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HOMOMORPHISMS OF RINGS WITH INVOLUTION

CHARLES LANSKI

Introduction. The purpose of this paper is to examine the extent to which
a homomorphism of a ring with involution is determined by its action on the
symmetric elements of the ring. Assuming that the ring is “‘suitably free” of
2 X 2 matrix rings, we show that any homomorphism is uniquely determined if
its image is semi-prime without nonzero central ideals. To obtain this result we
first investigate automorphisms of quotients of rings with involution.

R will always denote a ring with involution, *; S = {r € R|r* = r}, the set
of symmetric elements of R; and Z, the center of R. We write Aut(R/S) for the
group of automorphisms of R which fix each element of S.

1. We begin by considering when Aut(R/S) = Ig. Suppose R? = 0, R is
2-torsion-free, and r* = —r for all » € R. Then any automorphism of R is in
Aut(R/S). Hence to show Aut(R/S) = Ig, R had better be semi-prime. Another
problem which can arise is illustrated by taking R = M,(F), the 2 X 2 matrix
ring over F, a field with charF # 2. If

e =122 i)

then S = Z and again Aut(R/S) is the group of all automorphisms of R. So we
need to eliminate the possibility that R has a direct summand whichisa 2 X 2
matrix ring over a field. The following examples generalize the one above and
show that the problem can persist even if R has no direct summands.

Example 1. Let R = M,(2J) where J is the ring of integers, and let * be the
symplectic involution as defined above for M+(F). Any inner automorphism of
M(J) restricts to an element of Aut(R/S). Thus Aut(R/S) can be large if R
is only an order in M(F).

Example 2. Let A = F{x,y, w, t}, the free algebra with identity in four
indeterminates over the field F with char F £ 2. Let I be the ideal of 4
generated by w?, 12, wt 4 tw — 1, pg, and ¢gp, where p is either x or y and ¢ is
either w or t. Set R = A4 /I with * defined via: x* = x,y* = vy, w* = —w, and
t* = —t. Define ¢ € Aut(R/S) by setting (x)¢ = x, ()¢ = v, (w)e = w, and
)¢ =t — wt + tw — w. If B is the ideal generated by x and y, and D the
ideal generated by w and ¢, then B =< F{x, y}, D = M,(F), and ¢ acts like the
1] on D. Note that R/B = D.

identity on B and like conjugation by I:(l) 1
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The real problem Example 2 identifies is that a large piece of R, namely D
in the example, has its symmetric elements in the center, allowing all “inner
automorphisms’ to be in Aut(R/S). It will be sufficient to make sure that R
does not have many homomorphic images which are 2 X 2 matrix rings, as in
the above examples. To this end we make the

Definition. R satisfies condition (C) if R/ P is commutative for any prime ideal P
of R with P* = P and such that the images in R/ P of the elements of S commute.

The strength of condition (C) is that we may conclude that any element
commuting with all symmetric elements lies in the center. A generalization of
this fact is the content of our first theorem. Before stating this result, we need a
well-known fact about S, the subring generated by S.

Definition. T is the ideal of R generated by all xy — vyx, for x,y € S.
Theorem. T C S.
Proof. See [2, p. 4].

THEOREM 1. Let R satisfy (C), let A be a semi-prime 1deal of R and suppose that
for some x € R,xt —tx € A forallt € T.Thenx + A € Z({R/A).

Proof. Let P be a prime ideal of R with 4 C P.If T" Z P, then (T + P)/P
is a nonzero ideal in R/ P and commutes with & 4 P. Since R/ P is a prime ring,
x+ P € Z(R/P),soxr —rx € Pforallr € R.

