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Interpolation of Morrey Spaces on Metric
Measure Spaces
Yufeng Lu, Dachun Yang, and Wen Yuan

Abstract. In this article, via the classical complex interpolation method and some interpolation meth-
ods traced to Gagliardo, the authors obtain an interpolation theorem for Morrey spaces on quasi-
metric measure spaces, which generalizes some known results on Rn.

1 Introduction

In 1938, due to the applications in elliptic partial differential equations, Morrey [21]
introduced a class of function spaces, nowadays named after him. In recent years,
there is an increasing interest in applications of Morrey spaces in various areas of
analysis, such as partial differential equations, potential theory and harmonic analy-
sis; we refer, for example, to [1–4, 18, 20, 22, 23, 33] and their references.

Let (X , d, µ) be a quasi-metric measure space, which means that X is a non-
empty set, d a quasi-metric (that is, for all x, y, z ∈X , it holds that d(x, y) ∈ [0,∞),
d(x, y) = d(y, x), and d(x, y) ≤ K[d(x, z) + d(z, y)], where K ∈ [1,∞) is a constant
independent of x, y, z) and µ a non-negative measure. Let 0 < p ≤ u ≤ ∞. Recall
that the Morrey space Mu

p(X ) is defined to be the space of all locally p-integrable
functions f on X such that

(1.1) ‖ f ‖Mu
p(X ) := sup

B⊂X
[µ(B)]1/u−1/p

[∫
B
| f (x)|p dµ(x)

] 1/p

<∞,

where the supremum is taken over all balls in X .
Obviously, Mp

p(X ) = Lp(X ). As a natural generalization of Lebesgue spaces,
the interpolation properties of Morrey spaces became an interesting question. The
first result on this problem is due to Stampacchia [31] and, independently, Cam-
panato and Murthy [8]: they obtained an interpolation property for linear op-
erators from Lebesgue spaces to Morrey spaces on Rn and showed that, if a lin-
ear operator T is bounded from Lqi (Rn) to Morrey spaces Mui

pi
(Rn) with opera-

tor norm Mi , i ∈ {0, 1}, then T is also bounded from Lq(Rn) to Mu
p(Rn) when
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1/q = (1− θ)/q0 + θ/q1, 1/u = (1− θ)/u0 + θ/u1, and 1/p = (1 − θ)/p0 + θ/p1

for some θ ∈ (0, 1) with the operator norm not more than a positive constant mul-
tiple of M1−θ

0 Mθ
1 . In 1969, Peetre [25] found that the previous conclusion still holds

true when
(

Lq0 (Rn), Lq1 (Rn)
)

and Lq(Rn) are replaced, respectively, by a certain ab-
stract pair (A0,A1) and an interpolation space A constructed from (A0,A1).

However, the converse result is in general not true. In 1995, Ruiz and Vega [27]
proved that, when n ≥ 2, u ∈ (0, n), θ ∈ (0, 1) and 1 ≤ p2 < p3 < n−1

u <
p1 < ∞, for any given C ∈ (0,∞), there exists a positive continuous linear op-
erator T : Mu

pi
(Rn) → L1(Rn), i ∈ {1, 2, 3}, with the operator norm satisfying

‖T‖Mu
pi

(Rn)→L1(Rn) ≤ Ki , i ∈ {1, 2}, but ‖T‖Mu
p3

(Rn)→L1(Rn) > CK1−θ
1 Kθ

2 for 1
p3

=
1−θ

p1
+ θ

p2
. This implies the lack of convexity of operators on Morrey spaces. For the

case dimension n = 1, Blasco, Ruiz and Vega [5] in 1999 proved that, for a partic-
ular u, if 1 < p0 < p1 < u < ∞, then there exist q0, q1 ∈ (1,∞) and a positive
continuous linear operator T which is bounded from Mu

pi
(R) to Lqi (R), i ∈ {0, 1},

but not bounded from Mu
p(R) to Lq(R), where 1

q = 1−θ
q0

+ θ
q1

and 1
p = 1−θ

p0
+ θ

p1
.

These counterexamples show that the Morrey spaces have no interpolation property
in general.

