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EULER'S CRITERION FOR QUINTIC NONRESIDUES 

S. A. KATRE AND A. R. RAJWADE 

1. Introduction. Let e be an integer ^ 2, and/? a prime = 1 (mod e). 
Euler's criterion states that for D e Z, 

(1.1) Dip'l)/e = 1 (mod/?) 

if and only if D is an e-th power residue (mod/?). If D is not an <?-th power 
(mod/?), one has 

(1.2) Dip~])/e = a (mod/?) 

for some e-th root a(=£\) of unity (mod/?). Sometimes expressions for 
roots of unity (mod/?) can be given in terms of quadratic partitions of/?. 
For example, 

(1.3) 1, -l,a/b, -alb 

are the four distinct fourth roots of unity (mod p) for a prime p = 1 
(mod 4) in terms of a solution (a, b) of the diophantine system 

/, = a2 + Z?2, « = 1 (mod 3) 

(a, b unique), whereas for p = 1 (mod 3), a solution (L, M) of the 
system 

4/? = L2 + 27M2, L = 1 (mod 3) (L, M2 unique), 

gives 

(1.4) 1, (L + 9M)/(L - 9M), (L - 9M)/(L -h 9M) 

as the three distinct cuberoots of unity (mod/?). 
A problem concerning Euler's criterion is to determine for a given e-th 

power nonresidue D an e-th root of unity a (mod p) in terms of the 
solutions of the corresponding diophantine system so that (1.2) holds. 
(One may also consider the problem of obtaining congruence conditions 
on the solutions of the corresponding diophantine system so that (1.1) 
holds, i.e., D is an e-th power residue (mod/?).) When D = 2, for e = 2, 
the result is well known, for e = 4, it is due to Gauss, for e = 8, due to 
Western and Lehmer, and for e = 16 and 32 it is due to Hudson and 
Williams (see [2] and its references). (Hudson and Williams extend the 
results of Cunningham-Aigner and Hasse-Evans.) When e = 3, the 
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problem was solved by Lehmer for D — 2 [4] and by Williams for any 
D G Z (explicit results when D a prime ^ 19) [10]. 

When e = 5, (p = 1 (mod 5) ), one has the diophantine system of 
Dickson (see (2.1) ) which has four solutions. In terms of these solutions, 
Lehmer [4] has derived (cubic) expressions for fifth roots of unity (mod/?) 
(see (3.1) and (3.2)) using Gauss-type congruences for binomial coeffi­
cients and the Jacobsthal sums of order 5. She gives Euler's criterion for 
D = 2 and D = 4 in terms of (3.1) and (3.2) respectively, by fixing a 
solution of (2.1). The expression (3.1) was subsequently used by Williams 
[12] to treat any D e Z (D = 3, 5 explicitly). In Section 3, we show that 
the expressions (3.1) and (3.2) are not always well defined (mod/?) so that 
in general the criteria of Lehmer and Williams are incomplete. (We show, 
however, that the result of Lehmer for D = 2 is always correct. For other 
values of D we produce counter examples.) In Section 4, we derive new 
correct expressions (simpler than those of Lehmer and Williams, being 
only quadratic in the numerator and the denominator) for fifth roots of 
unity (mod p) (see Theorem 1 and its corollary) using properties of a 
Jacobi sum of order 5 (see 2.2) ). In Section 5, we give an outline of the 
method to fix a unique solution of the system so that we can get for 
D e Z, the value of D^p~^/5 (mod p) in terms of our expression. Our 
method simplifies that of Williams in Section 4 of [12]. In Section 6, we 
give explicit correct results for D = 2, 3, 5 and 7, and also for powers of 
these primes (see Theorems 2-5, Remark, Proposition and Example). 

2. Preliminaries. In what follows, let p be a prime = 1 (mod 5). Let Z 
be the ring of rational integers, Q the field of rational numbers, 
f = exp(27n'/5). The ring Z[f] of integers of the cyclotomic field Q(f) is a 
principal ideal domain. The units of Z[f] are 

±r'(? + f V , u ^ z ,o^/ -^4 . 
1 — f is a prime in Z[f] and (5) = (1 — f)4 as ideals. 

Dickson ( [1], Section 13) showed that for p = 1 (mod 5) the 
diophantine system 

16/? = x2 + 50w2 + 50v2 + 125w2, 
xw = v — 4wv — u , x = 1 (mod 5), 

has exactly four solutions. If (x, w, v, w) is one of these, then the other 
three are given by 

(x, —u, —v, H>), (x, v, — w, —w), (JC, —v, w, —w). 