Next assume 7" C P and P* = P. Then the images of the elements of .S
commute, so R/P is commutative by (C). Hence xr — rx € P for r € R.
Lastly, if P* ¢ P then (P* 4+ P)/P is a nonzero ideal in R/ P and for w* € P*,
w* + P = (w' 4+ w) + P. Thus each element of (P* + P)/P is the image of
an element of S. Since I" C P, the ideal (P* + P)/P is commutative, forcing
R/P to be commutative. Therefore, in all cases, x» — rx € P. Since 4 is a
semi-prime ideal, it is the intersection of all prime ideals which contain it.
Consequently xr — rx € A forall» € R,sox + R € Z(R/A), as claimed.

We can now use Theorem 1 to examine automorphisms of semi-prime
images of R. Note that in the following results we are not assuming that the
image under consideration has an involution.

THEOREM 2. Let R satisfy (C), let A be a semi-prime ideal of R and suppose
that ¢ 1is an automorphism of R/ A such that (s + A)e = s + A for every s € S.
Then (r + A)p = (r + A) + (2 + A4) forz + A € Z(R/A4).

Proof. If T C A, then R/A is commutative by Theorem 1, so the theorem
holds trivially. If " Z A,lett € T'and x € R. Then xt € T, so

(xt + A)e = xt + A, since T C S.
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Hence (x + 4A)(¢ + 4) = ((x + 4)¢)(t + A) and so, for (x + A)p =y + 4,
y—x+A)t+4)C4
or (y —x)T C A.
Similarly 7'(y — x) C A4, so by Theorem 1y — x € Z(R/A). Equivalently we
have
x4+ ADe=x+A4)+ =+ A) fora+ 4 € Z(R/A).

Our immediate goal is to show that Aut(R/S) is a group of exponent two.
We can do this only under the assumption that 2R = 0 or that R is 2-torsion-
free. First we consider 2R = 0.

THEOREM 3. Suppose 2R = 0, R satisfies (C) and A is a semi-prime ideal of R.
If ¢ is an automorphism of R/ A such that (s + A)e = s + A forall s € S, then
r+ Ae=@+2+4 wth 3+ A)e=2+A4 and 2+ 4 € Z(R/4),
consequently ¢* = Ig,a.

Proof. If ¢ # Ig,4, then for some x ¢ 4, (x + A)¢ = x 4+ 2 4+ A for some
24+ A CZR/A) and z ¢ A, using Theorem 2. Let (x* + A)o = 5"+t + 4
fort + A € Z(R/A). Since x + x* € S, we have

xFa"+ A =(+a"+ e = (x+ Ao+ (x" + A)o
=@x+x"+4)+@E+1t+ A4).
Thus z + ¢t € A. Also, xx* € S, so
xx* + A = (xx" + A)p = (x + A)o(x" + A)o
=xx* +a(x+x) +22+ 4
using z + A = ¢t + A. Consequently,
1) 244 =z>x+5") + 4.

If (z + A)e # 2z + A, then using Theorem 2 again, we may conclude that
z+ A)e=24+2z21+ A4 for 218 A and 3z € Z(R/A). As above,
4+ A)e = (" + 21) + 4. Now xz 4 '™ € S, so

(xz+2'x" 4+ 4) = (xz2 + 2'x" + A)o
=x+2)E@+z2)+ & +2)E +32) + A
Equivalently,
(2) 24z + ") +22" € A4

Since zg* € S, (28" + A)p = 22" + A. If it were true that (31 + A)p = 2, + 4,
then using (2) we could conclude that

@B+ A)=EF+Ae=0E+z2)?2+4=22+z+4.

