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Boundedness from Below of Composition
Operators on a-Bloch Spaces

Huaihui Chen and Paul Gauthier

Abstract. 'We give a necessary and sufficient condition for a composition operator on an a-Bloch space
with a > 1 to be bounded below. This extends a known result for the Bloch space due to P. Ghatage,
J. Yan, D. Zheng, and H. Chen.

1 Introduction

Let D be the unit disk in the complex plane C, and H(D) the space of all holomorphic
functions on D. For « > 0, a function f € H(D) is called an a-Bloch function if

| flla = sup{(1 — [z[)*|f'(2)| : z € D} < <.

For fixed a, the family of all a-Bloch functions with the norm || f||z« = |f(0)|+]| f||a
forms a complex Banach space, which is called a-Bloch space and denoted by B“.
When o = 1 we obtain the Bloch functions and corresponding Bloch space, which
is denoted by B. For the general theory of Bloch functions and a-Bloch functions,
see [2,6].

The pseudo distance on the unit disk is defined by

z—w
— ‘ forz,w € D.
—wz

p(z,w) = ‘ 1

A subset E of D is called a pseudo r-net, 0 < r < 1, if for every w € D, there exists
az € E such that p(z,w) < r. If we define p(z,E) = inf{p(z,w) : w € E} for a set
E C D, then a relatively closed subset E of D is an r-net if and only if p(z, E) < r.

In this paper, ¢ always denotes a holomorphic self-mapping of the unit disk D.

o (1= )o@
1—|z z
T4(2) = forz € D.
’ 1—[¢(2)]?
The Schwarz—Pick lemma [1] says that
(1.1) Te(z) <1 forz € D.

Fore > 0, let
Q. ={z€D:71y(z) > €}, G.= Q).
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The composition operator C; on H(D), induced by ¢, is defined by
Cys(f)=fog for fe HD,).

It follows from (1.1) that C, is always a bounded operator on B. For the boundedness
from below, the following result is known:

In order that C be bounded below on B, it is sufficient and necessary that there
existe > 0and 0 < r < 1 such that G, is a pseudo r-net.

We recall that a bounded linear operator T of a Banach space 8, into another one S,
is said to be bounded below if || T(s)||s, > k||s||s, fors € 8; with a k > 0 independent
of s. P. Ghatage, P. Yan and D. Zheng [4] proved the necessity of the condition as well
as the sufficiency with the restriction r < 1/4. Shortly after, H. Chen [3] showed
that the condition is sufficient without any restriction on the value of r. Recently,
P. Ghatage, D. Zheng and N. Zorboska proved the sufficiency of the condition for a
univalent ¢ [5].

The purpose of this short paper is to generalize the above result to the case of
a-Bloch spaces with a > 1. To this end, instead of 74, {2, and G, we should consider
74, ¥ and G7, respectively, which are defined by

(1 —|z[)*]¢"(2)]|

O = T p@pe

forz € D,

and
Q ={zeD:715(2) > ¢}, G =p(Q).

Our main result is that C; is bounded below on B with o > 1 if and only if there
existe > 0 and r € (0, 1) such that G¥ is a pseudo r-net.

2 Preliminaries
Let Aut(D) denote the group of all Mébius mappings of D. If ¢ € Aut(D), it is easy

to verify that
o' 1
(2.1) = 1o@F 1= 2F forz € D,
and, consequently,
(2.2) (1= [zPI(f 0 9) ()] = (1 = [$@)|f(¢(2))]

holds for f € H(D) and z € D. For w € D, by ¢,, we denote the mapping in Aut(D)
that exchanges 0 and w. The following identity is easy to verify:

12V — ]2
(2.3) 1—|<;5W(z)|2:(1 :i|—)(;z|2|W) forz € D.
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Let a = ¢(0). By (2.1) and a direct calculation, if ¢ € Aut(D), we have

L= la| _ 116

f € D.
T+]a = 1- 22 ore

(2.4)

1+ |a

=¢'(2)] < I

la|
In general, if ¢ is a holomorphic self-mapping of D, letting o be the holomorphic
self-mapping of D such that ¢(0) = 0 and ¢ = ¢, o o, we have by the Schwarz
lemma and (2.4),

1—|z? 1—z>  1—|o)) 1+|a

@3 TP T T— oGP I= 1@ = 1= °2€P:

It is easy to prove that C, is a bounded operator of B into B” if and only if
ICs(Nlg < M||f]la for f € B* with M > 0 independent of f and that a bounded
composition operator C, of B into B” is bounded below if and only if [|C(f)|| 5 >
m|| f||a for f € B* with m > 0 independent of f.

