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ON INTERSECTING FAMILIES OF FINITE SETS

PeTer FRANKL

Let F be a family of k-element subsets of an n-set,

n > no(k) . Suppose any two members of F have non-empty

intersection. Let 1(F) denote min|T| , T meets every member

n-1
k-1

equality holds then 1(F) =1 . Hilton and Milner determined

of F . Erdds, Ko and Rado proved [F| = { ) and that if

max|F| for t(F) = 2 . In this paper we solve the problem for
T(F) =3 .

The extremal families look quite complicated which shows the

power of the methods used for their determination.

1. Introduction

Let X be a finite set of cardinality »n and let F be a family of
k-element subsets of it. The family F is called intersecting if for any
two F, G ¢F wehave FNnG#@ .

The transversal number . 1(F) 1is defined to be the smallest integer ¢
such that there exists a t¢-element subset Y of X satisfying FnY # ¢
for every F € F

Clearly, for F intersecting, Tt(F) £ k holds. Erdds, Ko and Rado
proved the following

THEOREM 1 (Erdds, Ko and Rado [2]). If F is intersecting and

n > 2k then |F| = [Z:i) . In the case of equality for some =z € X we
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have F={FcXx | |F| =k, x € F} ; that is, t(F) =1 .
Hilton and Milner generalized this theorem.

THEOREM 2 (Hilton and Milner [4]). Suppose F <s intersecting,
©(F) = 2 and that the cardinality of F <is maximal subject to these
restrictions. Then there exist Kk + 1 different elements

Ys Tys woos T € X such that setting

¥y = {xl, vees mk}, Yl = {y, :cl}, cees Y = {y, xk}
we have

F={Fcx| |F|=k,3i,0$i5k,¥i F} .

n

Clearly in this case T{(F) =2 .

The aim of this paper is to investigate the case T(F) > 2 .

2. The statement of the result and some preliminaries

Let z€X, Ycx, |Y|]=k, zcx, |2]=k-1,
:x:ﬁ(YUZ) , YnZ=¢ . Let Y0={yl, yz} be a 2-element subset of

Y . Let us set
G={ccx| ]GI=3,xEG,Gn_Y¢¢,GnZ;é¢}u{quO}

Uf.Y}u{yluZ}u{y vz} .

2

Let us define now

Fe={Fcx | |Fl =k, 36 €6, G F} .

It is easy to see that FG is intersecting and that T(FG] =3 . We prove
the following

THEOREM 3. Let F be an intersecting family consisting of
k-element subsets of X such that +t(F) 2 3 . Suppose further k = 3,
n > ny(k) . Then |F| = ]FGI and for k =z b up to isomorphism Fo s

the only optimal family.

Before proceeding with the proof of this theorem we need some

preparations. The following definitions and lemmas are from [3].
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F*={E’CX|E¢¢,3F,F,...,F €F
e (k+l)|E|
such that F; n F =, lsi<js(k+1)|5|} -
B(F) = {B ¢ F* | J& ¢ F*, E ¢ B}

Then obviously F* D F ; consequently for every F € F there exists
B € B(F) such that B C F . Therefore B(F) 1is called the A-base of

F .

Obviously if B, B, € B(F) then B nB,# ¢ . Hence for any B € B
we have
(1) [B| = ©(F)

By a A-system of cardinality s we mean a family C = {Cl, cees Cs}

such that for some K C Cl we have Ci n Cj =K forany 1si<j=s
(ef. Erdds and Rado [1]).

The next lemma is a consequence of Lemma 1 in [3].

LEMMA 1. Admong the members of B(F) we cannot find

., B . forming a A-system of cardinality (k+1)i and

1’ (k+l)£

satisfying further Ile =i+1 for 1= js= (k#a1)" .

Now a result of Erdds and Rado [1] implies that |B(F)| < kd vhere

kO is a constant depending only on k

We infer

3. Some reductions

From now on we suppose that F 1is an intersecting k-family

satisfying 7T(F) 2 3 , and of maximal size.
1

Let Dy, Dy, «».» D, be the 3-sets in B(F) . Then using (1) aﬁd

(2) we conclude
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n-3 n-4
® 1 = ¢fi53) ol 2))
Comparing the right-hand side of (3) to the cardinality of FG in

Theorem 3, for n > no(k) we infer t>kS -k +1 .

In the case k=3, |F| =10= IFG| is folklore. So we see that we
can assume that k = b

We investigate D = {D ., D

L ¢l

As t=2 L2 _ 4 41 = 13 and D is intersecting we infer from the
case k =3 that 1(?) = 2.

Our next aim is to prove (D) =1 .

Let C = {ul, u2} be a 2-element set satisfying D, nC # § for
1=i1=¢t,.