As in ( [12], Section 3), for any solution (x, u, v, w) of (2.1) we define 
* = Kx, u, v, w) G Z[f] by 
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(2.2) + = c,£ + c2f
2 + c3f

3 + c£\ 

where c, = ct(x, M, v, w) G Z(l ^ / ' ^ 4) are given by 

(2.3) 

4q = — x + 2w -h 4v -h 5w, 
4c7 = — x + 4w -- 2v - 5vv, 
4c, = — x - 4w + 2v - 5w, 
4c4 = — x — 2w -- 4v + 5vv. 

(That c, G Z follows e.g. from Section 3 of [12]. It may also be noted that \p 
is nothing but a conjugate of the Jacobi sum 

md(v(v+\)) y = 2 r 

where v e F_, v ¥= 0, — 1, and ind denotes the index with respect to some 
fixed primitive root (mod/?).) Let ^ (1 ^ / ^ 4) be the automorphisms of 
Q(f) defined by 

*/(?) = r. 
Let 

*,- = a7W), 1 g i S 4. 

The following properties of i// were proved by Williams in [12, 
Section 3]. 

LEMMA 1. ^ = p, \p = — 1 (mod(l — f)2)-

LEMMA 2. G.C.D.(i//j, i//2) w a prime ofZ[Ç]. There is an algebraic integer 
JT = Jf(x, U, V, w) e Z[f], (wo/ unique), such that (Jf) = G.C.D.(i//,, i//2) 
#s /de^s, J f = —1 (mod (1 — f) ). (Any two such JT differ by a factor 
( - l ) r ( f + f4)2r, A- G Z.) For such aX^ = -JtyXTy 

3. An analysis of the results of Lehmer and Williams. E. Lehmer [4] 
obtained the expressions 

(3.1) 

and 

(3-2) 

w(125w2 - x1) + 2(xw + 5wv)(25w - x + 20w - lOv) 

w(125w2 - x2) + 2(xw + 5wv)(25w - x - 20u + lOv) 

w(125w2 - x2) - 2(xw + 5wv)(25w 4- x + lOw + 20v) 

w(125w2 - x2) - 2(xw + 5wv)(25w + JC - lOw - 20v) 

for fifth roots of unity (mod p) where (JC, w, v, w) is a solution of the 
Dickson's system (2.1). Lehmer has shown how to obtain a solution of 
(2.1) so that for this solution (3.1) gives the expression for 2 ( / 7 ~ , ) / 5 

(mod p), and (3.2) for 4 ( / 7 ~ , ) / 5 (mod p). K. S. Williams has again used 
(3.1) to give the results for D(p~{)/5 (D = 2, 3, 5 in detail) in terms of a 
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fixed solution of (2.1). But it may well happen that the denominators in 
(3.1) and (3.2) can become zero (mod/?). (See the derivation of (4.3) from 
(4.2) in [4] and the proof of Lemma 5 in [12].) We shall presently see that 
for certain values of/? the denominators of (3.1) and (3.2) are zero (mod/?) 
and then these expressions would not be well defined (mod/?). 

However we note here that it follows from the work of these authors 
that 

i) if the denominators of (3.1) and (3.2) are nonzero (mod/?) then these 
expressions are well-defined (mod/?) and that their results for D^P~X)/ 

(D a quintic non residue) in terms of (3.1) and (3.2) are correct for the 
right choice of a solution of (2.1). 

ii) The numerator of (3.1) = 0 (mod/?) if and only if the denominators 
of (3.1) = 0 (mod/?). Similarly for (3.2). 

LEMMA 3 a) The expression (3.1) is not well defined (mod/?) if and only if 
v = 2u (as rational integers) (or equivalently v = 2u (mod /?) ). 

b) The expression (3.2) is not well defined (mod p) if and only if 
u 4- 2v = 0 (as rational integers) (or equivalently u 4 2v = 0 (mod /?) ). 

Proof a) The expression (3.1) is not well defined (mod/?) if and only if 
the denominator is 0 (mod /?). But this implies that the numerator is 
0 (mod/?) by (ii). Hence by subtraction 

(xw 4- 5wv)(v — 2u) = 0 (mod/?). 

Now for any solution of (2.1), 

xw 4- 5wv £ 0 (mod/?). 

For otherwise by (2.1) 

v2 4- uv — u2 = 0 (mod/?). 

But by (2.1),, 

|v2 4- uv - u2\ < /?, 

so 

v2 4- uv - u2 = 0. 