Nevertheless, under some restriction, the Morrey spaces also have some inter-
polation properties. Let 1 < p0 ≤ u0 < ∞, 1 < p1 ≤ u1 < ∞, θ ∈ (0, 1),
1/u = (1 − θ)/u0 + θ/u1 and 1/p = (1 − θ)/p0 + θ/p1. Recently, in [32], it was
proved that, if

(1.2) p0u1 = p1u0,

then

[M̊u0
p0

(Rn), M̊u1
p1

(Rn)]θ = [M̊u0
p0

(Rn),Mu1
p1

(Rn)]θ

= [Mu0
p0

(Rn), M̊u1
p1

(Rn)]θ = M̊u
p(Rn),

(1.3)

where the space M̊u
p(Rn) denotes the closure of the Schwartz functions in Mu

p(Rn).
Also recently, Lemarié–Rieusset [18, Theorem 3(ii)] showed that for p0, p1, u0, u1, θ,
p and u as above,

[Mu0
p0

(Rn),Mu1
p1

(Rn)]θ = Mu
p(Rn) if and only if (1.2) holds,

which gives the sufficient and necessary condition ensuring the interpolation prop-
erty of Morrey spaces on Rn; see [18, Theorem 3].

The main purpose of the present article is to establish the interpolation properties
of Morrey spaces on quasi-metric measure spaces X . The used interpolation meth-
ods include the 〈 · 〉θ-method, the ± method traced to Gagliardo, and the classical
complex interpolation method.

We begin with some basic notation. Let X0,X1 be a couple of quasi-Banach spaces,
which are continuously embedding into a large Hausdorff topological vector space Y .

The space X0 + X1 is defined by

(1.4) X0 + X1 :=
{

h ∈ Y : there exists hi ∈ Xi , i ∈ {0, 1}, such that h = h0 + h1

}
,
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and its norm is given by

(1.5) ‖h‖X0+X1 := inf{‖h0‖X0 + ‖h1‖X1 : h = h0 + h1, h0 ∈ X0 and h1 ∈ X1}.

Next we recall the definition of complex interpolation (see, for example, [7, 16]).
Let X be a quasi-Banach space, U := {z ∈ C : 0 < Re z < 1}, and let U be its
closure. Here and in what follows, for any z ∈ C, Re z denotes its real part. A map
f : U → X is said to be analytic if, for any given z0 ∈ U , there exist η ∈ (0,∞)
and {hn}∞n=0 ⊂ X such that f (z) =

∑∞
n=0 hn(z − z0)n for all z ∈ U is uniformly

convergent for |z − z0| < η. A quasi-Banach space X is called analytically convex
if there exists a positive constant C such that, for any analytic function f : U → X
which is continuous on the closed strip U ,

max
z∈U
‖ f (z)‖X ≤ C max

Re z∈{0,1}
‖ f (z)‖X.

Suppose that X0 + X1 is analytically convex. The set F := F(X0,X1) is defined to
be the set of all functions f : U → X0 + X1 such that

(i) f is analytic and bounded in X0 + X1, which means that f (U ) := { f (z) : z ∈ U}
is a bounded subset of X0 + X1;

(ii) f is extended continuously to the closure U of the strip U such that the traces
t 7→ f ( j + it) are bounded continuous functions into X j , j ∈ {0, 1}, t ∈ R.

We endow F with the quasi-norm

‖ f ‖F := max
{

sup
t∈R
‖ f (it)‖X0 , sup

t∈R
‖ f (1 + it)‖X1

}
.

Let X0,X1 be two quasi-Banach spaces such that X0 + X1 is analytically convex.
Then the complex interpolation space [X0,X1]θ with θ ∈ (0, 1) is defined by

[X0,X1]θ := {g ∈ X0 + X1 : there exists f ∈ F such that f (θ) = g},

and its norm given by ‖g‖[X0,X1]θ := inf f∈F{‖ f ‖F : f (θ) = g}.
Now we turn to some interpolation methods traced to Gagliardo (see, for example,

[12]). A quasi-Banach space X is called an intermediate space with respect to X0 + X1

if and only if X0 ∩ X1 ⊂ X ⊂ X0 + X1 with continuous embeddings. If X is an
intermediate space with respect to X0 + X1, let X◦ be the closure of X0 ∩ X1 in X. The
Gagliardo closure of X with respect to X0 + X1, denoted by X∼, is defined as follows:
a ∈ X∼ if and only if there exists a sequence {ai}i∈N ⊂ X such that ai → a as
i → ∞ in X0 + X1 and ‖ai‖X ≤ λ for some λ < ∞ and all i ∈ N. Moreover, let
‖a‖X∼ := inf{λ}.

