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Abstract

Because of its central role in the global carbon cycle, quantifying the biomass of
photosynthetic microalgae in the oceans is crucial to our ability to estimate the oceans’
carbon drawdown. Many traditional methods of primary production assessment have
proven to be extremely time consuming and, consequently, have handled only very
small sample sizes. The recent advent of in situ bio-optical sensors, such as the water
quality monitor (WQM), is now providing lower cost and higher throughput data on
these crucial biological communities. These WQMs, however, only quantify the total
fluorescence of all individual cells within their optical sample windows, irrespective
of size. In this paper, we further develop an established model, based on Pareto
random variables, of the size structure of the microalgae community to understand the
effect of the WQMs’ sampling and data pooling on their estimates of algal biomass.
Unfortunately, evaluating sums of Pareto variables is a notoriously difficult problem.
Here, we utilize an approximation for the right-tail of the resulting distribution to derive
parameter estimates for the underlying size structure of the microalgae community.
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1. Introduction

Photosynthetic carbon fixation in the oceans plays an important role in the global
carbon cycle [8]. Phytoplankton use chlorophyll to capture light and typically range in
size from 0.2 µm up to 100 µm [19]. Although marine photosynthetic organisms are
almost entirely single-celled microalgae and comprise less than 1% of the total global
plant biomass, due to their high turnover they account for more than 40% of total
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global carbon fixation [7]. As such, the importance of understanding and quantifying
the communities in the oceans cannot be overstated.

The traditional method of quantifying microalgae density is through manual
microscopic cell counts. Although extremely detailed (information such as taxon
identification and morphology are available), this approach has a number of
drawbacks. Most notably, it is an extremely laborious and, hence, costly method
for data collection. It takes many hours of a laboratory-based worker’s time to
provide cell counts which can be obtained much more cheaply via automated methods.
Furthermore, in practice, it tends to introduce detection limitations as well; there is a
smallest cell size which will be detected: this is a function of the microscope used [11].

In the last few decades, an alternative technology for quantifying microalgae in
the oceans has been developed. Bio-optical sensors such as the WQM (WetLabs,
USA) [15] use fluorescence signals to detect chlorophyll-a (Chl-a). Chl-a is the
principal photosynthetic pigment common to all microalgae. When cells are excited
by light with a wavelength of 470 nm, the Chl-a molecule re-emits light at a longer
wavelength of 695 nm; this is Chl-a fluorescence. The amount of light returned at this
longer wavelength is used as a proxy for total Chl-a concentration [13]. These Chl-a
fluorescence readings correlate with the microalgal biomass present.

The advantages of employing WQMs are numerous. Total Chl-a measurements can
be obtained much more quickly and for a fraction of the cost of direct cell counts.
Furthermore, the impact of small cells which may not have been accurately quantified
by traditional microscopic counts may lead to underestimation of the biomass, but bio-
optical sensors capture all cell sizes. The major drawback of bio-optical sensors is that
they return just a single total Chl-a estimate, summed over an indeterminate number of
individual cells. We do not, therefore, explicitly gain information on the exact profile
of the microalgal community. This creates a need for translating these single Chl-a
measurements into likely profiles of the biological community observed. In this paper,
we further develop the prevailing model of the size profile of microalgae to incorporate
the sampling effects inherent to fluorescence signals and provide parameter estimates
for the underlying size distribution.

2. Methods

There are two factors governing variability between the Chl-a fluorescence
measurements: the number of microalgal cells in each sample window and the
contribution of each individual cell to the overall signal strength within that.
Addressing the first of these, we make one simple assumption. We assume that the
presence or absence of an individual cell in the sample is independent of any others.
This is reasonable since we know from direct cell counts that the typical volumes of
microalgae are orders of magnitude smaller than the sample volume, so there should be
no crowding out of individuals within the sample window. In other words, we model
the number of microalgae cells detected by the fluorescence sensor in each sample by
an independent realization of a Poisson random variable.
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To model the contribution of each individual cell to the overall fluorescence signal,
we assume that the size distribution of individuals is such that the volumes of cells
in each sample follow a Pareto distribution. This is a widely accepted distribution for
the size structure of microalgae, and arises from the observation that the normalized
biomass size spectrum [22] (effectively binning particles by logarithmic size classes)
suggests a power law to describe the size structure [6, 24]. The Pareto distribution
is a long right-tailed distribution with domain x ∈ [m,∞), slope parameter α > 0 and
probability density function

f (x) =
αmα

xα+1 .