For o > 0, w € D, we define

1 a=|wP)
aw (1 —wz)“

fu(@) =

Then for z € D,
(1 — 21 — |w]?)
|1 _Wz|a+1

(1= 2P L= _
SR T T

(1= 12| fu(2)] =

On the other hand, (1 — |w|*)?|f’(w)| = 1. Thus,
(2.6) 1< | fulla <2071

It is easy to see that f,, converges to 0, locally uniformly in D, as w — 0D.

Theorem 2.1 Let3 > 1and a < 3. Then Cy is a bounded operator of B* into BA,
while it is not bounded below if o < .

Proof First we prove the boundedness of Cy. Let f € B“. We have, forz € D,
(1= [2)|(f o ®) (@] = (1 = |z1)7|f'(6(2))] |6/ (2)]
B (1 _ ‘Z|2)a—1
(1= [p(2)P)e!
X | f(p(2))|74(2).

(1 —|2)7=(1 — |p(2) )"

Thus, by (1.1) and (2.5),

- (1+|a))ot

ICa(Plls = supt(1 = [el)|(f 0 )'(2)] : 2 € D} < F—Pemy

N fllas
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and C, is a bounded operator of B® into B’.

Let w, — OD and f, = f,, be the function defined above for w = w,,. Assume
B>« > 1first. Thenforz€ Dandn =1,2,...,

(1= [271(fa 0 9)' (@] = (1 = |2V’ £ (6(2))]|¢" (2)]
= (1= 27711 = 9@, (9(2))]74(2)-
Thus, we have by (1.1),
(2.7) (1= 12 |(fuo d) (2)] < £ (8(2))],
and by (1.1), (2.5) and (2.6),

(1 _ |Z‘2)a—l
(1 —o(2)[*)!
X | £, (9(2)|7(2)

28) (1= 121 [(fuo d)(2)] = (1= 277 = |g(2))

, gee (14 |aphe !
< 2a+1(1 _ ZZ)J a )
- | ‘ (1 _ |a‘)a—1
For € > 0 by (2.8), there exists an < 1 such that
(2.9) (1= 1z"7(fuo ¢) ()| < e

forn = 1,2,... and |z| > r. Since f, — 0 locally uniformly in D by (2.7), there
exists an N such that (2.9) holds also for n > N and |z| < r. This shows that
ICs(fu)llg — 0asn — oco. However, || fu||o > 1 by (2.6). Thus, Cy4 is not bounded
below. The proof for the case 5 > 1 > « is similar to the above. This time, (2.8) is

replaced by
5—1
_1,]2V8 / < gotliy _ 2\B—a | (1 + |[l‘)/
(1= 27 [(fa 0 9)'(2)] <277 (1 — |p(2)]") A=)y
The proof is complete. ]

3 Sampling Sets and Pseudo r-Nets

Recently, Ghatage, Zheng and Zorboska [5] introduced the notion of sampling sets
for the Bloch space. It can be generalized to a-Bloch spaces automatically. For o > 0,
a subset H of D is called a sampling set for B if there exists k > 0 such that

[ flle < ksup{(1 = |2[)*|f'(2)| : z € H}

holds for f € B®. They proved the following theorem in the special case & = 1, and
it can be proved generally in a similar way. From now on, we suppose that o > 1.
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Theorem 3.1 C is bounded below on B if and only if there exists ¢ > 0 such that
G is a sampling set for B®.

