living con-

ditions, as well as for promoting active life behaviour in gen-

eral users. We have recently developed a simple but accurate

algorithm for the classification of locomotive and household

activities, using the ratio of unfiltered to filtered synthetic

acceleration (ACCunfil/ACCfil) combined with a gravity-

removal PA classification algorithm (GRPACA)(27). A correct

classification percentage of almost 100 % was achieved

during our selected activities. Furthermore, we have con-

firmed the separation of sedentary activities from both loco-

motive and household activities by accelerometer counts.

Therefore, the purpose of the present study was to develop

a new model for instantly estimating the intensity of daily

PA using a triaxial accelerometer.

Subjects and methods

Subjects

A total of sixty-six subjects (thirty-one males and thirty-five

females) volunteered to participate in the present study. The

present study was conducted according to the guidelines

laid down in the Declaration of Helsinki, and all procedures

involving human subjects were approved by the Ethical Com-

mittee of the National Institute of Health and Nutrition in

Tokyo, Japan. Subjects were excluded from the study if they

had any contraindications to exercise, or if they were physi-

cally unable to complete the activities. Descriptive character-

istics of the study subjects are presented in Table 1. Subjects

were randomly assigned into validation (n 44) and cross-

validation (n 22) groups. Before measurement, the purpose T
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and procedure of the study were explained in detail. Informed

consent was signed by all subjects.

Anthropometric measurements

Before performing PA, body weight was measured by a digital

scale to the nearest 0·1 kg, with the subjects dressed in light

clothing. Barefoot standing height was measured to the near-

est 0·1 cm using a wall-mounted stadiometer (YL-65S; Yagami,

Nagoya, Japan). BMI was calculated as body weight (kg)

divided by height squared (m2).

Experimental protocol

Fasting subjects visited the laboratory in the morning of the

experimental day. After anthropometric measurements, they

performed fourteen activities with a facemask and Douglas

bag while wearing a triaxial accelerometer on the left side of

the waist. The selected activities were as follows: (1) sedentary

activity – resting in the supine position as BMR, resting in the

sitting position as RMR and personal computer work; (2)

household activity – laundry, dishwashing, moving a small

load (5 kg) and vacuuming; (3) locomotive activity – slow

walking (3·3 km/h), normal walking (4·2 km/h), brisk walking

(6·0 km/h), normal walking while carrying a bag (3 kg) in

the hand, jogging (8·4 km/h) on a track, and ascending and

descending stairs at personal normal speeds without using

handrails. These activities were chosen as representative

activities of daily life, based on our observations in a prelimi-

nary study using the activity records of other subjects. The

subjects were permitted to consume only drinking-water

during the experiment. They were instructed to lie down

quietly for 30 min, and then BMR was measured for two

periods of 10 min, followed by RMR measurement for

10 min. Subsequently, the other activities were performed for

3–7 min. The entire experimental protocol took each subject

about 4·5 h to complete, and there was enough rest between

activities to eliminate any carry-over effect from one activity

to another. Each subject performed the experiment following

the same schedule. The expired air for the subject in each

activity was collected under a steady state. We defined the

beginning of the steady state as 2–3 min after starting an

activity, depending on the activity intensity(28). This experi-

mental protocol has previously been described in detail(27).

Indirect calorimetry

During each activity, the subject’s expired air was collected in

a Douglas bag. Expired O2 and CO2 gas concentrations were

measured by MS (ARCO-1000; Arco System, Kashiwa,

Japan), and gas volume was determined using a certified dry

gas meter (DC-5; Shinagawa, Tokyo, Japan). For each

measurement, the gas analyser was initially calibrated using

a certified gas mixture and atmospheric air. EE was estimated

from VO2 and VCO2 using Weir’s equation(29). MET values as

reference were calculated as EE during the activities divided

by the measured RMR.

Triaxial accelerometer

We used a triaxial accelerometer with 4 GB of memory consist-

ing of Micro Electro Mechanical Systems-based accelerometers

(LIS3LV02DQ; ST-Microelectronics, Geneva, Switzerland),

which respond to both acceleration due to movement and

gravitational acceleration. The sensor was built into a plastic

case without a liquid crystal display and was designed to be

clipped to a waist belt (size: 80 £ 50 £ 20 mm; weight:

approximately 60 g including batteries). Anteroposterior (x-

axis), mediolateral (y-axis) and vertical (z-axis) acceleration

measurements were obtained during each activity at a rate

of 32 Hz to 12 bit accuracy. The range of the acceleration

data of each axis is ^6 G, resulting in a resolution of 3 mG.