Thus 2,2 € 4, and 2, + 4 is a nonzero nilpotent element in Z(R/A), which is
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impossible since R/A4 is semi-prime. Hence (21 + A)¢p 5 21 + 4, so by
Theorem 2, (31 + A)e =21+ 2, + A with 2, ¢ 4 and 2, + 4 € Z(R/A).
Using (2) and the fact that 22" € S gives

2421+ 5+ 4=+ zx -+ + Ao
= (24 21)2 + (21 + 22)(x + x*) + A4.
Canceling corresponding terms yields
B) 22+ 4 =zx+x") + 4.
If (20 + A)p = 22 + A, then from (3) we could conclude that
(22 4+ A) = (22 + A)p = 2.2+ 222 + 4,

or 2,> € A. This is impossible, as above, since R/A4 is semi-prime. Thus
(22 4+ A)p = 20+ 23 + A with 23 ¢ 4 andz; + 4 € Z(R/A). Applying ¢ to
(3) yields

4) G420+ 4 =(>(G4+z)(x+x)+ 4,0rz2+ A4 = z3(x + x*) + A.
Now (x + A)¢* = (x + 2+ A)p = x + 21 + A. Hence
+ A =@+an+Ad)*=+z)+ 4+ ((a1+2) + Ao
=x+s1+21+z+A4A=x+3z + 4.

Since (s + A)e* = s+ A for all s € S, ¢* satisfies the hypothesis of the
theorem, so we may use (1) to conclude

22 + A = z3(x + x*) + 4.
This, together with (4) yields

22+ A =22 + A.
But now (23 + 23 + 4)? = (32 + 23)2 + 4 =22+ 22 + 4 = A. Since R/A
is semi-prime we must have 2z, + 4 = 23 + 4, and consequently,

(22+A)S0=22+23+A=A~

As ¢ is an automorphism of R/A, this situation is impossible. Therefore, it
must be that (z + 4)p = 2 + A4, and so ¢* = Ig,4, proving the theorem.

Under the hypothesis of Theorem 3 we know that the automorphisms of
R/A which “fix S form an abelian group of exponent 2. Clearly, any two
automorphisms which agree on all s 4 4 for s € .S, differ by an element of this
group. To show any automorphism of R/ 4 is uniquely determined by its action
on the image of S requires an additional assumption.

THEOREM 4. Suppose 2R = 0, R satisfies (C), A is a semi-prime ideal of R,
and Z(R/A) has no divisors of zero in R/A. If ¢ is an automorphism of R/A
fixing the image of S, then ¢ = Ig,4 unless R/ A is a commutative domain.
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Proof. If ¢ # I, and (x + A)p # x 4+ A, then from equation (1) in the
proof of Theorem 3 we have z(z + x + x*) € A, where zis given as in Theorem 2.
Since 2 ¢ A and Z(R/A) has no divisors of zero in R/A, we must have
x*+ A =x4+2+4+ A = (x + A)¢. On the other hand, if (x + A)p =x+ 4
and (v + A)e =y + A, then (x+y+ A)p #x+ v+ 4, so we have
(x+vy+ Ao =(x+y*"+A4=x"+19y" + A. Using that ¢ is a homo-
morphism gives (x +y + A)o = x + 9"+ 4. Thusx + 4 = x* + 4. Con-
sequently, for all x € R we may write (x + 4)p = x* + A. It follows that
(x*y* 4+ A)e can be written as yx + A and also as xy + A4, and so, R/4 is
commutative. Under the hypothesis on Z(R/A4) it is a domain.

With regard to Theorem 4, we note that Z(R/A4) has no zero divisors in R/ 4
if 4 is a prime ideal. Also the possibility that R is commutative and ¢ = *
always exists. We turn now to the situation when R/ A4 is 2-torsion-free.

THEOREM 5. Suppose R satisfies (C) and A is a semi-prime ideal of R with
R/ A 2-torsion-free. If ¢ is an automorphism of R/A with (s + A)p =s + A
for all s € S then for any r € R

) ¢+ Aep=@+2 +Aforz¢d A,z2+ A € ZR/A),
(i) (24 4)e = —z+ A4,
(iii) o= IR/A:
(iv) {z + A|zis as in (i)} generates an ideal which lies in Z(R/A).

Proof. (i) is just Theorem 2, and (iii) follows immediately from (i) and (ii).
Thus it suffices to prove (ii) and (iv). Using Theorem 2, for any » € R we may
write (r +A)p =7+ 2+ A4, (21 + 4)p =2+ 25+ A, and generally
(2 + A)o = 2, + 25401 + A where 2, + 4 € Z(R/A4) and where we may
assume 2; ¢ A if ¢ # Iga.

