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COMPACTIFICATIONS 

J. S. WASILESKI 

Every completely regular space has at least one Hausdorff compactification 
and much research in Topology has been devoted to methods of constructing 
the compactifications of completely regular spaces. These methods fall into 
two general categories: internal methods and external methods. External 
methods are characterized by their reliance on structures which are not topo­
logical or outside the immediate topological structure of the space in question; 
examples of the former are A. Weil [20] - uniform structures and Yu. Smirnov 
[15] who uses the proximity structures of Efremovich; using the continuous 
real-valued functions to produce an embedding of the space serves as an 
example of the latter. Internal methods, on the other hand, use only the topo­
logical properties of the space under investigation and the most notable of 
these procedures is the Wallman compactification devised by Orrin Frink 
in [8]. Frink provides an internal characterization of complete regularity via 
the concept of a normal base and shows that each such base yields a compacti­
fication of the underlying space. 

The object of this paper is to provide a method for constructing compacti­
fications based on a single family of open sets each member of which determines 
an open set in the compactification. We accomplish this by providing a new 
internal characterization of Tychonov spaces thereby answering affirmitively 
a question raised by Frink in [7]. The new method is therefore applicable to all 
Tychonov spaces. Furthermore we show that any compactification of the 
Wallman type is constructable via the new technique so the new construction 
is at least as general as the Wallman-Frink construction. 

In [8] the crucial condition on the family of closed sets is that of "normality" ; 
the work of Alexandrov and Ponomarev [1 ; 2] indicates that a corresponding 
condition on open sets is ''functional inclusion". Their work relies on the 
concept of "subordination", an axiomatically defined relation on subsets of 
a space which is equivalent with the notion of a proximity. We obviate the 
need for these external considerations by introducing the relation "well-
inside" which is defined entirely by a single family of sets. 

In what follows all spaces will be assumed Hausdorff. 

Definition. Let J 1 be a set of subsets of a space X. We define a relation 
< ( r l ^ ) on subsets of X as follows: Ai<A2(r\&) means there exists 
Gi, G2 Ç âS so that A1CG1}X - A2CG2 and Gx C\ G2 = 0. 
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If Ai < A2(v\38) we say "Ai is well-inside A2 relative to 33". Since we 
will usually be working with only one family J 1 at a time we will drop the 
phrase (rl 33) when no confusion can occur. The relation < can be restricted 
to any family of subsets of X. We shall be interested in the properties the 
relation has on 33 itself and we shall assume that 38 is an open base for the 
topology on X. These conditions are made precise in the next definition. 

Definition. S3 is an Alexandroff base for X if and only if Se is a base for the 
open sets of X satisfying: 

(1) 38 is closed under finite unions and intersections. 
(2) p e G G Se => there is an H G Se satisfying p <G H < G(rl Se). 
(3) Se is densely ordered by the "well-inside" relations it defines. 

As examples of Alexandroff bases one can consider the open sets of a normal 
space or, more specifically, if X is the real line with the usual topology, the 
set of finite intervals with rational end-points together with the complements 
of closures of certain of these form an Alexandroff base. Later we shall prove 
that every completely regular space has an Alexandroff base. 

THEOREM 1. / / 33 is an Alexandroff base for X and A if (i = 1, 2, 3, 4) are 
subsets of Xy then the relation < (rl S3) satisfies the following: 

(1) Ax < A2=ÏÂ1 C A2. 

(2) Ai < A2=>Ax C int(.42). 
(3) A1CA2<A,CA4=^A1< A3,A2 < A4jAx < A*. 
(4) A! <A2=*X - A2 < X - Ax. 
(5) Ax < A2,AZ < A,=^ (Ax^J As) < (A2\J A,) and 

Ax r\ A* 9*0=* (AxC\A,) < (A2C\A,). 

Proof. The verification of these properties is an easy consequence of the 
definition of "well-inside" and the standard definitions of topology. 

Definition. If S3 is an Alexandroff base for X then d, a non-empty collection 
of non-empty members of 38, is called a «^-filter (on X) provided 8 satisfies: 

(1) Gx,G2 £ ô = Gxr\G2e Ô; 
(2) Gx 6 Ô and G2 e S3 with GxCG2=ïG2e Ô; 
(3) Gx e ô => there exists G2 6 à with G2 < Gi(rl S3). 

A «^-filter is fixed if it has non-void intersection, otherwise it is free. A 
maximal 33'-filter will be called a cluster. The following lemmas will be useful 
in constructing the compactification determined by 38. 

As an immediate consequence of a standard Zorn's lemma argument we get: 

LEMMA 1. Every 38-filter is contained in a cluster. 