The acceleration data were uploaded to a personal computer.

The signals obtained from the triaxial accelerometer were

processed in the following way. Each of the three signals

from the triaxial accelerometer was passed through a high-

pass filter with a cut-off frequency of 0·7 Hz, in order to

remove the gravitational acceleration component from the

signal. We calculated the synthetic acceleration of all three

axes (vector magnitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 2 þ y 2 þ z 2

p
) using signals before

and after high-pass filtering. Then, the ratio of ACCunfil to

ACCfil was calculated. The acceleration signals, calculated as

the average of the absolute value of the accelerometer

output of each axis from 10 s epochs at the middle of each

activity, were processed to various acceleration output vari-

ables. In our previous study, we reported the algorithm for

the classification of household and locomotive activities by

the ACCunfil:ACCfil ratio which resulted in almost 100 % correct

demarcation for our eleven selected activities(27).

A commercial product (Activity Style Pro HJA-350IT; Omron

Healthcare, Kyoto, Japan) has been developed from the proto-

type accelerometer that we made in the present study. This

commercial device measures 74 £ 46 £ 34 mm and weighs

60 g, including batteries. The liquid crystal display in this

device has several modes that provide different types of infor-

mation: (1) a research mode that provides no information; (2)

a mode that displays step counts; (3) a mode that displays real-

time MET intensity. Both devices are shown in Fig. 1.

Statistical analysis

All values are presented as means and standard deviations.

Differences are considered to be statistically significant if the

P value is less than 0·05. The relationship between measured

MET and the ACCfil count in the validation group was evalu-

ated by Pearson’s correlation coefficient (r) and the standard

error of the estimate. Linear and non-linear regression

models were used in the validation group to develop

equations to predict MET based on the intensity of PA, as

measured by the ACCfil count. Differences between measured

and estimated MET in the cross-validation group were

assessed by one-way ANOVA followed by Dunnett’s post hoc

test or a paired t test. Bland–Altman plots were used to

graphically show the variability in individual error scores in

the cross-validation group(30). All statistical analyses were
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B
ri
ti
sh

Jo
u
rn
al

o
f
N
u
tr
it
io
n

https://doi.org/10.1017/S0007114510005441  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114510005441


(a) (b)

(c) (d)

Fig. 1. Prototype accelerometer used in the present study and a commercial accelerometer based on the algorithm developed in the present study. (a) Prototype

accelerometer that was used to perform all measurements; (b) subjects wore the prototype accelerometer on the waist with a clip during the entire protocol; (c)

commercial accelerometer based on the algorithm that was developed in the present study; (d) real-time metabolic equivalents (MET) are shown on the liquid

crystal display (LCD) of the commercial accelerometer (the LCD can also show step counts).

Table 2. Energy expenditure, metabolic equivalents (MET), accelerations and acceleration ratios for each activity in the validation group

(Mean values and standard deviations, n 44)

Energy
expenditure

(kJ/min) MET* MET†

Unfiltered
synthetic

acceleration
(mG)

Filtered
synthetic

acceleration
(mG)

Ratio of
unfiltered
synthetic

acceleration
to filtered
synthetic

acceleration

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Light activity
Resting in the sitting

position (n 44)
4·142 0·79 – – 5·6 1·8 2·6 0·6 2·15 0·63

Resting in the supine
position (n 44)

3·765 0·79 0·91 0·05 0·89 0·10 4·6 2·4 2·1 0·7 2·14 0·88

Personal computer
work (n 42)

4·602 1·00 1·12 0·08 1·08 0·12 10·2 3·7 5·7 1·7 1·80 0·37

Household activity
Laundry (n 44) 9·706 2·59 2·34 0·37 2·26 0·31 154·1 38·4 50·2 11·5 3·11 0·57
Dishwashing (n 43) 7·614 2·01 1·84 0·34 1·77 0·30 56·8 17·9 26·3 6·7 2·20 0·64
Moving a small load (n 44) 18·32 4·98 4·40 0·68 4·27 0·63 360·5 51·9 157·1 21·5 2·32 0·35
Vacuuming (n 42) 12·34 3·01 2·97 0·52 2·88 0·53 153·2 34·3 82·8 24·9 1·92 0·39