Again, we assume that there are no size effects and that, for example, the presence of
one large individual cell does not make it any more or less likely that there will be other
large cells present. Since the largest microalgal cells have diameters <0.1 mm and the
WQM measures around 103 mm3 sample volume (1 ml) of water, this assumption
seems reasonable. We, therefore, assume that the volume of each individual cell is
taken to be an independent realization of the same Pareto variable. Finally, to convert
between microalgal cell volumes and their Chl-a fluorescence, we need to know
the fluorescence/volume ratio. Here, we use an allometric relationship determined
experimentally by Finkel [9], which gives

c ≈ 2.06 × 107v−0.320,

where v is cell volume (µm3) and c is Chl-a concentration (pg Chl-a/µm3) within the
cell.

For ease of notation, we drop the scaling factor of 2.06 × 107 throughout the
remainder of this paper. Total Chl-a readings can easily be normalized by division
by this constant and the scaled readings used.

This experimentally obtained scaling factor is consistent with what might be
expected. To provide a simple conceptual illustration of the model, assuming that
fluorescence from an individual cell scales proportional to its surface area (that is,
proportional to the square of its diameter) and that volume scales proportional to
the cube of its diameter would give a fluorescence/volume ratio scaling inversely
proportional to the diameter and hence inversely proportional to the cube root of the
volume.

By establishing that an individual cell’s fluorescence scales in this way, we know
that if cell volumes are Pareto distributed, then their contributions to the overall
fluorescence signal are also Pareto distributed. This is because of a standard property
of this distribution, namely, a power-law transformation applied to a Pareto random
variable gives a variable which is itself Pareto distributed. That is, if X ∼ Pareto(m, α),
then, for Y = Xn, Y ∼ Pareto(mn, α/n) for all n ≥ 0. Since we have that Chl-a
concentration scales proportionally to v−0.320, we therefore have the total fluorescence
of cell volume v scales proportionally to v−0.320 × v = v0.68. Finally, we note that we
rely on one key property of both the Pareto distributions, namely that a truncated or
(left-tail) censored Pareto random variable is itself a Pareto random variable. That
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is, if X ∼ Pareto(m, α), then X | X > T ∼ Pareto(T, α) for all T ≥ m. This assures that
we need not be concerned by any detection limitations that arise as a result of the
technology employed in fluorescence sensors. For example, if there are individual
cells containing Chl-a, but they are too small to be detected by the bio-optical sensor,
these will not impact our overall estimate for the key shape parameter α, and the scale
parameter m will be the value of the smallest individual cell detected by this sensor.

What we have, then, is a parameter estimation problem for a Poisson–Pareto model.
We need to establish estimators for the parameters m and α from the observed WQM
signals s1, s2, . . . , sK , where each s j ( j ∈ {1, 2, . . . ,K}) is an independent realization of
S , where S is the sum of the individual fluorescences of a (Poisson) random number
of sampled cells and λ is the expected number of cells per sample. That is,

S =

N∑
i=1

Fi for Fi ∼ Pareto(m0.68, α/0.68) and N ∼ Poisson(λ).

This Poisson–Pareto model is not novel. It has been extensively studied in the
context of actuarial science, albeit with a different motivation and purpose. The
sizes of insurance claims are often modelled with a Pareto distribution. That is, the
vast majority of claims are relatively small and extremely large claims occur very
infrequently [10, 16]. With a random number of claims in a given time period, each
arising independently, the resulting model for the total value of claims in the time
period is Poisson–Pareto. In actuarial science, the use of this model is the exact
opposite of our application here. For known parameter values for both the Poisson and
Pareto distributions, the primary motivation is for the calculation of ruin probabilities,
that is, the chance that the total claims over some time period will exceed some
tolerable threshold. For the problem faced in interpreting Chl-a fluorescence signals,
we instead need to recover the parameter values from observed signals. An analogue
for actuarial scientists would be the recovery of the expected number of claims in a
year, and both the shape and scale parameters for the distribution of sizes for each
claim from a list of annual total claims.

Unfortunately, evaluation of the distributions of sums of independent Pareto
variables is notoriously difficult [4, 17, 18, 21, 25]. Except for a small handful of
special cases [14], simple analytic forms for these do not exist. Solutions have been
found giving ruin probabilities [2, 10]; however, these do not help with the problem of
parameter estimation from aggregated sums. Even certain results about the asymptotic
behaviour of the sums of a large number of independent Pareto variables are of no
value to this exercise. However, it has been shown [17] that for large x, the right-
hand tail, x� Nm, of the distribution of N > 1 independent Pareto(m, α) variables,
X1, X2, . . . , XN , can be approximated by

P(X1 + X2 + · · · + XN > x + Nm) ≈ N
( m

x + m

)α
.

(Since the Pareto distribution is strongly right-skewed, the first of these conditions
(x� Nm) holds, and we know from direct cell counts that the second (N > 1) also
holds.)
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Removing the condition on the value of N, we therefore get an exceedence
probability for S =

∑N
i=1 Fi and Fi ∼ Pareto(m0.68, α/0.68), where N ∼ Poisson(λ), of

P(S > s + λm) ≈
∞∑

N=0

e−λλN

(N − 1)!