LEMMA 2. / / S3 is an Alexandroff base for X and x £ X, then 

x* = {G <E 38 : x £ G} 

is a cluster on X. 
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Proof, x* is easily seen to be a ^-filter by the definition of an Alexandroff 
base. Now suppose 8 is a <â?-filter such that x* £ 8; then there is an H Ç 8 
with x (£ H. Since 5 is a ^-filter, there is a G Ç <5 with G < H; in other words 
there are Gi, G2 G ̂  satisfying: G C d , X — H CG2, and Gi P\ G2 = 0. 
Since 5 is a ^-filter containing x* the above conditions yield Gi, G2 € 5, but 
Gi O G2 = 0. This contradiction establishes the maximality of x*. 

LEMMA 3. If 8 is a cluster and ft is a Se-filter such that ft 9^ 5, then ft C. 8 or f3 
and 8 contain disjoint members. 

Proof.f Assume that every two members of fi and 8 meet. Let £ be the filter 
in Se generated by {G C\ H : G G 0 and If ê 8). By Theorem 1, £ is a ^-filter 
and the maximality of 5 yields 8 = £ 3 0. 

COROLLARY. If ô is a cluster and G0, i^o G «^ w'/fe 0 5̂  Go < #0, 2Aew ei/^er 
Ho £ 8 or some member of 8 is disjoint from G0. 

Proof. Assume H0 (t 8 and that every member of 8 meets Go. Define 

P = {H e @ : G r\ Go < H for some G Ç 5} ; 

it is easily shown that £ is a ^-filter. Now apply the above lemma. 

For a given Alexandroff base ^ we denote by a@X the set of clusters defined 
by Se \ whenever no confusion can result, we simply use the symbol <xX. 
Following Stone [16], we define, for each G £ £ê, the set 

G* = {8 e aX :G 6 8). 

The family {G* : G G J ) is a base for a topology on aX. The next four 
theorems establish the fundamental properties of the space aX. 

THEOREM 2. aX is a Hausdorff extension of X. 

Proof. If 81, 82 G aX with 81 9^ 82 then by Lemma 3 there are G\ £ 5i, 
G2 G Ô2 so that Gi H G2 = 0. It is easily shown that (Gi C\ G2)* = Gi* H G2* 
for any Gi, G2 £ ^ , thus a J is Hausdorff. 

For each x f I , let <p(x) = x*; by Lemma 2 and the assumption that X is 
Hausdorff, ^ is a 1-1 function from X into « J . If G Ç ̂ , then G* is a basic 
open set in aX and the identity <p[G] = G* P\ <£>[X] shows that <p is an embed­
ding of X in aX. Furthermore, for any G £ ^ , (G 9^ 0)x* G G* for any 
x £ G, thus <£>[X] is dense in aX. 

LEMMA k. If ® ?± G < H, then G* C H* C int(5*) w/^re ^ e closure and 
interior operators are those in aX. 

fThe author wishes to thank the referee for suggesting this proof in place of the more involved 
one originally given. 
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Proof. Let 5 G G*, then every member of 8 meets G, thus by the corollary 
to Lemma 3, H G ô therefore 5 G H*. T h e second conta inment is obvious. 

T H E O R E M 3. aX is completely regular. 

Proof. We need only show t h a t if G G ô G a X , then there is a continuous 
f u n c t i o n / : « X -> [0, 1] so that/(«5) = 0 a n d / [ a ! - G*] = {1}. 

If G Ç ô, then there is an H G ô with H < G; since ^ is densely ordered 
by < , we can assign to each rational r G [0, 1], a set G r G 5 so t ha t H = G0, 
Gr < Gs if r < 5, and Gi = G. Now, for /3 G aX define 

/(/3) = in f{ r : /3 G Gr*} ; 

Lemma 4 and the s tandard Urysohn argument prove the cont inui ty of / and 
the theorem is established. 

T H E O R E M 4. A completely regular space is compact if and only if every cluster 
in any base is fixed. 

Proof. If X has a base which admi ts a free cluster b, then {x* : x G X} KJ {5} 
with the Stone topology is a proper Hausdorff extension of X ; therefore X is 
not iJ-closed so it is not compact . 

If X is no t compact , let F be a compactification of X and p G Y — X . 
Since Y is normal it has a local base which is a cluster; the trace of this is a 
cluster in X which is free by the Hausdorffness of Y. 

T H E O R E M 5. aX is compact. 

Proof. Let C be a cluster in (G* : G G Sê\ ; then {G : G* Ç G} is a J*-filter 
and is therefore contained in a cluster ô — we claim t h a t ô G P\ C, for G* G C 
implies t ha t G ^ 5, thus ô G G*. 

Theorems 2 and 5 establish t h a t whenever a Hausdorff space X admi ts an 
Alexandroff base, then the space aX is a compactification of X ; it follows 
therefore t h a t any Hausdorff space which admi ts an Alexandroff base is 
completely regular. In the next theorem we show t h a t every completely 
regular space has such a base ; thus we will have established a new internal 
characterizat ion of complete regulari ty. In addit ion, the theorem yields an 
immediate corollary showing t h a t every Wal lman-Fr ink compactification is 
an Alexandroff base compactification. 