We need a lemma.

LEMMA 2. Among the members of D we cannot find k + 1 forming a
A-system.

Proof. Let us suppose on the contrary that Bl’ €D forma

ey Bk+l
A-system with kernel K . Then |K| < 2 . Hence there exists an F € F
such that FNn K =@ , implying F n (Bi—K] #@9 for 4 =1, 2, ..., k¥l .

But the sets Bi -K, i=1, ..., k+#1 , are pairwvise disjoint and we come
to a contradiction with |[F| =k .

Using Lemma 2 we infer that in D at most k sets contain ( .

Let Dy, ..., D, be the remaining sets. Then v 2 t-k = (k-1)° .
These remaining sets contain exactly one of ul, u2 .

Let us suppose Dl’ . Ds are the sets in D containing ul but
not u, . By symmetry reasons we may assume S = t/2 .

2
Let us set D, = {Di—C | 2 =1, ..., s}, 0, = {Di—C | ¢ <7 =t}
Ul and 02 are families of 2-element subsets such that for D € Dl ,
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D* € 02 we have D nD* # § . Suppose first 02 0.
If T(DQ) >1 then |Dl| <= 4 follows yielding

t<25<8<9 = (k—l)2 , a contradiction. Hence T(Dz) =1 . Let v

be an element satisfying v € D for every D € 02 .

If |02| > 3 then we conclude that v is contained in every set

D., 1= =8 . Hence the sets D

., D form a A-system of
7 s

1°
cardinality s 2 (k—l)2/2 , contradicting Lemma 2.

If IDZI = 2 then we conclude that at most one of Dl’ ey Ds does
not contain v , and we obtain again a A-system of cardinality at least
£-3 2 (k-1)%-3 = k+1 , contradicting Lemma 2.

if |92| =1 then let 02 = {{uz, Ugs uh}} .

Then every member of U - 92 contains wu, and has non-empty

1
intersection with {ue, Uss uh} . Hence for (kz-k)/3 > k we come to a

contradiction with Lemma 2. The only remaining possibility is k =4 ,

[P] =13 . 1t follows further from Lemma 2, that D n {u2, Uss ub}l =1
and that exactly four of the D's intersect {uz, Uz uh} in {u2} -
otherwise we could find a A-system of cardinality 5 .

Let these sets be {ul, Uy vj} where j =1, 2, 3, b . As

T(F) > 2, there must be an F € F such that F n {ul, u} =8 . As

o
{ul, Uy vj} € B(F) , we infer F n {ul, Uy vj} # § . Hence we conclude
F = {vl, v2, v3, vh} . However it is a contradiction as

{u2, Uss uh} € B(F) and {u2, U35 uh} NF=¢.
Now we have proved that |02| = 0 , that is every set in D contains

u s thus 1(0) = 1.
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4. The structure of D

In this paragraph we determine the exact structure of

p=1{D

1 oy Dt} . We know already that U € Di for every

2=1, ..., t and that ¢t = K°-k+l . As ©(F) > 1 , there exists a set,
say F = {fi, cees fk} € F such that U £FF.

As DiEB(F) s DinF#¢ for 1 =1, ..., t .

Let us set Ei =D, - {ul} for 2 =1, ..., t . Then the Ei’s are

i
the edges of a simple 2-graph, which we denote by E . Let ci (di) be
the number of edges adjacent to f€ and having their other extremity in F

(not in F ), respectively.

Then we have

k
(1) t= 3 (d+ke,)
1=1
Now we prove
(5) d. +e. sk (£=1, ..., k)

Suppose that (5) fails for some < . It means that we can find k + 1

7 i .
edges, say El, Ceesy Ek+1 which are adjacent to fé .

As T(F) > 2 , there existsa G € F such that G n {ul, f%} =g .

But F is intersecting and the Di's belong to its A-base;

conseguently, for J =1, ..., k4l , {E}—{f}}) € G holds. However this
is impossible since |G| =k <k + 1 . Now (5) is proved.
Next we prove

(6) diik-l (2 =1, ..., k)

Suppose that, on the contrary, (6) fails for a given < . Then by (5)

we have di =k .

Let gl, ceesy gk be the other endpoints of the edges adjacent to
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f; + If G 1is an edge of F , which necessarily exists since t(F) >2,

disjoint to {ul, f%} then we conclude in the above way

G = {gl, vees gk} . However G NF = @ , a contradiction proving (6).

As t 2 k2—k+l , we conclude from (4), taking into account (5)'and
(6), that there are at least two of the f;'s , say f., f2 , such that

d.=k-1, ec.=1
1 T

We distinguish two cases.