Definition 1.1 Let (X0,X1) be a pair of quasi-Banach spaces and let θ ∈ (0, 1).

(i) (The 〈 · 〉θ-method) We say a ∈ 〈X0,X1〉θ if there exists a sequence {ai}i∈Z ⊂
X0 ∩ X1 such that a =

∑
i∈Z ai in X0 + X1 and, for any bounded sequence
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{εi}i∈Z ⊂ C,
∑

i∈Z εi2i( j−θ)ai converges in X j , j ∈ {0, 1}. Moreover, for j ∈
{0, 1}, ∥∥∥∑

i∈Z

εi2
i( j−θ)ai

∥∥∥
X j

≤ C sup
i∈Z
|εi |

for some nonnegative constant C , independent of {εi}i∈Z and {ai}i∈Z. Let
‖a‖〈X0,X1〉θ := inf{C}.

(ii) (The ± method) We say a ∈ 〈X0,X1, θ〉 if there exists a sequence {ai}i∈Z ⊂
X0 ∩ X1 such that a =

∑
i∈Z ai in X0 + X1 and, for any finite subset F ⊂ Z and

bounded sequence {εi}i∈Z ⊂ C, and j ∈ {0, 1},∥∥∥∑
i∈F

εi2
i( j−θ)ai

∥∥∥
X j

≤ C sup
i∈Z
|εi |

for some constant C independent of F, {εi}i∈Z and {ai}i∈Z. Let ‖a‖〈X0,X1,θ〉 :=
inf{C}.

We remark that the 〈 · 〉θ-method is a special case of the 〈 · 〉φ-method introduced
in [24, 26], and the ±-method is originally from [13, 14, 24]. Obviously, 〈X0,X1〉θ ⊂
〈X0,X1, θ〉.

Now we formulate the main result of the present article as follows.

Theorem 1.2 Let θ ∈ (0, 1), 0 < p0 ≤ u0 ≤ ∞, 0 < p1 ≤ u1 ≤ ∞ and
0 < p ≤ u ≤ ∞ such that 1

p = 1−θ
p0

+ θ
p1

and 1
u = 1−θ

u0
+ θ

u1
. If (1.2) holds true, then

(1.6) 〈Mu0
p0

(X ),Mu1
p1

(X )〉θ = (Mu
p(X ))◦

and

(1.7) 〈Mu0
p0

(X ),Mu1
p1

(X ), θ〉 = Mu
p(X ).

Moreover, when p0, p1 ∈ [1,∞], it further holds that

(Mu
p(X ))◦ = [Mu0

p0
(X ),Mu1

p1
(X )]θ.

We remark that Theorem 1.2 generalizes the corresponding interpolation result of
Morrey spaces in [34] in the case X = Rn to any quasi-metric measure space X .
The proof of this theorem is given in Section 2. Actually, we prove a more general
result in Theorem 2.3 which covers Theorem 1.2. Different from the approach used
in [34], wherein the interpolation of Morrey spaces was obtained via establishing
the interpolation result for the corresponding sequence spaces with respect to Mor-
rey spaces, the main idea for proving Theorem 1.2 here is to calculate the Calderón
product of Morrey spaces themselves and then use a general result of Nilsson [24] on
the relation between the Calderón product and the Gagliardo interpolation.

We also point out that, due to the counterexample constructed by Lemarié–
Rieusset in [18, Section 6], the condition (1.2) in Theorem 1.2 is also necessary when
X = Rn, 1 < p0 ≤ u0 <∞ and 1 < p1 ≤ u1 <∞.

As an immediate consequence of (1.7) in Theorem 1.2 and [14, Proposition 6.1],
we have the following result. We omit the details.
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Corollary 1.3 Let θ, p0, p1, p, u0, u1 and u be as in Theorem 1.2 such that (1.2) holds
true, and (A0,A1) a couple of quasi-Banach spaces.

(i) If a linear operator T is bounded from M
u j
p j

(X ) to A j with operator norms M j ,
j ∈ {0, 1}, then T is also bounded from Mu

p(X ) to 〈A0,A1, θ〉, and the operator

norm is not more than a positive constant multiple of M1−θ
0 Mθ

1 .
(ii) If a linear operator T is bounded from A j to M

u j
p j

(X ) with operator norms M j ,
j ∈ {0, 1}, then T is also bounded from 〈A0,A1, θ〉 to Mu

p(X ), and the operator

norm is not more than a positive constant multiple of M1−θ
0 Mθ

1 .