Proof Assume that Cy4 is bounded below on B, i.e., ||Cy(f)||a > m| fllo for f €
B with m > 0 independent of f. Then for f € B* with || f||, > 0, thereisaz; € D
such that

79(zp) (1 = o)) | (D(z))] = (1 = |z¢)*[(Co () (zp)] > (m/2)] f |-
Thus,

(1) 75z = m/2 and (- |p))lf <¢<zf>>|_ﬁ

|)u 1 ||f||CU

since (1 — [@(zf) )| f'(¢(2))] < || flla and, by (1.1) and (2.5),

2)&—1

(1 — |zy| 74(2¢) 1+ |a|y o1
(1 —|p(zp)P)ot = ( 11— |‘1\)

If we take € = m /2, by (3.1) G contains all ¢(z¢) and is a sampling set for B“.
Now assume that G with some € > 0 is a sampling set for B®. Then, for f € B,
we have z; € D such that ¢(zf) € G, 74(z7) > € and

£llo < ksup{(1 = [w)?|f'(w)] : w € G2} < 2k(1 — |(20) )| f (621
where k > 0 is independent of f. Thus,
ICo()lla > (1= lz¢ )| f (828" (2)]

75 (zf) =

= 78(z0) (1 = [8(zp)I)° f (d(zf))| = Hf”ﬂ,

This shows that C, is bounded below on B“. The theorem is proved. ]

For w € Cand r > 0, we denote by D(w, r) the disk with radius r and centered at
w, while for w € Dand 0 < r < 1, we denote by A(w, r) the pseudo disk A(w,r) =
{z € D: p(z,w) < r}. Let A(w, r) and D(w, r) denote their closures respectively.

Theorem 3.2 A sampling set for B* is a pseudo r-net and, conversely, if E is a pseudo
r-net, then for any 6 > 0, the set Es = |, A(z, 0) is a sampling set for B®.

Proof First we assume that H is a sampling set for B, i.e., there exists a k > 0 such
that

(3.2) | flla < ksup{(1 —|2|)*|f'(2)| : z€ H} for f € B™.

Let w € D and f,, be the function defined above. Then by (3.2), there existsaz € H
such that || f,,[|lo < 2k(1 — |2|*)?|f.(2), and by (2.6) and (2.3),

2k(1 — |2]H)(1 — |w|?)
‘1 _ WZ|O‘+1
2k(1 — |z~ (1 — 2 (1 — |w]?)

= < 2%(1 — 2.
= T <291 — |pu(2)|")

1< 2k(1 — |2 fl2) =
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Thus, p(z, w) = |pw(2)] < r=4/1—1/(2%), and H is a pseudo r-net.
Now, we assume that E is a pseudo r-net. We want to prove that E, for any 6, is a

sampling set for B. Suppose on the contrary that there are a > 0 and a sequence
fu € B such that

(3.3) lfulla =1 form=1,2,...,
and
(3.4) sup{(1 — |z|")*|f/(2)| : z € Es} =€, — 0 asn — oo.

Forn=1,2,...,letz, € D be such that
(3.5) (1 — |za|H) £ (z)| > 1/2.
Since E is a pseudo r-net, we have a sequence z, € E such that p(z.,z,) < r for

n=12,....Letw, = ¢,/(z,) and g, = f, 0 ¢,  forn=1,2,....
Let n > 1 be fixed. We have

(3.6) \wa| = plz,,24) <1,
and by (2.2), forw € D,
(3.7) (1= W) [gaw)] = (1 — [w[))* (1 = |w|*)|gs(w)]
= (1= |w)* (1 = @z (W), (b2 (W))]

(1 _ ‘W|2)a71

T U= g W)t

It follows from (3.7), (2.4) and (3.3) that

(1= [y WP f (62 (W)

(1+ |z, )" 40!
(L= fzzhe=t = (1 = g2~

(3.8) (1= [wH)¥gh(w)| < forw € D.