This gives u = 0 and v = 0, so xw = 0. This contradicts (2.1). Hence 

v = lu (mod/?). 

But this gives v = 2w, since |v — 2u\ < p by (2.1). Conversely if v = 2w, 
then 

xw 4- 5wv = 5w 

and using (2.1) one easily sees that denominator of (3.1) is 0 (mod/?), 
b) The proof is similar. 
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We note that if there is a solution of (2.1) satisfying v = lu or u + 
2v = 0, then out of the four solutions of (2.1), two satisfy v = 2w and the 
remaining two satisfy u + 2v = 0. Thus for two solutions (3.1) is not well 
defined and for the remaining two (3.2) is not. 

Remarks 1. If 2 is a quintic nonresidue of /?, x in (2.1) is odd [3] and the 
fixation of the unique solution of (2.1) given by Lehmer (see (46) in [4] ) 
demands that 

u = 0 (mod 2), v = ( - \)u/2x (mod 4), 

thus v is also odd and v = 2u cannot be true. Hence for this fixed solution, 
the result of Lehmer, viz. 

2(P-\)/5 = ^A)(modp) 

is always correct. 

2. For/? = 211, the conditions 

u = 0 (mod 2), v = ( - \)u,1x (mod 4) 

of Lehmer demand that x = 1, u = 2, v = — 1, w = 5. Thus u +2v = 0, 

so the expression (3.2) is not well defined. Thus Lehmer's result 

A(P-\)/S = (3.2) (mod/?) [4] 

is not correct for/7 = 211. One similarly shows that the result is false for 
p = 1871, 3001, 4621, 9931, 25951, 72931 etc. 

3. For p= 211, to obtain 3 ( / 7 _ 1 ) / 5 , the conditions of Williams (see [12], 
(6.1) ) demand that x = 1, w = — 1, v = — 2, w = —5, thus v = 2w. Hence 
(3.1) is not well defined, giving a counter example to Theorem 2 [12] of 
Williams. Other counter examples are/7 = 3001, 4621, 9931, 25951, 72931 
etc. 

4. For/7 = 211, to obtain 5 ( / 7 _ 1 ) / 5 , the condition 

2u + v = 4 (mod 5) 

in Theorem 3 [12] demands x = 1, w = 1, v = 2, w = — 5, sov = 2w, so 
(3.1) is not well defined, giving a counter example to Theorem 3 [12]. 
Other counter examples are/7 = 1871, 3001, 72931 etc. 

5. For other values of D also Williams wishes to use (3.1) for D^p~ )7 

(see Section 4, [12] ). The above observations indicate that this would not 
be correct in general. 

4. A correct expression for the fifth roots of unity (mod p). 

THEOREM 1. Let p = 1 (mod 5). For any solution (x, u, v, w) of Dickson's 
diophantine system (2.1), let 
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1 1 

A = x — \25w and B = 2xu — xv — 25vw. 

Then A — 105 and A + 105 are nonzero (mod p) and 
(4.1) « = a(x, u, v, w) = (.4 - 105)/(,4 + 105) 

(which can be considered as an integer (mod p)) is a primitive fifth root of 
unity (mod p) and for this a, 

(4.2) a = f (mod Jf) 

where Jf is defined in Lemma 2. Conversely, if an integer a (mod /?) satisfies 
(4.2) //!£?« 

a = 04 - 10£)/(>4 + 105) (mod /?). 

Remark. We give two proofs of the theorem. The first proof is 
constructive, whereas the second proof is useful only if one already knows 
an expression for a fifth root of unity (mod p). We have given here both 
the proofs because we feel that for the higher cases, namely for the 
considerations of the seventh or the higher roots of unity (of prime order) 
(mod/?), even after obtaining, by the method of the first proof of Theorem 
1, expressions for the roots of unity in terms of the corresponding 
diophantine systems (viz. for 7 or 11 the systems of Leonard and Williams 
[6] [7] and for any odd prime / the system of Parnami, Agrawal and 
Raj wade [9] ), because of the complicated nature of these expressions, 
it will be quite difficult to show that these expressions are well defined 
(mod/?), and then the authors expect that the method of second proof will 
be very useful to accomplish this. In our case we could prove that the 
expression (A — 105)/(^4 + 105) is well-defined independently of 
the method of the second proof because of the extreme simplicity of this 
expression. 

First proof of the theorem. Let a be an integer (mod/?). We have 

a = f (mod J f ) if and only if a - f = 0 (mod J Q 

(where J^ = a^JT), l i / i 4), i.e., if and only if 

a - f3 = 0 (mod J Q 

i.e., if and only if 

(a - f X« ~ S3) s 0 (mod X;jf3). 