Remark 1.4 We remark that, by (1.6), the conclusions in Corollary 1.3 still hold
true if we replace Mu

p(X ) and 〈A0,A1, θ〉, respectively, by (Mu
p(X ))◦ and 〈A0,A1〉θ

(see [26]).

We also observe that the proof of the complex interpolation of Morrey spaces
on Rn in [18, Theorem 3] does not depend on any geometrical properties of Eu-
clidean spaces. Hence, by a proof similar to that used for [18, Theorem 3], we also
know that, if (1.2) holds true, then

[Mu0
p0

(X ),Mu1
p1

(X )]θ = Mu
p(X ),

where 1 < p0 ≤ u0 < ∞, 1 < p1 ≤ u1 < ∞, θ ∈ (0, 1), 1
p = 1−θ

p0
+ θ

p1
, and

1
u = 1−θ

u0
+ θ

u1
. This observation, together with Theorem 1.2, induces the following

result. We omit the details.

Corollary 1.5 Let θ ∈ (0, 1), 1 < p0 ≤ u0 ≤ ∞, 1 < p1 ≤ u1 ≤ ∞, and
1 < p ≤ u ≤ ∞ such that 1

p = 1−θ
p0

+ θ
p1

and 1
u = 1−θ

u0
+ θ

u1
. If (1.2) holds true, then

〈Mu0
p0

(X ),Mu1
p1

(X ), θ〉 = [Mu0
p0

(X ),Mu1
p1

(X )]θ

= 〈Mu0
p0

(X ),Mu1
p1

(X )〉θ = Mu
p(X ).

Again, Corollary 1.5 generalizes Lemarié–Rieusset [18, Theorem 3(ii)] on Rn to
any quasi-metric measure space X . Also, by [18, Theorem 3(ii)], we know that (1.2)
is also necessary for the conclusions of Corollary 1.5. When X := Rn, Mu

p(X )

is replaced by M̊u
p(Rn) and at least one of {Mu j

p j
(X )}1

j=0 by the corresponding

{M̊u j
p j

(X )}1
j=0, some complex interpolation theorems similar to Corollary 1.5 were

obtained in [32] (see also (1.3)).

Remark 1.6 Let p0, u0, p1, u1, p, u be as in Corollary 1.5 such that (1.2) holds.

(i) By Corollary 1.5, we know that the conclusions in Corollary 1.3 are also true
if we replace 〈A0,A1, θ〉 by 〈A0,A1〉θ or [A0,A1]θ (see, for example, [26] and
[16, Theorem 8.1]).

(ii) When X := Rn, as an immediate consequence of (1.3), the conclusions
in Corollary 1.3 are also true if we replace Mu

p(X ) by M̊u
p(Rn), 〈A0,A1, θ〉

by [A0,A1]θ , and at least one of {Mu j
p j

(X )}1
j=0 by the corresponding

{M̊u j
p j

(X )}1
j=0 (see, for example, [16, Theorem 8.1]).
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(iii) Observe that if X := Rn and if M
u j
p j

(X ), A j , and Mu
p(X ) are replaced by

M̊
u j
p j

(Rn), some Lebesgue space, and M̊u
p(Rn), respectively, then Corollary 1.3(i)

is just [4, Theorem 18] of Adams and Xiao, in which (1.2) is also needed.

We point out that since all results of this article hold true for quasi-metric measure
spaces, they have wide generality, and, in particular, they hold true for both spaces of
homogeneous type in the sense of Coifman and Weiss [9,10] and non-homogeneous
spaces in the sense of Hytönen [15].

Finally, we make some conventions on notation. Throughout the paper, we denote
by C a positive constant which is independent of the main parameters, but it may vary
from line to line. The symbol A . B means A ≤ CB, where C is a positive constant
independent of A and B.

2 Proof of Theorem 1.2

In this section, we give the proof of Theorem 1.2. To this end, we need to consider
the Calderón product of Morrey spaces.