(a) fuy, fys £} € B(F)

This means that {f,, f2} is an edge in E . Let {gl, cees Gy l}
be the set of points different to f2 and connected in E +to fi . Then
for G €F, Gn {ul, fi} =@ we infer G = {f2, gys woes gk—l} . As
oF)>2, G €F . similarly if fi, gi, v gé , are the points

s - ' J
adjacent to fé , then G {fi, gis ees gk—l} €F .

Let 372 =k, and let h be a point which is adjacent to f} .

“ien {ul, fi, h} € B(F) implies

(1) he(cng)

If |6 N G'| S k-2 weinfer t S 2k -1 + (k-2)(k-2) < k% -k +1 ,

a contradiction.
Hence |G ng' |= k -1 ; that is,

{919 923 ey gk-—l} = {gi’ vty gé—l}

Now t 2 k2-k+1 and (7) imply {ul, fi, gj} € B(F) for every 1< <k,

1=j7<k. Thus D has the same structure as it has in FG .
() {uy, £, £} § B(F)
This means {f,, f2} $ E .

Let f3, gys +-e» 93y De the points adjacent to fi in E . As
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T(F) > 2 , there exists F € F such that F n {u , fl} = ¢ . From the
intersecting property and IFI = k we deduce F = {f3, gys v gk—l} .
Now if {ul, Fos h} € B(F) then it follows {ul, Fos hl nF#@ ; that
is, h € F . Hence we conclude that f2 is adjacent in E to the same
points as fl

It follows in the same way for U4 =7 £k and any h such that
{ul, fi h} € B(F) : h € F. Hence we have

k
Y d.+d,+c
i=1,i#3 ¢ 3

(8) t

3"

v

From (8) using (4) and ¢ 2 K2 k4l we deduce di =k ~1 for 71 # 3 and

d3+c3=k.

Let hl, cees hk be the neighbours of f3 in E. As 1(F) > 2
there exists H € F such that #H n {ul, f3} = ¢ . We infer

H={h

LRREE h

!

We know {f'l, f'2} < H , whence for some J , 1 =g <€ k-1, gJ. ¢H .
If for some % , 4 =ik, f; ¢ H , then {ul, Fi gj} € B(F) and
{ul’ Fis QJ-} NnH =@ gives a contradictiocn.

Hence f., f2, fh’ f5’ ves fk are all neighbours of f‘3 in E .

As FNnH# P, we conclude that the remaining neighbour of f3 is

one of the gj's , say 91
Now setting Y = {gl, 92, ey gk_l, f3} » Z = {f s Fos fhy ceey fk} s

x = u:L , we see that again 7 has the same structure as it has in FG .

5. The deduction of Theorem 3 and some remarks

For optimal families we have now proved the existence of
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z €X, ZcX, YcX, Y cY,

lzl =% -1, lrl=%, I

such that
83 = {B € BF) | |8} = 3}

={Bcx | |B]

3,xeB,Bny¢¢,an¢¢}u{xuyo}.

Moreover we proved Y € F . Let YO = {yl, y2} and let Fl, F2 € F such

that F. 0 {z, yi} = @ . Such sets exist as 7T(F) > 2 . We infer

Fi = {y3—i vz} for =1, 2.

As for every subset of cardinality at most k of X which does not

contain any of the sets in B = 33 v {F,, F, Y} we can find a set B € B

l’ 29
which is disjoint to it, we infer B = B(F) = G . Hence the maximality of

|F| implies F = FG . //

Now the next problem would be to determine maxlF] for F

intersecting, T(F) > 3 . Or more generally Tt(F) = t .

We could only prove |F| < (l+0(l))kT_l[Z:$)

To obtain a lower estimate let x € X and let Y Y

12 72* ' Tl
disjoint subsets of X - x . Let further 2, C Y. , ]Zil =T1-1,

|y, | =k -2 +1 .
7
Let us define
BT={ch| Bl =1,z €8, 3j,1<5=n,
suchthatBnYi¢¢forlEi<j,ZJ.EB}
Let us sel further
B ={scx] I8l =k, 3
such that 1 = 4 < 1, Yj €SB, Bnz ¢ g for 1 =7 < j}
Now we define B(FT) = BT v Bk ; that is,

Fo={rcx | |F] =k, 38 € B(F ) such that B c F}
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It is not hard to see that F 1is intersecting, T(F) =1 , and

Fl = <w.ﬁ4]1(u
7l [OEiST-l,i¢T—2 ’) k-t (o))

((k); = k(k-1) ... (k=it1), (K =1 .

Let us conclude this paper with a conjecture.

CONJECTURE. Suppose F is an intersecting family of k-subsets of
X, T(F)=2 1 . Suppose further k > kO(T) , n> no(k) . Then ’

IFl = [F.|
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