
REGULAR SURFACES OF GENUS TWO: PART I 

PATRICK DU VAL 

The present paper is a sequel to one I published lately (3) on regular surfaces 
of genus 3, and like it, is intended to fill up some of the gaps in our detailed 
knowledge of the regular surfaces of moderately low genus p = pg = pa and 
linear genus p{1) = n + 1 > 1. (The surfaces for which p(1) = 1 form a rather 
separate field of study on which a good deal of work has been done, and I shall 
not consider them.) There is for p = 2 no canonical model, since the canonical 
system is only a pencil; but there is in general a unique bicanonical model, about 
which we shall find that something can be said. The problem, like most similar 
problems, increases sharply in difficulty with increase of the linear genus, and it 
is only for the first few values of p(1) that anything like a complete classification 
of the surfaces in question can be obtained. On account of the length of the work, 
I am publishing here some general results, and the detailed study of the cases 
in which p(1) < 4, and shall hope to extend the classification to the cases 
p(1) = 5, 6, with some examples of surfaces for pw — 7, in a subsequent paper. 

The notation [r] will be used throughout for the r-dimensional linear space. 

1. Generalities. We may begin with one very general result: 

THEOREM 1.1 Every regular surface of genus 2 and linear genus n + 1, 
whose canonical system is irreducible, has as bicanonical model a surface Fm 

of order 4n in [n + 2], which lies on a quadric cone rw+i
2 with [n — 1] vertex 

0w_i, i.e., the cone generated by the [n\s joining 12w_i to the points of a conic 
in a plane skew to £2n_i; and the canonical pencil is traced on Fm by the generating 
[n]'s of W . 

For the grade of the bicanonical system is four times that of the canonical, 
i.e., 4w; and its freedom is P — 1, where by a known formula (7, p. 159) 

p = pW + p = n + 3. 

This gives the order and ambient dimensions of the bicanonical model. Now the 
bicanonical system is adjoint to the canonical, i.e., on the bicanonical model 
each curve of the canonical pencil appears as its own canonical model, a curve 
C2n in [n]. The canonical pencil |C2n| has n base points Ai, . . . , An, which form a 
semicanonical set on the general curve of the pencil, i.e., a set in which the 
curve is touched by an [n — 1] in its ambient [»]. Since, moreover, on a regular 
surface the characteristic series of a complete system, in particular of the 
canonical system, is complete, the set Ai, . . . , An forms a complete series on each 
C2W, which means that their join is an [n — 1] and not less, since every [n — 1] 
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through them must trace on the curve an equivalent set. Their join is thus the 
unique [n — 1], fin_i, which touches every C2n in these points; Qn-i lies in the 
ambient [w]'s of all the curves Cn, which accordingly generate a cone of n + 1 
dimensions, and of order 2, since there are hyperplane sections of Fin consisting 
of two curves C2n, and hence hyperplane sections of the cone consisting of two 
of the M's ; i.e., the cone is the quadric cone rn+i

2. 
We have a more definite but restricted result in the following: 

THEOREM 1.2 Let Gz2n be a 2n-ic threefold in [n + 2], whose general [n] 
section is a canonical curve of genus n + 1, so that its general [n + 1] (i.e., hyper­
plane) section, is a surface G^n of genus 1, whose unique canonical curve is the null 
curve (7, p. 247) ; and let G%2n, rre+i2 have simple contact along a normal rational 
n-ic curve Kn lying in a generating [n] Xn of Tn+i2; then their surface of inter­
section, Fin, is the bicanonical model of a surface of genera p = 2, p{l)— n+ 1. 