We start by recalling the notion of the Calderón product; see, for example, [7,16].
A quasi-Banach space X of complex-valued measurable functions is called a quasi-
Banach lattice if, for any f ∈ X and a function g satisfying |g| ≤ | f |, we have g ∈ X
and ‖g‖X ≤ ‖ f ‖X . Given two quasi-Banach lattices X0 and X1, and θ ∈ (0, 1), their
Calderón product X1−θ

0 Xθ
1 is defined by

X1−θ
0 Xθ

1 := { f is a complex-valued measurable function :

there exist f 0 ∈ X0 and f 1 ∈ X1 such that | f | ≤ | f 0|1−θ | f 1|θ},

(2.1)

and its norm is given by ‖ f ‖X1−θ
0 Xθ

1
:= inf{‖ f 0‖1−θ

X0
‖ f 1‖θX1

}, where the infimum is

taken over all f i ∈ Xi , i ∈ {0, 1}, such that | f | ≤ | f 0|1−θ| f 1|θ.
It was proved in [7] that if X0 and X1 are two quasi-Banach lattices, then X1−θ

0 Xθ
1

is complete and it is also easy to see that Morrey spaces are quasi-Banach lattices.
Moreover, we have the following conclusion.

Proposition 2.1 Let θ ∈ (0, 1), 0 < p0 ≤ u0 ≤ ∞, 0 < p1 ≤ u1 ≤ ∞ and
0 < p ≤ u ≤ ∞ such that 1

p = 1−θ
p0

+ θ
p1

and 1
u = 1−θ

u0
+ θ

u1
. If (1.2) holds true, then

[Mu0
p0

(X )]1−θ[Mu1
p1

(X )]θ = Mu
p(X ).

Proof Let f ∈ [Mu0
p0

(X )]1−θ[Mu1
p1

(X )]θ. Then by (2.1) we know that there exist
f0 ∈ Mu0

p0
(X ) and f1 ∈ Mu1

p1
(X ) such that, for almost every x ∈ X , | f (x)| ≤

| f0(x)|1−θ | f1(x)|θ and

(2.2) ‖ f0‖1−θ
M

u0
p0

(X )
‖ f1‖θMu1

p1
(X ) . ‖ f ‖[M

u0
p0

(X )]1−θ[M
u1
p1

(X )]θ .
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Thus, for any ball B ⊂X , by the Hölder inequality, 1
p = 1−θ

p0
+ θ

p1
and 1

u = 1−θ
u0

+ θ
u1

,
we conclude that

1

[µ(B)]1/p−1/u

[∫
B
| f (x)|p dµ(x)

] 1/p

≤ 1

[µ(B)]1/p−1/u

[∫
B
| f0(x)|(1−θ)p| f1(x)|θp dµ(x)

] 1/p

≤ 1

[µ(B)]1/p−1/u

[∫
B
| f0(x)|p0 dµ(x)

] 1−θ
p0
[∫

B
| f1(x)|p1 dµ(x)

] θ
p1

=

{
1

[µ(B)]1/p0−1/u0

[∫
B
| f0(x)|p0 dµ(x)

] 1
p0
} 1−θ

×
{

1

[µ(B)]1/p1−1/u1

[∫
B
| f1(x)|p1 dµ(x)

] 1
p1
} θ

.

Thus, from this and the definition of Morrey spaces (see (1.1)), together with (2.2),
we deduce that

‖ f ‖Mu
p(X ) ≤ ‖ f0‖1−θ

M
u0
p0

(X )
‖ f1‖θMu1

p1
(X ) . ‖ f ‖[M

u0
p0

(X )]1−θ[M
u1
p1

(X )]θ ,

which implies that f ∈Mu
p(X ) and hence

(2.3) [Mu0
p0

(X )]1−θ[Mu1
p1

(X )]θ ⊂Mu
p(X ).

Conversely, let f ∈Mu
p(X ) and define, for all x ∈X ,

f̃0(x) := | f (x)|p/p0 and f̃1(x) := | f (x)|p/p1 .

Notice that for any ball B ⊂ X , by the definition of f̃0 and (1.2), together with
the definition of Mu

p(X ) (see (1.1)), we see that

1

[µ(B)]1/p0−1/u0

[∫
B
| f̃0(x)|p0 dµ(x)

] 1/p0

=
1

[µ(B)]1/p0−1/u0

{[∫
B
| f (x)|p dµ(x)

] 1/p} p/p0

=

{
1

[µ(B)]1/p−1/u

[∫
B
| f (x)|p dµ(x)

] 1/p} p/p0

≤ ‖ f ‖p/p0

Mu
p(X ).