(Here the 'only if part is clear. Conversely let 

J ^ | (a - fX« " f3)-

Then either 

JTx\(a - S)oTJTx\(a - f3), 
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since J^ is a prime of Z[f]. If Jf}\ (a — f) then 

But if not, then Jt[\ (a - f3), giving 

n (a - r4). 
Again since 

Jtfâ\ (a - 0(<* " h 
hence J^| (f — £4) or J^| (f3 — f4). But this leads to a contradiction, since 
the norm of J^ in Q(f) is /?, whereas that of f - f4 or f3 - f4 is 5 and 
/? | 5.) i.e., if and only if 

^l(«2 " ( f + f3)a 4- £ 4) inZ[f] , 

(recall that i// = -JfpÇ), i.e., if and only if 

p\(a2 - ( f 4- f3)« 4 f4)^, 

i.e., 

/>l («2 - ( ? + f V + f4)(c4f + c3f
2 + e2f

3 + c,f4), 

i.e., 

/>| (£,f 4 E2f 4 £3f
3 4 EJ4), 

where 

£", = a2c4 4- a(c, - c2 4- c3) 4- (c3 — c4), 

(4 3) £ 2 = « ^ 3 + «(^3 ~ c4) + (c2 - c4), 
£"3 = a c2 4- ac, 4- (c, — c4), 
£"4 = a2Cj 4 a(cj — c2 4 c3 — c4) — c4, 

i.e., if and only if 

(4.4) Ex = 0, E2 = 0, £ 3 = 0, E4 = 0 (mod/?). 

At this stage we note that (4.4) always has a solution a (modp). To see 
this we have for a quintic nonresidue D (mod/?) 

f5 - Z)5 = 1 - 1 = 0(mod/?). 

Hence 

(f - lXf - />) • . • (f - D4) = 0 (mod JT), 

(as Jt\p). Since Jfis prime in Z[f] and J f | (f — 1) we get 

JT| (f - Dl) for some 1 ^ / ^ 4 

(in fact unique), and then we may take a = Dl. 
Thus the system (4.4), considered as a system of linear equations 

(mod /?) in a and a2, is consistent. Hence at most two of the four 

https://doi.org/10.4153/CJM-1985-054-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1985-054-2


QUINTIC NONRESIDUES 1015 

equations in (4.4) are linearly independent (mod /?). We presently show 
that £, = 0 and E2 = 0 (mod/7) are certainly so. Since, for a solution a 
(mod /?) of these equations, we get, 

a[c4 + c3(c\ - c2 + c3 - c4) ] 

= —cl + c4(c2 + c3 — c4) (mod/?). 

Now multiplying both the sides by 16, substituting for 4c,, 4c2 etc. from 
(2.3), and again multiplying both the sides by 5/2 we get 

(4.5) a(A + 105) = (A - 1 OB) (mod/?), 

where 

,4 = x — 125w , 5 = 2xu — xv — 25vw. 

If A + \0B = 0 (mod/7), then so is ,4 - 105, hence 1A = 0 (mod/?) and 
so ,4 = 0 (mod/?). But 

A = x2 - 125w2 = -50(w2 + v2 +5w2) ^ 0 (mod/?), 

since by (2.1), 

0 < u2 + v2 + 5w2 < /?. 

Thus 

yl + 105 ^ 0 (mod/?), and £, = 0 and £ 2 = 0 (mod/?) 

are linearly independent. It is also clear that their unique solution a is 
given by 

a = (A - \0B)/(A + 105) (mod/?). 

This discussion proves that a = f (mod Jf) if and only if 

a = (A - 105)/(,4 + 105) (mod/?). 

This proves the theorem. (The authors are thankful to Dr. J. C. Parnami 
for enlightening discussions simplifying the original version of this proof 
of the theorem.) 

Remark. It can be shown that in fact any two of the equations in (4.4) 
are linearly independent (mod /?) and solving them one can get an 
expression for a fifth root of unity (mod /?) which is congruent to 
our expression (4.1) (mod/?). 