(By simple contact is intended that the general point of Kn is double on 
Fin, though simple on Gz2n and Tn+i2; this requires that the tangent [3] to G%2n 

at such a point is the join of the tangent planes to the two sheets of Fm, and lies 
in Fn+i, the tangent hyperplane to rn + i

2 at all points of Xn.) 
For the general hyperplane section fm of F4n is a quadric section of a hyper­

plane section G<?n of G^2n; and it has n double points, at its intersections with 
Kn. On G2

2n every complete linear system, in particular that of quadric sections, 
is adjoint to itself; the canonical series on/4 n is thus traced by quadrics through 
its n double points; and thus the system adjoint to the hyperplanes sections of 
F4n is traced on it residually by quadrics through the double curve Kn. The 
difference between this adjoint system and the hyperplane sections themselves, 
i.e., the canonical system, is accordingly traced residually on F4n by the pencil 
of hyperplanes through Kn, i.e., through Xn. But the generating [n]'s of Fn+i2 

trace on Gz2n and hence on Fm, canonical curves C2n of genus n + 1, any two 
of which are a hyperplane section of F4n\ they thus form a pencil on Fm, traced 
residually by the pencil of hyperplanes through any one of them. But Kn, 
counted as double, is one of these curves, being the complete intersection of 
Xn with Gz2n; the canonical system on Fm is thus just the pencil \C2n\, from 
which the theorem at once follows. 

As a partial converse to this we have the result: 

THEOREM 1.3 If the bicanonical model Fm of a regular surface of genera 
p — 2, p(1) = n + 1, with irreducible canonical pencil, is the complete intersection 
of rw+i2 with some threefold, the latter can only be the threefold Gz2n whose [n] 
sections are canonical curves of genus n + 1, touching Tn+i2 along a normal 
rational curve Kn in a generating [n], Xn, of Tn+i2. 

For the threefold is of order 2n, and has at least some [n] sections which are 
canonical curves of genus n + 1 ; thus its general [n] section cannot be of lower 
genus than this, nor (since those which we know to be of genus n + 1 are without 
singularities) can it be of higher genus; and since its ambient is [n], it is the 
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canonical curve of this genus. The threefold is thus G3
2w. Now the adjoint system 

to the hyperplane sections \2C2n\ of F*n is |3C2w|, and is traced residually on the 
surface by quadrics through any one curve C2W, i.e., through any one generating 
[n] of Tw+i2; and by a known formula (7, p. 61) the genus of the general hyper­
plane section fm is Zn + 1 ; but fm is a quadric section of a hyperplane section 
G2271 of Gz2n, and on G2

2n belongs to a complete linear system of genus 4n + 1, 
adjoint to itself; to be of genus 3n + 1, fAn must have n double points, and its 
canonical series will be traced residually by quadrics through these, which must 
consequently be its complete intersection with a certain generating [n], Xn, 
of rn + i2 . By varying the secant hyperplane so as to keep one of these double 
points fixed, we see that Xn is the same generating [n] of Tn+i2 for all hyperplane 
sections of Fin; Fm has accordingly a double curve Kn which is its complete 
intersection with Xn, and is thus likewise the complete intersection of Xn with 
Gz2n. This curve is rational, since its ambient Xn is of dimensions equal to the 
order of the curve. 

We may devote a few lines to some properties of the surface constructed in 
these two theorems. The base points of the pencil \C2n\ are of course the inter­
sections of Gz2n with iln-i; and as such a point A* is on the double curve Kn, 
the tangent [3] to G3

2n at A* lies in Yn+h and thus meets fin_i in a line, the 
tangent line at A t to the section of Gz2n by a general [n] through Qw_i, and thus to 
the general curve C2n. Thus as we expect, Qn-i touches each C2n in each of the 
points Ai, . . . , Aw, i.e., these are a semicanonical set on C2n. Since, moreover, Kn 

counted twice is a curve of the pencil | C2n\, it is the image (on a model of the 
surface without singularities or exceptional curves) of a hyperelliptic curve of 
genus n + 1, the pairs of whose unique involution are neutral for the bicanonical 
system, and the united (or Jacobian) points of this involution, 2n + 4 in number, 
correspond to pinch points of Fin. Further, since Ai, . . . , An are a semicanonical 
set on this curve also, they are n of the pinch points. This explains how it is that 
the curves C2n all have the same tangent in a point Aiy though on a non-singular 
model the corresponding point is only a simple base point of the pencil. For a 
curve on the non-singular model which passes simply through the coincident 
neutral pair corresponding to Ait corresponds to a curve on Fm with a cusp at 
A^ whereas a curve passing through only the first point of the pair (not touching 
the hyperelliptic curve) corresponds to a curve on Fm passing simply through 
At and touching a fixed line, the principal tangent; and all curves on a surface 
which pass simply through a pinch point must touch this line. Thus we may say 
that the curves C2w, though they all touch each other in space at A*, have only 
a simple intersection there on the surface. In this connexion we have the following 
simple remark: 