T H E O R E M 6. Every completely regular space has an Alexandroff base. 

Proof. Le t N be a normal base for X . (See O. Fr ink [8] for the results used 
in this theorem.) Then the base Se = {G : X — G G N} is an Alexandroff 
base. Se is a ring of open sets since N is and ^ i s a base for the same reason. 
If p G G G Se, then p d X — G and the disjunctive proper ty of normal bases 
yields a set F G N satisfying p G F and F C\ (X — G) = 0; bu t disjoint 
members of N are separated by disjoint complements , i.e. there are Hi, H2 G Se 
satisfying: F C Hu X - G C H2, and Gi H G2 = 0. Th is yields p G Hx < G. 
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To see that Se is densely ordered by < , let G\ < G2. Then there are Hu 

H2 e S§ so that Gi C Hu X - G2 C H2 and Hx C\ H2 = 0. Now X - H2 

and X - G2 £ N and (X - # 2 ) H (X - G2) = 0, therefore there exists 
4 and B Ç ̂  such that X - # 2 C 4 , X - G2 C 5 and A H 5 = 0. We 
claim Gi < A < G2, for ^ H 5 = 0 and X - G2 C B implies ^ < G2. 
Since X - A C Hz, Gi C # i , and Hxr\H9 = 0, we have Gi < 4 and the 
theorem holds. 

COROLLARY. If N is a normal base for X and Se = {G : X — G £ N}, then 
aX and coX are equal compactifications of X. 

Proof. For 0 Ç coX, let A(0) = the cluster containing {G Ç ̂  : F C G for 
some F (: j3}. h is easily seen to be a 1-1 function from coX into aX. H G Ç ^?, 
then 

ft-i[G*] = {0 € coX : F C G for some F £ f3\; 

this is open in wX, thus & is continuous. Finally, if x G H 0, then x £ Pi h (/3) 
so, in effect, ft is "the identity on X". It now follows that h is a homeomorphism 
onto aX. 

A problem of primary interest in the theory of compactifications is that of 
continuously entending a function from the space X to one of its compacti­
fications. It is usually the case that a function must be ''uniformly" continuous 
in some sense in order for it to be extendible (see for example [15; 20; 8]). 
We define here the notion of «^-uniform continuity which is our version of 
Z-uniform continuity defined by Frink in [8]. 

Definition. If Se is an Alexandroff base for X and / is a continuous real-
valued function on X, then / is ^-uniformly continuous if and only if for 
positive epsilon, there is a finite cover of X by members of S8 on each member 
of which / oscillates less than epsilon. 

THEOREM 7. If SS is an Alexandroff base for X then the continuous, real-
valued function f is continuously extendible to aX if and only iff is S3 -uniformly 
continuous. 

Proof. The proof of this theorem is essentially the same as [8] and can be 
found in [19]. 

Theorem 7 does not depend on Theorem 6 for its validity and can be used 
together with Theorem 6 to provide and immediate proof of the preceding 
corollary since compactifications admitting the same class of extendible 
functions are equal as compactifications. 

Conclusion. We have characterized Tychonov spaces as precisely those 
spaces whose topology is generated by an Alexandroff base. With each such 
base, we have constructed a compactification whose points are the clusters 
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in the base and whose topology is determined by the members of the base. 
This gives an affirmative answer to a question raised by Frink in [7] who 
suggests that such a construction might be possible. 

Since every Wallman-Frink compactification is an Alexandroff base com-
pactification (corollary to Theorem 6), it follows that the Stone-Cech compac­
tification is always obtainable in this way and, for locally compact Hausdorff 
spaces, the one-point compactification is an Alexandroff base compactification. 
More generally, we can appeal to the results of Njastad [12] and Alo and 
Shapiro [3] to conclude that the compactifications of Freudenthal [10], 
Fan-Gottesman [6] and Gould are all Alexandroff-base compactifications. 

Shanin [13; 14] and Banaschewski [5] have also constructed internal com­
pactifications; their constructions are essentially the same (for completely 
regular spaces) as Wallman-Frink, thus they are also obtainable via the con­
struction given here. It is likely that the Hausdorff compactification given by 
Banaschewski in [4] can also be obtained as an Alexandroff base compactifica­
tion although we have not yet verified this. 

Finally we observe that the compactification of Fomin [9] can also be 
obtained via the Alexandroff-base construction since, in an algebraically 
closed base, ''completely regular" containment and "well inside" agree and 
generate the same systems. 

Thus we have shown that virtually all previous methods of constructing 
Hausdorff compactifications which rely only on some base for the topology of 
the underlying space are special cases of the Alexandroff-base construction. We 
have not yet been able to decide whether every Hausdorff compactification of 
an arbitrary completely regular space can be so constructed nor have we been 
able to answer this question for the Wallman-Frink procedure. Some partial 
results along these lines will be presented in a future paper. 
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