As in Theorem 3, if (" + A)p =7r"+t+ Afort + A € Z(R/A), then
r + r* € Simplies that 2, + ¢ € 4. Using " € S yields

(rr+ A)=(rr+ Ao =@4+2)0" —z) + 4

=t —z2+ 20" —r)+ 4

and so
B) 2+ 4=z —r) + A
Also, as in Theorem 3, since z;7 + r"z,* € .S,

s + 'z + A = (zir + 'z + Ao

= (z1+2)(r +21) + (F —2)(a" —22) + 4

or
(6) Zz(r* —_ 7’) + 4 = 212 + 22122 — 212*1 + A.
Applying ¢ to (5) gives

(g1 + 2202+ A = (a1 +2)(" —r — 221) + A.
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Expanding these expressions and using (5) and (6) results in the relation
212 + 22120 + 2.2 + 292,F € 4,

or equivalently.

(M) =25+ 4 = (21 + 22+ 4.

Thus (21 + 22)2 + 4 is fixed by ¢. If we begin with any z, instead of » we
would obtain that (z; + 241)2 + A4 is fixed by ¢. That s,

) (s + 241)* + A)o = (2: + 2440)* + 4.
Using this expression and the definition of z; we have
(B 4+ 4)e)* = ((2: + 4)e)?e
= (5 + e
= ((Zt + 241+ A)p)?
= ((z:+ A)p + (31 + A)p)?
= ((z: + De)* + 2221 + Ao + ((Ba1 + 4)e)2
Consequently,
(B + 4+ (22841 + 4))e € 4
and so, since ¢ is an automorphism of R/ A4,
9)  zu2+ 22240 € A

Since by (8), (22 + A)e = (2; + 2441)2 + 4 is fixed by ¢, we may conclude
using (9) that (22,2:41 + 4)e is also fixed by ¢. Thus

(22241 + A)¢* = (225341 + 4)e and so
GEm+ A)e =284+ A

using the fact that ¢ is an automorphism and that R/4 is 2-torsion free. In
particular,

2z + A = (212 + A)p = (1 + 22) (22 +25) + 4
or
(10) 222 4 z3(z1 + 22) € A.

From (10) we have that xz; € 4 implies x2,*> € 4. Since the annihilator of
any power of a central element in a semi-prime ring is the annihilator of
the element, xz, € A. Applying this to (9) we have (23 4+ 225)2;3 € 4, and so
(23 + 225)22 € A. Together these yield (23 + 225)? € A. Semi-prime rings
cannot have central nilpotent elements, so 23 4+ 22, € A. Using the definition
of z; gives

(22 + Ad)p =3:+33+ 4 = —z, + A.
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It follows that
(r+ A)e? =7+ 23+ 2.+ A and ((22; + 22) + A)o = 221 + 25 + A.
Now ¢? satisfies the same hypothesis as ¢ with respect to the image of .S so
using (5) with ¢? replacing ¢ and ¥ = 23; 4 2, replacing 2; gives
¥4+ A=y —7r) + 4.
Apply ¢* to both sides remembering that y + A4 is fixed and the result is
¥4+ A=y —r—2y)+ 4, ory*c 4.

Again, since R/A has no central nilpotent elements, ¥y = 23, 4+ 25 € A. Thus
(21 4+ 4A)p = —z1 + A proving (ii).
To prove (iv), let » and 2 = 2; be as above and for x € R let

x4+ A)e=x+1+ 4
fort + A € Z(R/A). Since x + x* € S,

(rx +x") + Ao =r(x +x") +s(x +x") + 4
so z(x + x*) € Z(R/A). Also

(3(x —x") + A)p = —z(x — " +2t) + 4
=z(x — x*) — 23(x — x*) — 23t + A4,

and so, 2z(x — x*) + 23t + A € ZR/A). Aszt + A € Z(R/A),
2z(x — x*) € Z(R/A).