Second proof of the theorem. From the calculations of Williams in the 
proof of Lemma 5 of [12], we have, for any solution (x, w, v, w) of (2.1), 
with \p and Xdefined as in our Lemma 2, 

x = i//3 4- ^4, 25w = d\P3 + #//4, 

25v = /ty3 — 8i//4, 25 w = — y\p3 + yi//4, 
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where 

8 = - 2 f + ? - f3 + 2f4, 

yS = t + n2 - 2f3 - f4, 

Y = f - f2 - f3 + f4-

(Here the congruences are modulo Of. It may also be noted that 

i//, = xP2 = 0 (mod J f ) 

but X\ ^3 or Ï//4). It is easy to check that 

Sp = S2 - fi2 = 5y, y2 = 5. 

After some calculation we find that 

A = 4 ^ 4 (mod Jf ) , 

and 

105 = - 4 ( f - f2 + f3 - f 4 ) ^ 4 (mod Jf) . 

Therefore 

(4.6) ^ -h 105 = -8i//3i//4(f + f3) (mod Jf) , 

and 

(4.7) ^ - 105 = - 8 ^ 4 ( f 2 + f4) (mod JT). 

Hence 

A + 105 ^ 0, ,4 - 105 ^ 0 (mod/?), 

and 

C4 - JOB)/(A + 105) = f (modJf) 

(in the sense that any integer (mod p) which is congruent to (A — 10B)/ 
(A + 105) (mod/?) is congruent to J (mod J f ) ). Again, since Jfis a prime 
divisor of p in Z[f], at most one integer (mod p) can be congruent to f 
(mod Jf ) . This proves the theorem. 

COROLLARY. Let, for any solution, (x, u, v, w), of the Dickson's 
diophantine system (2.1), 

A = JC2 - 125w2, 

5 = 2xw — xv — 25vw, 5' = xw + 2xv — 25uw. 

Then 

Z, = (A - \0B)/(A + 105), Z2 = (v4 + 10B')/(A - 105'), 

Z3 = (A - \0B')/(A + 105'), Z4 = (̂  4- 105)/(̂  - 105), 

https://doi.org/10.4153/CJM-1985-054-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1985-054-2


QUINTIC NONRESIDUES 1017 

are well-defined (mod p) and are the four distinct primitive fifth roots of 
unity (mod p). Also, 

Z, = Z'2(mod/>) fori = 1,2, 3,4. 

(Z2, Z3, Z4 may afao be obtained from Z, èy //ze transformations 

(x, u, v, w) —> (x, —v, w, —w), (x, v — u, — w), (x, — w, —v, w) 

Proof 

h = Mf-tf2 = (^WV,W)-KJC,V,-«,-H;)-

Hence 

i.e., 

(,4 - 10B')/(A + 105') = f (modJQ. 

i.e., 

i.e., 

(,4 - JOB')/(A + 105') = f3 (mod Jf) . 

Z3 = f3 (mod Jf)-

Similarly, 

Z2 = f2 (mod Jf ) and Z4 = f4 (mod Jf) . 

This proves the corollary. 

Example. For/? = 61, take J C = l , w = 1, v = 4, w = — 1 as a solution 
of (2.1). Then A = -2 (mod 61), 105 = 4 (mod 61), and so 

Zx = (A - 10B)/(A + \0B) = ( - 2 - 4 ) / ( - 2 + 4) = - 3 . 

Therefore (or similarly), 

Zx = - 3 , Z2 = 9, Z3 = - 2 7 , Z4 = 20 (mod 61), 

are the four primitive fifth roots of unity (mod 61). 

Remark. When well-defined, the expression (3.1) used by Lehmer 
and Williams is congruent (mod p) to our expression (A — 105)/ 
(A + 105). 

5. Outline of the method. 

LEMMA 4. Let for any solution (x, w, v, w) of (2.1), \p, Jtand a be defined 
by (2.2), Lemma 2, and (4.1) respectively. Let D be a rational integer prime 
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to 5. Then 
i) D is a fifth power (mod p) if and only if(\p/D)5 = 1. 

ii) D{p~l)/5 = a (mod/?) if and only ifU>/D)5 = f4. 

To prove Lemma 4, we use 

Eisenstein's Reciprocity Law. Let /? e Z[f], (/?, 5) = 1, swc/i ///#/ /? is 
congruent to a rational integer (mod(l — f) ). Let D G Z, 5 | D, SWC/Î //ifl/ 
(A D) = 1. TTœw 

(j8/Z))5 = (Z)/j8)5. 

Proof of Lemma 4. We give a proof of (ii). To prove (i), note that D is a 
fifth power (mod p) if and only if 

Dip~])/5 = 1 (mod/?), 

and reason analogously. 
To prove (ii), we have 

D{P~])/5 = «(mod/?) 

if and only if 

£(/>-D/5 s a ( m o d J T ) , 

by Theorem 1, i.e., (Z>/JT)5 = f, i.e., if and only if 

(Jf/D)5 = f 

(in view of Eisenstein's reciprocity law), 

i.e., if and only if 

(-XJf3/D)5 = f -f3 = f4 

(a small check), i.e., 

(*/Z>)5 = f4. 