THEOREM 1.4 On the bicanonical model FAn of any regular surface of genera 
p = 2, p{l) = n + 1, whose canonical pencil is irreducible and non-hyper elliptic, 
every base point At of this pencil is either a simple point, in which case the tangent 
plane to F*n in this point lies in Qn_i, or a pinch point, in which case the principal 
tangent lies in tin-i, and is the tangent to all curves of the canonical pencil. 
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For since there are hyperplane sections of Fm consisting of two curves C2n, 
each of which passes simply through A*, the multiplicity of At cannot exceed 2; 
and since on a model without singularities or exceptional curves A* corresponds 
to a single point and not a curve, if it is a double point it can only be a pinch 
point; I have shown elsewhere that the only types of double point mapped by 
points only on a non-singular model are the pinch point and the intersection of 
two simple sheets. (Du Val (2). The result is not stated explicitly, but follows 
from the results of §11 as the multiplicity of the point is So-*2, which can only 
equal 2 if <r\ = a2 = 1.) * 

It must be understood for the purposes of this theorem that by saying that 
Ai is a pinch point we only mean that it is the image of a coincident neutral 
pair for the bicanonical system on a non-singular model, not that the pinch 
point necessarily occurs in the course of a double curve, i.e., that the coincident 
neutral pair is one of a singly infinite system of neutral pairs. On the surface 
we have just constructed this is so, and it is so on any surface in [3]; but in 
higher space, just as we can have an isolated intersection of two simple sheets 
which is not part of any multiple curve, so we can perfectly well have a pinch 
point which is not on any multiple curve of the surface. 

We may next observe that 

THEOREM 1.5 Let Fm be the bicanonical model of a surface of genera p = 2, 
£(I) = ? z - f - l > 3 , with irreducible and non-hyper elliptic canonical pencil \C2n\; 
then if all the base points of this pencil are pinch points, the totality of quadrics on 
which FAn lies is a linear system of freedom \{n — l)(n — 2), of which any sub­
system of freedom \n(n — 3) {not containing rw+i2) traces on the general generating 
[n] of r n + i 2 the complete system of quadrics through the corresponding curve C2n. 

This depends on the lemma that the sections by any hyperplane of the quadrics 
through an irreducible normal manifold M are the complete system of quadrics 
in the hyperplane through the section of M. This must certainly be well known, 
but as I am not aware where it is to be found I give a brief proof here. Let H 
be a hyperplane whose intersection with M is MH, and let QH be any quadric 
in H passing through MH> Let Q be any quadric in the whole space whose 
intersection with H is QH, then its intersection with M consists of MH together 
with something coresidual to a hyperplane section, and since M is normal this 
can only be the section MK by some hyperplane K. The pencil of quadrics 
determined by Q and the hyperplane pair H, K all have the same complete 
intersection MHl MK with M, and all have the same intersection QH with H. 
But one quadric of this pencil can be found to pass through a further point of M 
(not on MH or MK), and hence, since M is irreducible, to contain the whole of 
M\ thus QH is the section by H of a quadric through M. 

We return to the proof of the theorem. The curves | C2n\ all touch the principal 
tangent to the surface in each base point A*, i.e., they all trace on Î2n_i the same 
set of 2n points (coinciding by pairs). As C2n is normal and irreducible, the 
sections by 12„_i of the quadrics <2«-i2 through C2n in its ambient [n], a linear 
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system of freedom \n(n — 3), are the complete system of quadrics Qn-2
2 in 

!\_i passing through these 2n points, i.e., touching the principal tangent to 
Fm in each point A*. Every quadric Qn-2

2 of this system thus determines in each 
generating [n] of Tn+i2 a unique quadric Qn-\

2 through C2n> whose section it is; 
and the locus of the quadrics thus determined by any one Qn-22 is an w-fold, 
Sn

4, which is clearly of order 4, and a quadric section of Tw+i2, since it does not 
contain fin_i, but meets the latter in Qn-2

2. We thus obtain on rn + i
2 a linear 

system \Sn
4\ of freedom \n[n — 3), the characteristic system of a linear system 

of freedom \{n — \){n — 2), of which Tn+i2 itself is one. It is clear that all 
these quadrics pass through Fm, and that they are all the quadrics that do so. 