Locomotive activity
Slow walking (n 44) 13·01 3·39 3·12 0·45 3·03 0·42 245·5 47·4 240·1 48·1 1·02 0·02
Normal walking (n 44) 15·22 3·81 3·67 0·55 3·56 0·49 320·8 48·7 313·8 48·7 1·02 0·02
Brisk walking (n 44) 19·53 5·10 4·70 0·76 4·56 0·75 428·4 69·6 426·8 72·2 1·01 0·02
Walking while carrying a

bag (n 44)
17·90 4·14 4·33 0·60 4·20 0·59 361·5 51·8 355·7 51·9 1·02 0·02

Jogging (n 44) 39·24 9·37 9·42 0·98 9·16 1·18 974·2 118·6 954·0 116·7 1·02 0·02
Ascending stairs (n 39) 31·54 6·86 7·64 0·75 7·32 0·61 232·4 29·5 220·1 29·1 1·06 0·04
Descending stairs (n 41) 13·38 3·31 3·20 0·44 3·09 0·42 287·9 50·6 277·2 49·4 1·04 0·02

* MET were calculated as energy expenditure for each activity divided by energy expenditure for resting in the sitting position.
† MET were calculated as energy expenditure for each activity divided by 4·184 kJ/kg per h.
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performed using SPSS version 15.0J for Windows (SPSS, Inc.,

Chicago, IL, USA).

Results

Data collected during the present study were analysed if both

MET and ACC could be correctly measured during each

activity. Mean EE, MET, ACCunfil, ACCfil and the ACCunfil:ACCfil

ratio for each activity are shown in Table 2. As suggested pre-

viously(16), the one-regression models overestimate MET for

light activity; we observed a similar result (data not shown).

Therefore, we modelled the classification of our selected

activities into three types of activities: sedentary, household

and locomotive (Fig. 2). Sedentary activities are discriminated

from household and locomotive activities, because ACCfil for

sedentary activities was lower than for other activities. House-

hold and locomotive activities are classified by the ACCunfil:

ACCfil ratio according to our previous study (1·16)(27).

Fig. 3 depicts the relationship between measured MET and

ACCfil during household and locomotive activities performed

by the validation group. The correlation coefficients for loco-

motive (r 0·961, P,0·001), household (r 0·907, P,0·001) and

combined household and locomotive activities (r 0·930,

P,0·001) were high. We developed linear and non-linear

regressions for estimating the intensities of household and

locomotive activities; ascending and descending stairs were

excluded from developing regressions, because the relation-

ships between MET and ACCfil for ascending and descending

stairs differed from the relationship for the other locomotive

activities (Table 3). As a result, the linear regression calculated

Filtered synthetic
acceleration

Ratio of unfiltered synthetic
acceleration to filtered
synthetic acceleration Locomotive

activity

Household
activity

Sedentary
activity

Fig. 2. Algorithm for the classification of three different activity types, using a triaxial accelerometer.

Filtered synthetic acceleration (mG)

0

2

4

6

8

10

12

0 200 400 600 800 1000 1200

R1 R2

R3

M
E

T

Fig. 3. Relationships between measured metabolic equivalents (MET) and filtered synthetic accelerations during locomotive and household activities in the vali-

dation group (n 44). R1 (r 0·907, P,0·001), regression line for household activities only; R2 (r 0·930, P,0·001), regression line for combined household and loco-

motive activities; R3 (r 0·961, P,0·001), regression line for locomotive activity only. Ascending and descending stairs were removed from the regression analyses

for R1, R2 and R3. , Laundry; , dishwashing; , moving a small load; , vacuuming; , slow walking; , normal walking; , brisk walking; , walking

while carrying a bag; , jogging; , ascending stairs; , descending stairs.
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with combined data of household and locomotive activities