Hence 4xz = 2z(x + x*) + 22(x — x*) € Z(R/A4). Consequently xz € Z(R/A)
since R/ A is 2-torsion-free, establishing the theorem.

Note that if R/ A4 is not commutative and has no ideals in its center then ¢
must be the identity. In particular, this holds if R/A4 is prime. Just as for the
2R = 0 case, if 4 = 0 and R is commutative it is always possible that ¢ is *.

For the special case when 4 = 0, let us record some conditions which force
Aut(R/S) = Ig.

THEOREM 6. Let R be a semi-prime, 2-torsion-free ring satisfying (C). Then
unless R ts commutative, Aut(R/S) = Iz, and so automorphisms of R are
uniquely determined by their effect on S, if any of the following hold:

(1) Z contains no divisors of zero (in R);

(2 ZCS;

(3) S is a non-commutative prime ring.

Proof. If (1) holds, the result follows exactly as in Theorem 4. If (2) holds
then by (ii) of Theorem 5, ¢ = I. Finally, if (3) holds and ()¢ = r + 2, asin
Theorem 5, then 2* = —3z. We know (2)¢ = 2 — 23,50 3"¢ = 2" 4+ 23, from the
proof of Theorem 5. Hence 22" = (22")¢ = (—2)(2" + 22), and so z(z + 2*) = 0.
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Applying * gives z*(z + 2") = 0, and combining yields (z 4+ 2*)2 = 0, so
z + 2* = O since R is semi-prime. Consequently, 22 € .S. If z # 0 then by (iv) of
Theorem 5 the ideal generated by 2? is in Z and intersects .S nontrivially. But .S
prime would force S to be commutative contrary to assumption. Hence z = 0
and ¢ = Ig.

2. In this section we construct an example to show that the situation
described in Theorem 5 can occur without ¢ = I. Let F be any field with
char F # 2, F[z] the polynomial ring over F in one indeterminate, and F[z]{x, y}
the free algebra with identity over F[z] in indeterminates x and y. Consider the
ideal of Flz]{x, v} generated by z(xy — yx) and 2(2x 4+ 2), and let B be the
quotient. Define * on B by setting 5" = —3z, x* = —x, and y* = y. Define ¢
via (8)¢ = —z, (x)¢ = x + 2z, and (y)¢ = ». It is clear that ¢ is an auto-
morphism of B of period 2. Note that z(xy — yx) = 0 implies that the ideal
generated by z is in the center of B, so ¢ has the form indicated in Theorem 5.
It remains to show that B is semi-prime, satisfies condition (C), and that
¢ € Aut(R/S).

First, since x and y commute in the presence of 2z, any monomial in x and v
with coefficient involving z* has the form z¥x%)’. Since 2xz = —22, 2izx’ = g+,
Consequently, if » € B, for a suitable power of 2 we may write -

M = po(x,y) + ; 2'pi(v)

with p, “polynomials’” with coefficients in F. From this form for the elements
of B, it follows that B is semi-prime.

To show that condition (C) is satisfied it will be helpful to denote ab — ba
by [a, b].

THEOREM 7. If P is a prime ideal of B such that the images of S commute in
B/P, then B/P is commutative.

Proof. Since z[x,y] = 0 in B and z € Z(B), either 2 ¢ P or [x,y] € P. If
[x, ] € P then R/P is commutative. We may assume, then, that z € P. We
claim that [y + P, [r + P, y + P]] = 0 for all » € B. If so, then by the
sublemma in [2, p. 5], vy + P is in Z(R/P), so R/ P is commutative. It suffices
to take 7 to be a monomial in x and y. The relation certainly holds for 7 of the
form x? and xy% since these are in .S, and for « since [x, ¥] € S. If r = ¢y then
[y, [ty, 1] = [v, [t, ¥]ly € P by induction on the degree of 7. Similarly, if » = ¢x*
for i = 2, since [x?, y] € P. Lastly take r = ixy%x. Again

[y, [txy'e, ¥11 = [y, [¢, yllxy'x € P.
Thus y + P € Z(R/P) and R/P is commutative.
THEOREM 8. ¢ € Aut(B/S).