LEMMA 5. For any solution (x, w, v, w) of (2.1) and for a as in (4.1), 
(i) ( [8], [5] ) 5 /s a fifth power (mod /?) if and only if u = 2v (mod 5). 

(ii) 5 ( ' " 1 ) / 5 = a (mod/7) z/a/u/ ow(y z/2n + v = 4 (mod 5). 

Proof Choose a primitive root g (mod p) by 

(g / jO s = ?• 

Then as has been done by Williams in the proof of Theorem 3 in [12] we 
have 

ind^(5) = — 2w — v (mod 5). 

Thus (i) 5 is a fifth power (mod p) if and only if 
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-lu - v = 0 (mod 5), 

i.e., u = 2v (mod 5). 
(ii) 5{p~n/5 = a (mod/?) if and only if 

5(p~l)/5 = a(modJf), 

i.e., 

5(/>-D/5 _ f (modJf), 

by Theorem 1, i.e., 
5<p-D/5 s ^ - ' ) / 5 ( m o d j r ) > 

by the choice of g, i.e., 

ind* = 1 (mod 5) 

i.e., 

— 2u — v = 1 (mod 5), 

i.e., 

2u 4- v == 4 (mod 5). 

Remark. Lemma 4(i) gives a condition that D (coprime to 5) is a quintic 
residue (mod/?). The case D = 5 is treated in Lemma 5(i). For another 
condition (when D is a prime), which goes back to Kummer, see Theorem 
1 of [11]. 

Let (Z), 10) = 1. Since (\p/D)5 depends only on the congruences 
of \p (mod /)), which are in turn determined by the congruences of 
x, u, v, w (mod D) (since D is odd), to obtain a congruence condition that 
D is a fifth power (mod p) for a prime /? = 1 (mod 5), or, when D is a 
quintic nonresidue (mod/?) to obtain the solution of (2.1) for which 

£(/>-D/5 _ a ( m o d / > ) , 

one considers the congruences of the solutions x, w, v, w of (2.1) (mod D). 
For some congruences (mod D), (\f//D)5 will be 1 so that D is a fifth power 
(mod/?). For the other congruences 

0/VZ))5 = r , 1 ë i ë 4, 

and Z> is not a fifth power (mod/?). In this case one replaces the solution 
(x, u, v, w) if necessary by one of the four solutions of (2.1) so that 

WD)5 = f4. 
(To do this, if / = 1, let (JC, u, v, w) —* (x, — w, — v, w), if / = 2, let (x, u, 
v, w) —» (JC, v, — w, — w), and if i = 3 let (x, w, v, w) —> (x, — v, w, — w) ). 
For this choice of the solution, D^p~^/5 will be = a (mod/?), where a is 
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given by (4.1). If D is a power of 2 or 5, we give the corresponding result in 
the next section. (If D is a power of 2 one has to consider congruences of 
x, u, v, w (mod 4).) 

Combining these results one gets / ) ^ ~ 1 ) / 5 (mod/?) for any D e Z. One 
might as well first find the result for prime values of D and from that 
obtain the result when D is a prime power or any composite number. It is 
clear that if 

D{p~])/5 = a (mod/?), 

then 

Dj(p-W = Z] z2 z^ ZA (mod/?) 

according as y = 1, 2, 3, 4 (mod 5), so if the expression is known for prime 
values of Z), a similar one is also known for prime powers. 

In the next section we explicitly deal with the cases D = 2, 3, 5, 7. In 

these cases we of course get the same congruence conditions on x, u, v, w 

as the previous ones in the literature by other methods, for D to be 

a quintic residue (mod/?) [3] [5] [11]. For D = 2, 3, 5, in case these are 

quintic nonresidues (mod/?), we get the same conditions as those of [4] 

and [12] for the choice of the solution for which 

£>(/>-D/5 _ a ( m o d / 7 ) 

with the difference that we now have a simpler and correct a at our 
disposal. Also in our method we could dispense with the congruences of Jf 
which were required by Williams for D = 2 and 3 or for general D [12]. 
We shall explain the so far untreated case D = 1 in some more detail and 
only state the results for D = 2, 3, 5. We also note that for the cases 
D = 2, 3, 7 which we are treating here we have the added advantage 
that D is a prime = 2, 3 (mod 5), so that it stays prime in Z[f], so 

(*/z))5 = i, r 
if and only if 

^(/)4-i)/5 _ j 5 j / ( m o d D) ( 1 g / g 4 ) . 