An immediate corollary is: 

THEOREM 1.6 If all the hypothesis of 1.5 holds, and if in addition the general 
curve of the canonical pencil has neither a g^1 nor a g$2

y F
m is the complete intersection 

of the linear system of quadrics found in 1.5. 

(The notation gn
r is used as usual for a linear series of order n and freedom r.) 

For precisely in this case, the general C2n is the complete intersection of the 
system of quadrics through it in its ambient. 

It would be agreeable to be able to conclude at this point that under these 
circumstances the system of quadrics has a subsystem of freedom \n(n — 3) 
intersecting in a threefold, whose complete intersection with Tn+i2 would then be 
Fm, so that the threefold would be Gz2n and the surface would be that referred 
to in Theorems 1.2 and 1.3. This however does not seem to be easy for n > 4; 
for n = 4 it is obvious, since in this case F16 is the complete intersection of a 
linear system of quadrics in [6], of freedom 3, whereas any system of quadrics 
in [6] of freedom 2 has an intersection which is at least threefold. For higher values 
of n it is not clear that \{n — l)(n — 2) quadrics need have an intersection 
which is as much as threefold. For n = 5 for instance, as we shall see later, if 
F20 is the complete intersection of a general G3

10 with IV, G310 is in turn a 
complete quadric section of a certain quintic fourfold, t/45, which is the complete 
intersection of a linear system of quadrics, of freedom 4. Thus in the system of 
all quadrics through F20, of freedom 6, no subsystem of freedom 5 can have a 
G310 as its intersection, nor consequently a threefold intersection at all, which 
does not contain this particular subsystem of freedom 4. 

Some idea of the relation between the surfaces considered in Theorems 
1.2 and 1.3 and a possible more general type of FAn can be obtained from the 
following result: 

THEOREM 1.7 If as before Fm is the bicanonical model of a surface of genera 
p = 2, p{l) = n + 1 > 3 , with irreducible canonical pencil, its projection 'Fm 

into [4] from a general [n — 3], C\_3, lying in On_i, is the complete section of T 3
2 

(the projection of Tn+i2) by a hyper surface of order 2n. The projections 'Ai, . . . , 
'An of Ai, . . . , An are pinch points of rFm, the principal tangent at each being the 
vertex line 'œ of T 3

2 ; 'FAn has a double curve 'dn{in~7\ of order n{\n — 7), which is 
the complete intersection of 'F4n with a surface '24 w + 7 lying on T 3

2 ; /24 w + 7 is in turn 
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the residual section of T 3
2 by a hyper surface of order 2n — 3 through one of its 

generating planes. The necessary and sufficient condition for F4n to have a double 
rational curve Kn lying in a generating [n] of Tn+i2 is that '24n~7 breaks up into a 
surface 'S4* - 8 , complete intersection of ' IY with a hyper surface of order 2n — 4, 
together with a generating plane of T3

2 , the part of the double curve fdn(*n~7) which 
is the intersection of 'F4n with this plane being the projection of the double curve 
Kn of F4n. 

It is obvious that the projection of Tn+i2 from 0W_3 is ' IV; since Î2n_i passes 
through On-z it is projected into a line 'co, and every generating [n] of Tn+1

2 is 
projected into a plane through 'co, and of these planes two lie in a general [3] 
through 'co. Each curve C2n of the canonical pencil is projected into a plane curve 
'C2n in the corresponding generating plane of ' IV, which touches 'co in each of 
the points 'Ai, . . . , 'An; these are accordingly pinch points, 'co being the principal 
tangent at each. Since the curves 'C2n have no variable intersection with 'co, 
their locus 'Fm is the complete intersection of T 3

2 with a hypersurface of order 
2n. fC2n being of genus n + 1 has 2n(n — 2) double points, which (since the 
linear sections are part of the canonical series) are its complete intersection with 
a curve V n - 4 of order 2n — 4. The locus of the °° x curves 's2w~4 is a surface ' 2 
lying on 'r3

2 , whose complete intersection with 'F4n is the double curve of the 
latter, or part of it, any residual part of the double curve lying wholely in one or 
more generating planes of T3

2 , and having no variable intersection with the 
general plane. 