Proof. For r € B write 2"r = po(x,,y) + > i=15'p(y). Clearly, » € S if and
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only if 277 € S. Also
> 2P) €S

even

and fixed by ¢. If » € S then
Z zip‘i(y) = Oy

odd
so it is only necessary to consider r = po(x, ¥).
Note (x?)¢ = (x 4+ 2)? = x? + 2xz + 22 = &2, and by induction (x?")¢ = x2".
For m a monomial in po(x, y), write m = mexmix - - - xm, where each m;is a
monomial in ¥ and x2. Since po(x, y) € S, m + m" is a “‘part’”’ of po(x, y¥) where
m" = (—1)*m*x - - - xmo’. (If m = m” use m in place of m + m".) Now

(m+me =molx+2) - (x+2)m;
+ (=1 (x 4+ 2) -« (x + 2)m,".

Expanding gives

(m +m*)p =

k

E ...

m+m*+ > ( i)z’x" ‘mo ... my + (—1)me* ... me*),
i=1

using the fact that x and y commute in the presence of z. Thus we may also

write

z(mo o .. mk) = z(mk* DY mo*)’

and so

k
(m +m*)o = m + m* + 2 21 (lz.)zixk_imo...mk
=

where we may assume that & is even. But

k

> (lz.)zix""" = e —2x*=0

i=1

for k even. Thus ¢ fixes po(x, ¥) so ¢ € Aut(B/S) as claimed.

3. We intend next to investigate Aut(R/.S) when R does not satisfy condition
(C). As Example 1 and Example 2 illustrate, when (C) does not hold one might
expect certain inner automorphism to arise. In a sense, all addition problems
resulting from (C) not holding do come from inner automorphisms of certain
quotients of R. To apply our previous results to quotients of R we must ensure
that these quotients are either 2-torsion, or 2-torsion-free. If 2R = 0, the same
holds for all quotients of R. If R is 2-torsion-free we can consider Ry = R&) s J (2),
for J the ring of integers and J (s the localization at the powers of 2. The
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involution and automorphisms of R naturally go over to Ry, and since we will be
considering embeddings of R, there is no loss of generality in assuming that R
is an algebra over J(s).

THEOREM 9. Let P be a prime ideal of R with P* = P and let ¢ € Aut(R/S).
Then (P)e = P.

Proof. Forx € P,both x + x* € Pand x"x € P.Sincex? = (x + x*)x — x*x,
*¥)e = (x + ") (xp) — x*x € P. Hence (x¢)? € P and (P)¢ + P/P is a nil
ideal of index 2 in R/P. By Levitzki’s Theorem [2, Lemma 1.1] R/P has a
nilpotent ideal, if this nil ideal is not zero. Since R/P is prime we must have
(P)e C P. The argument works for ¢, so (P)p = P.

Let R be semi prime but not prime and let 4 be the intersection of all prime
ideals P C R with P* = P, R/P not commutative, and 7" C P. Let B be the
intersection of all the other prime ideals of R. If R is a prime ring and 7" = 0
take 4 = 0 and B = R. If R is prime and T # 0 take B = 0 and 4 = R.
Since A M B = 0 in all cases, R is a subdirect sum of R/4 and R/B, semi-
prime rings. Furthermore, by Theorem 9, ¢ induces an automorphism on each
of R/A and R/B. Now since condition (C) is equivalent to P = P* and
T C P implies that R/P is commutative, R/B vacuously satisfies (C). Note
thatif R is prime and I" # 0 then any element commuting with 7" automatically
lies in Z(R), so the conclusion of Theorem 1, and so, Theorem 2 holds for
elements of Aut(R/S). Thus in either case we may apply Theorem 3 or
Theorem 5 to R/B (assuming either 2R = 0 or R is a J (2 algebra) to conclude
that automorphisms of R/B fixing the image of S have order 2.