( m0.68

s + m0.68

)α/0.68
= λ

( m0.68

s + m0.68

)α/0.68
.

Therefore, we have a cumulative probability density function

F(s) = P(S ≤ s) ≈ 1 − λmα(s − λm + m0.68)−α/0.68.

Given a dataset S 1, S 2, . . . , S K , we first define the order statistics S (1) ≥ S (2) ≥ · · · ≥

S (K) with ties arbitrarily broken. We are then able to calculate parameter estimates
(denoted by a ˆ above the respective parameter) via the shifted Hill’s estimator [1, 12],
that is, essentially the conditional maximum likelihood estimator. Compared to a
simple maximum likelihood estimator, the Hill’s estimator is a more robust method for
measuring the thickness of heavy-tailed distributions, such as the Pareto distribution,
since it only uses information from the largest order statistics, taken from the portion
of the distribution where the right-tail approximation holds.

Selecting the largest r observations with r as large as possible, but such that the
largest r + 1 order statistics lie within the right-hand tail, we obtain

α̂ =
0.68r∑r

i=1 ln[(S (i) + λ̂m̂ − m̂0.68)/(S (r+1) + λ̂m̂ − m̂0.68)]
.

The other two parameter estimates satisfy

λ̂ =
r

Km̂α̂
(S (r+1) − λ̂m̂ − m̂0.68)α̂/0.68

and
α̂r

0.68

r∑
i=1

(S (i) + λ̂m̂ − m̂0.68) = (S (r+1) − λ̂m̂ + m̂0.68)
(
α̂

0.68
+ 1

)
.

Explicit forms of these are not readily obtainable, although they can be solved
numerically. Alternatively, since the smallest individuals from a Pareto size
distribution exist in such high abundances, the parameter m may be estimable
independently from other samples, given sufficient resolution of microscopy.

3. Numerical results

To verify the suitability of the estimators derived in the previous section, we
simulated a synthetic dataset from known parameters, and used the results in the
previous section to recover the parameter values. For each simulation, K = 5000 WQM
readings were simulated. Estimators were calculated using the largest 5%, 10% and
20% of the readings (r = 250, r = 500 and r = 1000). The parameter ranges used
in the simulation were 0.6 ≤ α ≤ 1.6, 0.2 ≤ m ≤ 125 (µm) and 40 ≤ λ ≤ 640. These
ranges were selected for consistency with some estimates previously determined for
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Figure 1. Plots of fitted parameter values against actual parameter values for synthetic datasets for
three different r values. Except where the plot shows a range of values for that parameter, the three
parameters were set as α = 1.1, m = 1 µm and λ = 160. Error bars represent 95% confidence intervals.

α [20, 23], m (based on the cyanobacteria Prochlorococcus species [3]) and λ [5]
(based on the manufacturer’s claim of 1 ml sample regions).

Overall, parameter recovery was satisfactory, especially for the parameter α. This
is, of course, the most important parameter in the model, since it describes the size
profile of the observed community. The other two parameters are artefacts of the
technologies and techniques employed to quantify the detected cells. A different
WQM might produce very different values for these two parameters, but it should
not produce different estimates for the key parameter α. In general, the estimators
tended to fractionally overestimate the value of m and underestimate the value of λ but
only within the same order of magnitude. For example, with r = 250, the estimated
value for m = 125 µm was m̂ = 129.5 µm with (121.6, 135.8) 95% confidence interval.
Similarly, the estimated value for λ = 640 was λ̂ = 630.8 with (601.4, 644.0) 95%
confidence interval (see Figure 1).

For all three parameters, we found that parameter recovery was most accurate and
with least variance when r = 250, that is, only the top 5% of datapoints were used
for estimation. Including more datapoints clearly led to the right-tail approximation
becoming less valid and hence worsened the estimators.

4. Conclusions

The Poisson–Pareto model presented here is a simple extension of the existing
theory of the size distribution of aquatic microalgae. Making the additional assumption
that the individual cells sampled by fluorescence sensors do not exhibit any size-
dependent or density-dependent effects (that is, they can be reasonably represented by
a Poisson variable), we developed a framework for obtaining parameter estimates for
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the underlying Pareto distribution from only the aggregated sums of cells detected. As
such, we are now able to use data from WQMs, which can be deployed for a fraction
of the cost of labour-intensive microscopic techniques, to build up a more accurate
picture of the likely size distribution of the microalgae population.

This ability to model newer bio-optical monitoring technologies and to characterize
the observed communities from the samples they produce is vital to the future of
the multidisciplinary work between applied mathematicians and observational marine
scientists. As newer quantitative technologies emerge, and ever larger and more
accurate datasets are gathered, the range of statistical and modelling challenges faced
will certainly increase.
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