had a lower r value compared with all other regressions for

locomotive activities only. Regressions for only household

activities had slightly lower r values than those for all activi-

ties, but the regression standard errors of estimate were

improved. Table 4 shows the cross-validation for all

regressions. Significant differences were observed between

measured values and values estimated from model 1 for

most activities. However, models 2–5 accurately estimated

the intensity of most household and locomotive activities,

with the exceptions of ascending and descending stairs from

models 2–5 and normal walking from models 2, 4 and 5,

although the differences for normal walking were relatively

small. In the cross-validation group, household and locomo-

tive activities were correctly classified 100 % of the time by

the ACCunfil:ACCfil threshold reported previously(27). Bland–

Altman plots showed that there was improved accuracy of

individual activities with models 2–5 compared with model

1 (Fig. 4). Although all models tended to underestimate

higher vigorous intensity activity with significant r 2 values

(P,0·05), household activities were clearly well estimated

by models 2–5. The results of the present study remained con-

sistent, whether estimated from linear or non-linear

regressions or from sex-specific regressions.

Fig. 5 depicts the relationship between measured MET and

ACCfil during sedentary activities performed by the validation

group. We selected three activities to represent sedentary

activities. As shown in Fig. 5, we calculated the regression

equation for estimating the intensity of sedentary activities

by including dishwashing with the lowest MET on average

in our selected household and locomotive activities. The

threshold for the classification between sedentary activities

and other activities was determined by the point of intersec-

tion in the linear regressions for sedentary activities and

household activities (29·9 mG). With these threshold and

regression equations, resting in the supine position (mean

difference 0·04 (SD 0·06) MET, P,0·01), personal computer

work (mean difference 20·03 (SD 0·09) MET, NS) and dish-

washing (mean difference 0·02 (SD 0·31) MET, NS) were esti-

mated adequately in the cross-validation group.

Final model for estimating intensity of physical
activity (n 66)

If 29·9mG . ACCfil;

Sedentary activity: MET ¼ 0·8823 þ 0·0351 £ ACCfil:

If 29·9 mG # ACCfil;

Then if 1·16 # ACCunfil :ACCfil ratio:

Household activity: MET ¼ 1·3435 þ 0·0196 £ ACCfil:

Else if 1·16 . ACCunfil :ACCfil ratio:

Locomotive activity: MET ¼ 1·1128 þ 0·0086 £ ACCfil:

Discussion

We have developed a new model to estimate the intensity of

daily PA, using a triaxial accelerometer in combination with

a novel PA classification algorithm. We classified PA into

Table 3. Equations for estimating metabolic equivalents (MET) in locomotive and household activities by using filtered synthetic
acceleration (ACCfil, mG) in the validation group (n 44)

(r Values and standard errors of the estimate (SEE))

Equation r SEE (MET)

Linear regression model
Model 1

Locomotive plus household activities MET ¼ 1·9494 þ 0·0074 £ ACCfil 0·930* 0·804
Model 2

Locomotive activity only MET ¼ 1·1372 þ 0·0085 £ ACCfil 0·961* 0·658
Household activity only MET ¼ 1·4023 þ 0·0188 £ ACCfil 0·907* 0·460

Non-linear regression model
Model 3

Locomotive activity only MET ¼ 0·8944 þ 0·0126 £ ACC0·947
fil 0·961* 0·657

Household activity only MET ¼ 0·8149 þ 0·1014 £ ACC0·701
fil 0·910* 0·453

Sex-specific linear regression model
Model 4

Locomotive activity only (male) MET ¼ 0·8766 þ 0·0088 £ ACCfil 0·968* 0·634
Locomotive activity only (female) MET ¼ 1·3488 þ 0·0083 £ ACCfil 0·955* 0·658
Household activity only (male) MET ¼ 1·4022 þ 0·0181 £ ACCfil 0·911* 0·446
Household activity only (female) MET ¼ 1·3951 þ 0·0195 £ ACCfil 0·907* 0·470

Sex-specific non-linear regression model
Model 5

Locomotive activity only (male) MET ¼ 0·6714 þ 0·0120 £ ACC0·959
fil 0·968* 0·633

Locomotive activity only (female) MET ¼ 0·5367 þ 0·0284 £ ACC0·834
fil 0·956* 0·654

Household activity only (male) MET ¼ 1·3172 þ 0·0254 £ ACC0·939
fil 0·911* 0·445

Household activity only (female) MET ¼ 0·2828 þ 0·2393 £ ACC0·563
fil 0·915* 0·451