In particular, letting w = w;,, in (3.7) and by (2.1), (3.5) and (3.6), we have

(3.9)

) (1 _ |Wn|2)a71
1— [wa))"|gn(w)| =

( |W | ) ‘gn(w )| (1 _ |¢z,§(wn)|2)a_l
_ A=)t
- (1 _ |Zn‘2)a—1

1

> -
- 2|¢Z/4(Wn)‘(171
1 =Zw,| (1-r)
21—z T 20—z

° (1 - |¢z,f(Wn)|2)a|fn,(¢zyf(wn))‘

(1— ‘Zn|2)a|fn/(zn)|
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If |[w| < 6, then p(¢./(w),z,) = p(d.; (W), ¢,,(0)) = p(w,0) = |w| < 0 and
consequently, ¢,/ (w) € Es. Thus, by (3.4), (1 — [¢.:(w)[*)*|f,/ (¢2;(w))| < €4, and
by (3.7) and (2.4),

en(1+]z0) ! 40 1¢,
(L—=lzDo=t = (1= |z[?)!

(3.10) (1 —|w)*|ghw)| < for |w| < 4.

Forn = 1,2,..., let hy(w) = (1 — |z}|")*"'g/(w) for w € D. By (3.8), hy,
is bounded locally uniformly in D. Using Montel’s theorem and choosing a subse-
quence if necessary, we may assume that 4, converges to a holomorphic function h,
locally uniformly in D, and w,, — wy with |wg| < r because of (3.6). Letting n — o0
in (3.9) and (3.10), we obtain |h(wy)| > (1 — r)?/(2(1 — |wo|*)*) and h(w) = 0 for
|w| < §. We arrive at a contradiction and it is proved that E; is a sampling set for any
0. The theorem is proved. ]

4 The Main Result and Its Proof

Lemma 4.1 Let h be a holomorphic self-mapping of D such that h(0) = 0. If
|h'(0)] > € > 0, then there exist 0y, 8, > 0, depending only on €, such that

(i) |W(2)| > €/2 forz € D(0, ),

(i)  D(0,05) C h(D(0,41)).

Proof First we want to prove that there exists a §; > 0 with property (i). Suppose
on the contrary that there exists a sequence of functions h, which satisfies the as-
sumption for 4 in the lemma, and a sequence z, — 0, such that h,(z,) < €/2 for

n=1,2,.... Using Montel’s theorem, we may assume that h,, converges to h, locally
uniformly in D. Then h{(0) = lim h/(0) > €. On the other hand, since z, — 0 and
hl(z,) < €/2 forn = 1,2,..., we have hj(0) = limh/(z,) < €/2, a contradiction.

The existence of 9, satisfying (i) is proved.

Now we fix §; > 0 that satisfies (i). To prove the existence of §,, suppose that
there exists a sequence of functions h, which satisfies the assumption for & in the
lemma and a sequence w, — 0 such that h, does not assume w, in D(0, d;) for
n=1,2,.... Using Montel’s theorem again, we may assume that /, converges to h
locally uniformly in D. Then ho(0) = 0, |h(0)| > ¢, and hg is not a constant. Thus,
by using Rouché’s theorem, a usual argument shows that there exista §" > 0 and a
positive integer N such that h, assumes every w € D(0,46’) in D(0,6;) if n > N. We
arrive at a contradiction again and the lemma is proved. ]

Lemma 4.2 For e > 0, there exist §, ¢’ > 0, which depend on |¢(0)|, € and o only,
such that
(GHs= U AW, CG.
w’ €Ge

Proof Letw' = ¢(z') € G and 75 (2') > ¢, and let h = ¢,,» 0 ¢ 0 ¢,/. It follows
from

B (1 _ |Z/|2)a717'¢(z/)

- (1 _ |W/|2)a—1
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and 74(z’) < 1 that

(1 _ ‘Z/|2)a71

We have by (2.5),

(- |P)¢’' )] _ A=W ) (= la)te
1— w2 - (1 —|z/|?)e1 = (A +a))ot €1

|h'(0)] =

By the above lemma, there exist d;, d, > 0 satisfying (i) and (ii) with € replaced by ¢;.

Forw € A(w’,6,), let w = ¢,,,(w) € D(0, 6,). Then by (i) and (ii), there exists a
¢ € D(0, ;) such that h({) = wand h'({) > €;/2. Letz = ¢,/(¢). Then ¢(z) = w
and by (2.1) and (4.1),

_ 1= [z*)e"(2)]

Tg(Z) - (1 _ |W|2)a
(1 _ |Z‘2)a (1 _ |<|2)a (1 _ |w|2)a , ,
= |y, (W)h L (z
(1= (G (= e (1 e P (M (020
a g QI a—[¢)” S al- &)X = ah)> (1= 2!
2 o @ T AP 2 QAR (1w
L acl =P - gy
=2 (144 HaD
This shows that A(w’, §,) C G for w’ € G2. The lemma is proved. [ ]

Now our main result follows directly from Lemma 4.2 and Theorems 3.1 and 3.2.