This implies that f̃0 ∈Mu0
p0

(X ) and

(2.4) ‖ f̃0‖Mu0
p0

(X ) ≤ ‖ f ‖p/p0

Mu
p(X ).
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Similarly, by the definition of f̃1, (1.1) and (1.2), we conclude that f̃1 ∈ Mu1
p1

(X )
and

(2.5) ‖ f̃1‖Mu1
p1

(X ) ≤ ‖ f ‖p/p1

Mu
p(X ).

Moreover, by 1
p = 1−θ

p0
+ θ

p1
, together with the definitions of f̃0 and f̃1, we see that,

for all x ∈X ,

| f (x)| = | f (x)|p(1−θ)/p0 | f (x)|pθ/p1 = | f̃0(x)|1−θ | f̃1(x)|θ.

From this, the definition of ‖ · ‖[M
u0
p0

(X )]1−θ[M
u1
p1

(X )]θ (see (2.1)), (2.4), and (2.5), to-

gether with 1
p = 1−θ

p0
+ θ

p1
and 1

u = 1−θ
u0

+ θ
u1

, it further follows that

‖ f ‖[M
u0
p0

(X )]1−θ[M
u1
p1

(X )]θ ≤ ‖ f̃0‖1−θ
M

u0
p0

(X )
‖ f̃1‖θMu1

p1
(X ) ≤ ‖ f ‖Mu

p(X ) <∞,

which implies that f ∈ [Mu0
p0

(X )]1−θ[Mu1
p1

(X )]θ and hence

(2.6) Mu
p(X ) ⊂ [Mu0

p0
(X )]1−θ[Mu1

p1
(X )]θ.

Thus, combining (2.3) and (2.6), we see that

[Mu0
p0

(X )]1−θ[Mu1
p1

(X )]θ = Mu
p(X ),

which completes the proof of Proposition 2.1.

Proposition 2.1 in the case when u0 = p0 and u1 = p1 coincides with the Calderón
product property for Lebesgue spaces on metric measure spaces. We refer, for ex-
ample, to [17, Formula 1.6.1] and [19, p. 179, Exercise 3], for the Calderón prod-
uct of Lebesgue spaces on Rn. Recently, Sickel, Skrzypczak, and Vybı́ral in [30,
Lemma 8] obtained the Calderón product between two weighted Lebesgue spaces,
with p0, p1 ∈ (0,∞], on Rn. In case p0, p1 ∈ [1,∞], this result can also be found in
[6, Exercise 4.3.8]. We also refer, for example, to [11, 16, 32] for the extension to the
Calderón product of sequence spaces with respect to function spaces.

Let X be a quasi-Banach lattice and q ∈ [1,∞]. The q-convexification of X,
denoted by X(q), is defined as follows: x ∈ X(q) if and only if |x|q ∈ X, and let

‖x‖X(q) := ‖|x|q‖1/q
X (see, for example, [24]). A quasi-Banach lattice X is said to be of

type E if there exists an equivalent quasi-norm on X such that, for some q ∈ [1,∞],
X(q) is a Banach lattice in this norm (see, for example, [24]).

The following result on the Calderón product and the interpolation for quasi-
Banach lattices being of type E is a special case of the general result [24, Theorem 2.1]
obtained by Nilsson.

Theorem 2.2 Let X0 and X1 be two quasi-Banach lattices of type E. Then

〈X0,X1〉θ = (X1−θ
0 Xθ

1 )◦

and
X1−θ

0 Xθ
1 ⊂ 〈X0,X1, θ〉 ⊂ (X1−θ

0 Xθ
1 )∼.
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Notice that for all δ ∈
(

0,min(1, p)
]

, the 1/δ-convexification
(
Mu

p(X )
) (1/δ)

of
the Morrey space is a Banach space, namely, the Morrey space is of type E. Then,
applying Proposition 2.1 and Theorem 2.2, we have the following conclusion, which
covers Theorem 1.2 as a special case. The approach used to prove Theorem 2.3 is
inspired by the proof of [11, Theorem 8.5].