*P,0·001.
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Table 4. Absolute and percentage of differences between measured and estimated metabolic equivalents (MET) from five equation models for household and locomotive activities in the cross-vali-
dation group

(Mean values and standard deviations, n 22)

Model 1† Model 2‡ Model 3§ Model 4k Model 5{

Absolute

difference % Difference

Absolute

difference % Difference

Absolute

difference % Difference

Absolute

difference % Difference

Absolute

difference % Difference

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Laundry (n 22) 0·12 0·33 8·3 16·0 0·07 0·30 5·3 14·4 0·09 0·30 6·0 14·4 0·07 0·30 5·4 14·6 0·09 0·31 6·1 15·0

Dishwashing (n

21)

0·36 0·27 23·7*** 21·3 0·11 0·27 9·0 19·1 0·03 0·29 3·8 19·6 0·11 0·27 8·8 19·0 0·03 0·31 3·9 20·6

Moving a small

load (n 22)

21·46 0·72 230·4*** 10·3 20·22 0·69 23·0 14·4 20·25 0·70 23·5 14·3 20·22 0·72 22·7 14·8 20·23 0·72 22·9 14·7

Vacuuming (n 22) 20·46 0·73 210·4** 19·7 20·05 0·64 3·0 22·2 0·04 0·64 6·2 23·0 20·05 0·64 3·1 21·9 0·04 0·65 6·0 22·4

Slow walking (n

21)

0·63 0·42 21·5*** 14·8 0·10 0·45 4·2 14·6 0·07 0·47 3·2 15·0 0·12 0·41 4·8 13·6 0·06 0·44 2·9 14·3

Normal

walking (n 21)

0·67 0·48 19·8*** 15·1 0·23 0·50 7·6* 14·3 0·22 0·50 7·4 14·4 0·22 0·48 7·4* 13·7 0·23 0·48 7·7* 14·0

Brisk walking

(n 22)

0·34 0·70 9·1 15·7 0·03 0·72 2·4 15·1 0·04 0·72 2·6 15·2 0·04 0·69 2·5 14·7 0·09 0·69 3·6 15·0

Walking while

carrying a bag

(n 22)

0·34 0·59 9·8* 15·3 20·06 0·61 0·1 14·6 20·06 0·61 0·1 14·7 20·06 0·57 0·1 13·8 20·03 0·58 0·7 14·1

Jogging (n 20) 20·50 1·39 23·8 13·9 20·18 1·44 20·4 14·9 20·23 1·43 20·9 14·7 20·17 1·42 20·3 14·7 20·19 1·38 20·6 14·3

Ascending stairs

(n 19)

24·13 0·78 253·3*** 4·9 24·69 0·78 260·6*** 4·5 24·73 0·78 261·2*** 4·6 24·68 0·81 260·5*** 4·8 24·75 0·80 261·4*** 4·7

Descending stairs

(n 20)

1·13 0·73 40·7*** 30·0 0·68 0·78 25·6** 29·2 0·66 0·79 25·1** 29·5 0·70 0·79 26·2** 28·9 0·69 0·81 26·1** 29·6

Mean values were significantly different compared with measured MET: *P,0·05, **P,0·01, ***P,0·001.
† Linear regression model for estimating locomotive and household activities together.
‡ Linear regression model for estimating locomotive and household activities separately.
§ Non-linear regression model for estimating locomotive and household activities separately.
kSex-specific linear regression model for estimating locomotive and household activities separately.
{Sex-specific non-linear regression model for estimating locomotive and household activities separately.
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locomotive, household and sedentary activities with

thresholds determined by the ACCunfil:ACCfil ratio (GRPACA)

or accelerometer counts(27). The rate of correct classification

was excellent: 100 % of the activities performed by our sub-

jects were correctly classified as locomotive or household.

With our new classification algorithm, the regressions clearly

improved the accuracy of estimating the intensity of various

PA, compared with a non-classification model. This novel

method is capable of estimating the intensity of PA accurately

and immediately, serving as a practical field tool for research-

ers as well as for general users.