Theorem 4.3 Cg is bounded below on B if and only if there exist an € > 0 and an r
with 0 < r < 1 such that G is a pseudo r-net.

Proof If C, is bounded below, by using Theorem 3.1, there exists an € > 0 such that
G? is a sampling set for B* and, consequently, is a pseudo r-net with 0 < r < 1 by
Theorem 3.2. Conversely, assume that there existan e > 0 and anr with0 < r < 1
such that G* is a pseudo r-net . Then by Lemma 4.2, there exist §,¢’ > 0 such that
(G*)s C GY. Using Theorem 3.2, we see that (GY'); is a sampling set for B* and,
consequently, so is G, since (G*)s C G%,. The theorem is proved. [ |

We proved our main result by using Theorems 3.1 and 3.2, in which the notion of
sample set is involved. In fact, it can be proved in a more direct way, without making
use of the notion of sample set, as in [3] for o = 1.

Remark If o > 1,by (1.1) and (2.5), Tq‘;(z) > e implies

1— [z 1a—1) (1—la))* e
—_ > @ and 74(z) > —FF—.
1 - [¢(2)2 ¢ (1+ [a))o!
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Conversely, 75 (z) > e if

11— ‘Z|2 > and (Z) >
e —— € T €.
1—[¢@2)|* ~ o=
So, if we define
1— |z
Q/ = N ; > _— > G/ e Q/
€ {Z T(Q(Z) Z €, 1 _ ‘¢(z)‘2 - 6}7 € ¢( 5)7

then G can be replaced by G/ in Theorem 4.3 in the case & > 1. As a consequence,
if C4 is bounded below on B for some o > 1, then so is C for all @ > 1. In the
following section, we will give an example of the function ¢ to show that it is really
possible that C; is bounded below on B, but not on B with a > 1.

5 An example
Let ¢ be the conformal mapping of D to the domain
A={w:0<|w| <1, 0<argw < 27},
which is the unit disk with the positive radius / (including the origin) deleted, such
that ¢(1) = 0 and ¢(+i) = 1. Define U = {J,, o, A(w’,1/2). We claim that

E=D\U C Gy. Infact,if w = ¢(z) € E, then A(w,1/2) C A, A= ¢, 00 10 ¢,
is holomorphic on the disk D(0, 1/2) and A(0) = 0. Thus, by the Schwarz lemma,

1— |W‘2 -1

a-RPle@

To show that E is a pseudo r-net with r < 1, we fix a pseudo disk A(w’,1/2) with

w’ € L. Then ¢, (i/2) is a point in OA(w’,1/2) and has a pseudo distance greater

than 1/2 to points in I other than w’. So ¢, (i/2) € E and p(w, ¢,,(i/2)) < r for

w € A(w’,1/2) with r = 4/5. Since w’ may be an arbitrary point, it is proved that E

is a pseudo 4/5-net and, consequently, G, /, is also. Thus, C;; is bounded below on B.
It follows from the general theory of conformal mappings that (¢~!)"(w) — 0 as

w — 1. In fact, it is easy to verify, since in our special case,

YT (W(W)) = =iV +w?,
where ¢(w) = —(w — 1)/(w + 1). Thus,

1— |z
1= |w]?

2> [N(0)] =

—0 asw—1,

since
(1= W)~ (W)
L=z

For € > 0, there existsa § > 0 such that (1—z]*)/(1—|w|*) < e forw € AND(1, ),
ie, (DN D(1,0)) NG. = @. Since D N D(1, §) contains a pseudo disk with pseudo
radius sufficiently close to 1, we see that G/ cannot be a pseudo r-net for any r < 1.
By Theorem 4.3 and the remark, we assert that Cy4 is not bounded below on B“ with
a> 1.

T5(2) 7 = >1 forwe A.
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