Theorem 2.3 Let θ ∈ (0, 1), 0 < p0 ≤ u0 ≤ ∞, 0 < p1 ≤ u1 ≤ ∞ and
0 < p ≤ u ≤ ∞ such that 1

p = 1−θ
p0

+ θ
p1

and 1
u = 1−θ

u0
+ θ

u1
. If (1.2) holds true, then

(2.7) 〈Mu0
p0

(X ),Mu1
p1

(X )〉θ =
(

[Mu0
p0

(X )]1−θ[Mu1
p1

(X )]θ
)◦ = (Mu

p(X ))◦

and

(2.8) 〈Mu0
p0

(X ),Mu1
p1

(X ), θ〉 = [Mu0
p0

(X )]1−θ[Mu1
p1

(X )]θ = Mu
p(X ).

In particular, when p0, p1 ∈ [1,∞], it further holds that

(2.9) (Mu
p(X ))◦ = [Mu0

p0
(X ),Mu1

p1
(X )]θ.

Proof It is easy to see that (2.7) is an immediate consequence of Proposition 2.1 and
Theorem 2.2, by observing that the Morrey space is of type E.

Moreover, from Proposition 2.1, Theorem 2.2 and the fact that the Morrey space
is of type E again, it also follows that

Mu
p(X ) = [Mu0

p0
(X )]1−θ[Mu1

p1
(X )]θ ⊂ 〈Mu0

p0
(X ),Mu1

p1
(X ), θ〉 ⊂ [Mu

p(X )]∼.

Thus, to show (2.8), we only need to prove [Mu
p(X )]∼ ⊂Mu

p(X ).
Let f ∈ [Mu

p(X )]∼. By the definition of [Mu
p(X )]∼, there exists a sequence

{ fi}i∈N ⊂Mu
p(X ) such that

lim
i→∞
‖ fi − f ‖Mu0

p0
(X )+M

u1
p1

(X ) = 0

and

(2.10) ‖ fi‖Mu
p(X ) . ‖ f ‖[Mu

p(X )]∼

for all i ∈ N. Then, for all i ∈ N, by fi − f ∈ Mu0
p0

(X ) + Mu1
p1

(X ) (see (1.4) and
(1.5)), we know that there exist f 0

i ∈ Mu0
p0

(X ) and f 1
i ∈ Mu1

p1
(X ) such that, for

almost every x ∈X , fi(x)− f (x) = f 0
i (x) + f 1

i (x) and

(2.11) ‖ f 0
i ‖Mu0

p0
(X ) + ‖ f 1

i ‖Mu1
p1

(X ) . ‖ fi − f ‖Mu0
p0

(X )+M
u1
p1

(X ) → 0,

as i →∞.
Fix x0 ∈ X , and let Bm := B(x0, 2m) ∩X for all m ∈ N. Let j ∈ {0, 1}. Since

‖ f j
i ‖Mu j

p j
(X )
→ 0 as i → ∞ (by (2.11)) and M

u j
p j

(X ) ⊂ L
p j

loc(X ) (see (1.1)), it

follows that { f j
i }i∈N converges in measure on B1 and hence, by the Riesz theorem,
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there exist subsequences, denoted again by { f j
i }i∈N, such that f j

i → 0, as i →∞, for
almost every x ∈ B1. Repeating this argument on B2, we find subsequences, denoted
again by { f j

i }i∈N, that converge to 0 almost everywhere on B2. By this procedure, we

conclude that for any ball B ⊂X , there exist subsequences { f j
ik
}k∈N of { f j

i }i∈N such

that f j
ik
→ 0, as ik → ∞, almost everywhere on B. Therefore, applying the Fatou

lemma, by the definition of the Morrey space (see (1.1)) and (2.10), we see that

[µ(B)]1/u−1/p

[∫
B
| f (x)|p dx

] 1/p

= [µ(B)]1/u−1/p

[∫
B

lim
k→∞

| fik (x)|p dx

] 1/p

≤ lim
k→∞

[µ(B)]1/u−1/p

[∫
B
| fik (x)|p dx

] 1/p

≤ lim
k→∞

‖ fik‖Mu
p(X ) . ‖ f ‖[Mu

p(X )]∼ .

Thus, by this, the arbitrariness of the ball B, and (1.1), we know that f ∈ Mu
p(X )

and [Mu
p(X )]∼ ⊂Mu

p(X ), which completes the proof of (2.8).
Finally, the equality (2.9) follows from (2.7), the fact that the Morrey space is of

type E, and a general result by Shestakov [28,29] which says that if X0, X1 are Banach
lattices, then (X1−θ

0 Xθ
1 )◦ = [X0,X1]θ. This finishes the proof of Theorem 2.3.
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