In agreement with previous studies(18–21,31), we observed

that the multiple equation model improved the accuracy of

estimating household and locomotive activity intensities, com-

pared with the one-equation model; accuracy improvements

occurred for household activities in particular. With the excep-

tions of ascending and descending stairs, average percentage

differences were within 10 % in the two-equation model,

with more than 10 % differences in several activities in the

one-equation model. Furthermore, we attempted to estimate

the intensity of PA with non-linear regression and sex-specific

regression (or non-regression) models. Prediction errors

obtained from the linear and non-linear regression models

were comparable in the present study (Table 4). While it is

still controversial whether the linear or non-linear regression

model is a better predictive model(8), inclusion of the

GRPACA did not necessitate non-linear or sex-specific

regression equations. To our knowledge, there is no evidence

of a quadratic relationship between MET and accelerometer

counts in various PA. Therefore, the linear regression model

may obtain comparable predictions as the non-linear

regression model in the present study, under actual free-

living conditions. Furthermore, the sex-specific equation

model did not provide a more accurate estimation (Table 4),

indicating that we have developed new equations by linear

regressions without taking sex into account.

Accurate estimation of sedentary activities is important, as

many people perform sedentary activities at least several

hours/d(32,33). Previously developed accelerometer-based

models overestimate the intensity of sedentary activities(16).

In the present study, sedentary activities clearly had lower

accelerometer counts than other activities. Initially, we

hypothesised that the cut-off threshold between intensities

of sedentary and other activities should be the midpoint of

the highest sedentary accelerometer count and the lowest

accelerometer count from the other activities. However, in

the present study, we observed a small gap between sedentary

and household activities in the relationship between MET and

ACCfil. Therefore, we developed the equation for sedentary

activities by including dishwashing, which displayed the

lowest accelerometer counts of our household or locomotive

activity. Using this consideration, activities about 1·5 MET

could be estimated accurately. Therefore, we have classified

an activity of less than 2 MET as a sedentary activity, using a

cut-off threshold determined by accelerometer counts.

Although PA intensity estimates were improved with our

model, we could not directly compare the present results

with previously reported models designed for data collecting
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Fig. 4. Bland–Altman analysis. Differences between measured and estimated metabolic equivalents (MET) are plotted against measured and estimated mean

MET for household and locomotive activities. (a) Model 1, linear regression model for estimating locomotive and household activities together (r 0·237); (b) model

2, linear regression model for estimating locomotive and household activities separately (r 0·207); (c) model 3, non-linear regression model for estimating locomo-

tive and household activities separately (r 0·219); (d) model 4, sex-specific linear regression model for estimating locomotive and household activities separately

(r 0·212); (e) model 5, sex-specific non-linear regression model for estimating locomotive and household activities separately (r 0·207). —, Mean; - - -, 95 % CI of

the observations.
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and developing equations. However, our accuracies for some

activities, such as personal computer work, vacuuming and

dishwashing, are slightly better than the results obtained by

Crouter et al.(18–21,34), who used two equations with a classi-

fication algorithm based on the CV of the acceleration count.

Moreover, our model possesses the following advantages

over previous models: (1) our classification algorithm is accu-

rate but simple, leading to immediate estimation of PA inten-

sity following a long period of data collection; (2) our

measuring device is secured to the waist by a clip only; (3)

the Douglas bag method, not a portable analyser, was used

as the reference method; (4) MET were calculated with

measured RMR (not 3·5 ml/kg per min or 4·2 kJ/kg per h

(1 kcal/kg per h)); (5) values from a triaxial accelerometer,

not a uniaxial accelerometer, were used for developing

equations.

Several algorithms have been developed for PA classifi-

cation. These algorithms were constructed using the CV of

the acceleration count based on the ActiGraph or Actical

devices(18–21,34) or using the ratio of vertical acceleration

counts to horizontal acceleration counts based on the Activ-

Tracer device(22,25). In these studies, the percentage of correct

classifications does not seem to be high, even for the subjects

used in the classification development. Our algorithm may

classify locomotive and household activities with higher accu-

racy. On the other hand, other reported classification algor-

ithms(26,35,36) were developed to divide PA into further

subtypes. These additional divisions require a large quantity

of data, a complex calculation process or the placement of

sensors over the whole body; it is difficult to maintain battery

power over long periods, to check PA intensities in real time

and to wear and remove the device easily. Our device is

worn just on the waist, is held by a clip and PA intensities

were displayed immediately. This unique device is useful for

applied researchers or professional health advisers to investi-

gate PA in the field, and general users can monitor their

activity status by themselves, as the commercial product has

an liquid crystal display that can indicate real-time MET

values or step counts.