If, however, D is a prime = 1 , 4 (mod 5), (D =£ /?), one has to use prime 
factors of D in Z[f]. 

6. The cases D = 2, 3, 5, 7. In this section for any solution (JC, w, v, w) of 
(2.1), 

a = a(jc, u, v, w) = (A - \0B)/(A + 105), (/? = 1 (mod 5) ). 

THEOREM 2. (i) 2 is a fifth power (mod /?) if and only if w = 0 (mod 4) 
(or equivalently u = v = 0 (mod 2) or equivalently x = u = v = w = 0 
(mod 2) or equivalently w = 0 (mod 2) e/c. ). 
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(ii) If 2 is a quintic nonresidue, rp ^ = a (mod p) for the unique 
solution of (2A) given by 

u = 0 (mod 2), v = ( - \)u/2x (mod 4). 

THEOREM 3. (i) 3 is a fifth power (mod /?), 

3 ( P - 1 ) / 5 _ a(modp) 

if and only if u = v = 0 (mod 3) (or equivalently xw = 0 (mod 3) ). 
(ii) If 3 is a quintic nonresidue (mod/?), 

3(/>-D/5 _ a ( m o d / > ) 

/or f/ze unique solution of (2.\) given by either 

u = — w, v = 0 (mod 3), 

or 

u = — w, v = w (mod 3). 

THEOREM 4. (i) 5 is a fifth power (mod p) if and only if 

u = 2v (mod 5). 

(ii) If 5 is a quintic nonresidue (mod p), 

5 ( />-U/5 = a(mod/7) 

/or the unique solution given by 

2u + v = 4 (mod 5). 

Theorem 4 is immediate from Lemma 5. The proofs of Theorem 2 and 
Theorem 3 are similar to the proof of the following: 

THEOREM 5. (i) 7 is a fifth power (mod p) if and only if either 
(a) u = v = 0 (mod 7) (i.e., equivalently xw = 0 (mod 7) ), or there is a 

solution of (2.\) satisfying 
(b) u = w, v = 2w (mod 7), or 
(c) w = 0, v = 2w (mod 7) 
(here for (b) tf«d (c), w =É 0 (mod 7) ). 
(ii) If 1 is a quintic nonresidue (mod/?) then 

7(/>-U/5 s a (mod/?) 

/or the unique solution satisfying exactly one of 

(u/w, v/w) = (1, 0), (1, 3), (2, 2), (2, 3), (3, 3), (0, 3), 

( - 1 , - 1 ) , ( - 1 , 2 ) , (2, - 3 ) , ( - 3 , - l ) ( m o d 7 ) . 

(Note that in (i), (p/1) = 1 in the case (a) if x 3= 0, and in the case (b). 
Otherwise (p/1) = — 1. Also in (ii), w E£ 0 (mod 7) and (p/1) = 1 in the 
first five cases whereas (p/1) = — 1 in the remaining five cases.) 
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Proof. As mentioned in Section 5, 

ty/7)5 = r (mod 7) (0 ^ i â 4) 

if and only if 

,//74-1)/5 = r(mod7) 

i.e., 

xpm = r (mod 7). 

Note that 

i// = l / /2 , l// = ^ 2 = ^ 4 = $> 

^343 = ^ = ^3 = ^ (mod 7). 

Hence 

4,480 = *34 V W ) V 
= ^ 2 ^ 4 ( m o d 7) 

^ 3 , 2 , 4 
= P V Vl-

Thus ^480 = f1' (mod 7) if and only if 

C = p\ (cvf + c2f
2 + c3f

3 + c4f
 4)(c3f + c,f2 

+ cA? + c2f4)2]2 = r (mod 7). 