Let { P} be the primes whose intersection is 4. Then R/ A4 is a subdirect sum
of R; = R/P;, and by Theorem 9, ¢ induces an automorphism ¢; on each of
these rings. Also, since P;* = P; each R; has an involution given by
(r + P)* =r" + P, In each R; the elements (x + x*) + P, commute, since
T C Py so by a Theorem of Amitsur [1], R, satisfies a polynomial identity of
degree 4. Thus the quotient ring of R;, Q(R,), is a simple ring four dimensional
over its center. Now ¢, naturally induces an automorphism of Q(R;) which
must be inner by the Skolem-Noether Theorem. Consequently, the action of ¢
on R/ A is the restriction to R/ A4 of an inner automorphism of Q(@®R,), and we
have proved the following theorem.

THEOREM 10. Let R be semi-prime with either 2R = 0 or R a J(sy algebra and
let ¢ € Aut(R/S). There exist rings (with involution) Ry and R such that

(1) Ry is the direct product of 4-dimensional simple algebras;

(2) Rs s a semi-prime homomorphic image of R;

(3) R s a subring of R1 @ R

(4) o s the restriction of o1 + @2 Where @1 1s an tnner automorphism on Ry ana
@2 15 given as in Theorem 3 or Theorem b.

4, Finally, we consider homomorphisms of R where, again, we assume that R
satisfies condition (C). Our first result will show that, once more, the center of
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the image plays a key role. Note that no assumption about an involution is
placed on the image.

THEOREM 11. Let R satisfy condition (C) and suppose that a and 8 are homo-
morphisms of R onto R’ a semi-prime ring, such that (s)a = (s)B8 for all s € S.
Then for allr € R, (r)a — (r)B € Z(R'), and (Ker a)B and (Ker B)a are central
ideals in R'.

Proof. The statements about the kernels of @ and 8 follow trivially from
(ra — (r)B € Z(R'). To show this holds, consider ¢ € 7" and » € R. Then
tr € T CS, so (tr)a = (tr)8 and (H)a((r)a — (r)B) = 0. Since « is onto, there
is ¥ € R so that (r)a — ()8 = (v)a. Therefore we may write (ty)a = 0. Simi-
larly (vt)a = 0, so (ty — yt)a = 0. The kernel of « is a semi-prime ideal of R,
so by Theorem 1, vy + Ker o € Z(R/Ker «). But this yields

e = (Na — (NB € Z(R),
which proves the theorem.

The following example shows how two homomorphisms can be quite different
in the presence of central ideals.

Example 3. Let W be any semi prime ring with involution and V' any com-
mutative ring. Let R = W@ V@ V with (w, a, b)* = (w*, b, a). Assume that
Vi is a semi prime homomorphic image of V7 under the mapping ¢. Let
R’ = W@ V; and define R onto R’ by

(w, a,0)a = (w, (1)e) (W, a,0)B = (w, (b)¢).

By insisting that R’ contain no central ideals, we can insure uniqueness.

THEOREM 12. Let R satisfy (C) and suppose a and 3 are homomorphisms of R
onto the semi-prime ring R, with a and B agreeing on S. If R’ has no nonzero
central ideals, and if R’ is 2-torsion-free, then a = (.

Proof. By Theorem 11, Ker « = Ker 8 = K. Thus each of @ and 8 induce a
natural isomorphism from R/K to R’. Let ¢ be the automorphism of R/K
obtained by taking one of these composed with the inverse of the other.
Clearly (s + K)o = s + K for all s € .S, so by Theorem 5, ¢ = Ip,x and

a = .
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