We employed the Douglas bag method as a reference for

measuring EE, while previous studies used a portable meta-

bolic system such as Aerosport TEEM 100 or COSMED K4b2.

For these portable metabolic systems, validation of assessing

EE during PA has been reported(37–40). A portable metabolic

system also has the advantage of measuring various dynamic

activities outdoors. However, portable metabolic systems

slightly overestimate or underestimate O2 uptake during

exercise testing, compared with reference methods(40–43).

Therefore, the Douglas bag method may be preferable to a

portable metabolic system as a reference method for measur-

ing EE during various types of PA.

Whether measured values or a constant value of 3·5 ml/kg

should be used for the RMR value of 1 MET is debatable.

Typical values for the normal-weight population were

3·5 ml/kg per min and 4·2 kJ/kg per h (1 kcal/kg per h). How-

ever, average measured RMR were much lower than 3·5 ml/kg

per min or 4·2 kJ/kg per h (1 kcal/kg per h) in 671 subjects,

although many were overweight or obese(44). In particular,

body composition contributed to the variance in RMR. In the

present study, the average RMR value was 4·1 kJ/kg per h

(0·99 kcal/kg per h), but the standard deviation was relatively

large (0·8 kJ/kg per h (0·19 kcal/kg per h)). To our knowledge,

no description exists of whether the RMR value of 3·5 ml/kg

per min was previously measured in a fasting state(45),

although the present study and Byrne et al.(44) measured

RMR in the fasting state. Therefore, the use of measured

RMR as 1 MET could lead to increased accuracy of estimating

the intensity of PA.

A triaxial accelerometer, capable of measuring both vertical

and horizontal accelerations, is more informative than a uniax-

ial accelerometer, possibly permitting more accurate estimates

of PA intensities. However, previous studies(16,25,46) have

reported that the accuracy of estimating PA intensities did

not differ between triaxial and uniaxial accelerometers if

these values were estimated by a one-equation model.

Although our classification algorithm can calculate the cut-

off threshold even using a uniaxial accelerometer count, we

confirmed that the classification developed with a synthetic

accelerometer count is more accurate than that based only

on a vertical (uniaxial) accelerometer count. Therefore, our

estimation by triaxial accelerometer counts should lead to

increased accuracy compared with a uniaxial accelerometer.

The present study had several limitations. We could not

accurately estimate the intensity of ascending and descending

stairs. Although previous studies(18–21,36) have estimated the

intensities of these activities relatively well, validity was

assessed by a condition combining ascension and descension

of stairs, with only Yamazaki et al.(47) performing the individual
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Fig. 5. Relationship between measured metabolic equivalents (MET) and fil-

tered synthetic accelerations during sedentary activities in the validation

group (n 44). E1 (r 0·942, P,0·001, standard error of estimate 0·151 MET),

regression line for sedentary activities; E2, regression line for household

activities. * Threshold point for the classification between sedentary and

household activities (29·9 mG). Dishwashing was included in both E1 and E2.

, Resting in the supine position; , personal computer work; ,

dishwashing.
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assessments. Under daily living conditions, ascending and des-

cending stairs are normally performed separately, and thus

these activities should be assessed separately. In addition,

we did not include stationary ergometer or cycling in the pre-

sent study. Furthermore, the developed model tended to

underestimate higher vigorous intensity activity. Therefore,

future studies are needed using the doubly labelled water

method or a metabolic chamber to investigate the validity of

our model. In addition, studies are needed to compare our

accelerometer with other types of accelerometers under free-

living conditions. Furthermore, more investigation is needed

to determine how well the model developed in the present

study applies to other populations such as obese individuals

or children.

We have recently reported a simple but accurate classifi-

cation algorithm to differentiate between locomotive and

household activities, with a cut-off determined by the ACCunfil:

ACCfil ratio(27). Additionally, sedentary activities could be dis-

criminated from household and locomotive activities with

accelerometer counts. With this classification algorithm, our

new model exhibited improved accuracy in estimating the

intensity of various PA, compared with non-classification

models. Furthermore, this new model is capable of estimating

PA intensity immediately. Therefore, the method is useful for

field investigations by scientists as well as for self-monitoring

of activity by the general public.
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