(It is clear from (2.1) that/?3 = (x2 + u2 + v2 - w 2 ) 3 (mod 7).) We note 
that if w = 0 (mod 7) then so are u and v, but x ^ 0 (mod 7) and in this 
case C = 1 (mod 7), so that 7 is a fifth power (mod /?). Next if w ^ 0 
(mod 7), then the congruence for (u/w, v/w) (mod 7) determines the 
congruence for x/w (mod 7) in view of (2.1). This in turn gives the con­
gruence for p , c}, c2, c3, c4 in terms of w. Since w6 = 1 (mod 7), the 
congruence of C (and also ofp3) (mod 7) will depend only upon (u/w, v/w) 
(mod 7). Thus we have to consider only the 49 cases (u/w, v/w) for u/w 
and v/w (mod 7). If (u/w, v/w) = (0, 0), again one sees that 7 is a fifth 
power. So 48 cases remain. These can be divided into classes of four each 
taking e.g. (/', j), ( —i, — j), (j, —/), (—j, i) (mod 7) in the same class. 
Thus 

u/w = 0, 1, 2, 3 (mod 7) 

and 

v/w = 1, 2, 3 (mod 7) 

give a set of representatives for the 12 classes. We obtain the congruence 
of C (mod 7) in all these cases. We find that in the cases (i) (b) and (i) (c), 
C = 1 (mod 7), so that 7 is a fifth power (mod/?). In the remaining cases 
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we find that C = J' (mod 7) for some 1 ^ / ^ 4 and so 7 is a quintic 
nonresidue (mod p). We want to fix the solution satisfying C = f4 

(mod 7), for this will ensure that 

7ip~])/5 = a (mod/?) 

by Lemma 4 (ii). To do this, suppose 

(w/w, v/w) = (/i, /:) (mod 7). 

If/ - 1, let (A, A:) —>( —A, -k)Ati = 2, let (A, * ) -> (* , —A). If/ = 3, let 
(h, k) —* ( — k, h). This will demand the replacement of \p by o n e °f its 
conjugates so that for this new \p, 

(*n)s = f4-
This process gives the 10 possibilities in (ii). (Since/? = ± 1 (mod 7), we 
might as well forget it in C and just conclude the results from C = ± f 
(mod 7).) 

(We thank Mr. Vinod Parnami for helping in some preliminary 
calculations in this case.) 

Remark. For D = 2, 3, 5, 7, if D is a quintic nonresidue (mod/?), then 
one fixes a unique solution by the conditions in (ii) of Theorems 2, 3, 4, 5 
and for this solution 

Dj(p-\)/s _ Z] Z2 z3 z4 ( m o d / 7 ) 

according as y = 1, 2, 3, 4 (mod 5). (See the corollary to Theorem 1.) In 
particular we have 

PROPOSITION. If 2 is a quintic nonresidue (mod/?) (p == 1 (mod 5) ), then 
for the unique solution (x, w, v, w) of (2A) given by u = 0 (mod 2), 

v = ( - l ) " / 2 x ( m o d 4 ) , 

4(/>-D/5 E ( > } | \0B')/(A - l(W) (mod/?) 

where A = x — \25w , and B' = xu + 2xv — 25uw. 

This corrects and simplifies the result of E. Lehmer in the equation (48) 
of [4]. 

An example. Let/? = 211. The four solutions of the Dickson's system 
(2.1) are (1, 1, 2, - 5 ) , (1, - 2 , 1, 5), (1, 2, - 1 , 5), (1, - 1 , - 2 , - 5 ) . If we 
denote the fifth roots of unity obtained from these four solutions by 
a,, a2, a3, a4, then we see from the corollary to Theorem 1 that 

a, = a\ (mod 211) (i = 1, 2, 3,4). 

So evaluating one of these by the formula (A — \0B)/(A 4- \0B) we get 
all of them, viz. 
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a, = 55, a2 = 71, a3 = 107, a4 = - 2 3 (mod 211). 

The unique solutions fixed by (ii) of Theorems 2, 3, 4, 5 are respectively 
(1, 2, - 1 , 5), (1, - 1, - 2 , - 5 ) , (1, 1, 2, - 5 ) and (1, - 2 , 1, 5). Hence we 
get 

2</>-D/5 = 2
42 = 107, 342 = - 2 3 , 542 ^ 55, 

742 = 71 (mod 211). 

Also 

442 = ( 242}2 = ^ 2 ^ ^ _ 7 1 ( m o d 2 U ) 

( 2 4 . 38 . 712}42 ^ ( a 3 ) 4 ( a 4 ) 8 ( a 2 ) 1 2 ^ ( a 3 ) 4 ( a 4 ) 3 ( a 2 ) 2 

= ( a , ) 3 4 + 4 3 + 2 2 = a f = «3 = 107 (mod 211). 

For/? = 211, although the expression (3.1) of Lehmer and Williams does 
not work for D = 2, 3, 5, it works for D = 7 and we get the same 
result. 

(14)42 = 242 • 742 = a3 • a2 = 1 (mod 211), 

so that 14 is a quintic residue (mod 211). 
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