On the other hand the general hyperplane section of 'FAn is a curve 'f4n, 
complete section by a surface of order 2n, of the cone T2

2 , hyperplane section of 
' r3

2. Thus to be of genus Sn + I (as it is), rfm must have n(4n — 7) double points, 
so that this is the order of the double curve on rFm. As '/4n is the complete 
intersection of two surfaces of orders 2, 2n, its complete canonical series is traced 
residually by surfaces of order 2n — 2 through its double points; on the other 
hand as the canonical series on the corresponding hyperplane section of FAn 

is traced by quadrics through a generator of Tn+i2, the residual intersection of 
74w with a quadric through a generator of T3

2 , i.e., its complete intersection 
with a twisted cubic on T2

2 , is a canonical set. This clearly means that the 
double points of 'f^n are its complete intersection with a curve V4W_7 on T3

2 , 
obviously unique, which together with a general twisted cubic makes up the 
section of T 2

2 by a surface of order 2n — 2, and is thus itself the residual section 
by a surface of order 2n — 3 through one generator. 

Now if k of the curves V n - 4 pass through a general point of 'co, the surface 
' 2 generated by them has 'co as &-ple line, and is of order 4w — 8 + k; for even 
values of k it is the complete section of T 3

2 by a hypersurface of order 2n — 4 
+ \k, for odd values the residual section by one of order 2n — 4 + !(& + 1) 
through a generating plane. It is clear however that the hyperplane section of 
' 2 is the curve 'cr4w~7, or part of it, any residual part consisting of the sections of 
any generating planes of T 3

2 that contain double curves of fFm. Comparing 
the orders of V, ' 2 we see that k < 1. If k = 1, ' 2 is of order 4n — 7 and is the 
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residual section of T 3
2 by a hypersurface of order 2n — 3 through one generating 

plane; its complete intersection with 'Fm is the whole double curve /dn{4n~7:> of 
the latter, which passes simply through the pinch points 'Ai,. . . , 'An and meets 
each generating plane of T 3

2 residually in the 2n(n — 2) double points of 'C2n. 
If on the other hand k = 0, ' 2 is of order An — 8 and is the complete section of 
T 3

2 by a hypersurface of order 2n — 4; its intersection with 'Fm is a double 
curve fdmn~2) on the latter, locus of the double points of 'C2n, which does not 
meet 'w; there is thus a further double curve 'Kn, which is the complete inter­
section of fFm with a particular generating plane 'X2 of T3

2 . In the latter case 
'Kn doubled, and branching at those pinch points of fFm which lie in it, is a curve 
of the pencil |'C2n|, i.e., it is the projection of the canonical curve C2n of genus 
n + 1 in the generator Xn of Yn+i2 corresponding to fX2. Since it is birationally 
equivalent to a double curve however, this C2n is hyperelliptic, and (being the 
canonical model) is itself a double rational curve Kn, the complete intersection 
of Xn with Fm. Conversely, of course, if Fin has a double curve Kn in a generator 
Xn of Tn+i2, this projects into a constituent 'Kn of the double curve of 'Fm, 
which is the complete intersection of 'Fm with fX2, the residual constituent being 
the complete intersection of fF4n with a hypersurface of order 2n — 4. 

We may plausibly conjecture that the existence of the double curve Kn on 
FAn is a sufficient (as it is clearly a necessary) condition for Fm to be the complete 
intersection of rw+i2, Gz2n. To prove this it would be necessary to show that the 
hypersurface of order 2n — 4 whose intersection with T3 2 is ' S 4 " - 8 can be 
chosen so as to have on it a surface A2n(w~2), whose complete intersection with 
T3 2 is 'dmn~2\ and further that the hypersurface 'Gz2n whose intersection with 
T 3

2 is 'Fm can be so chosen as to have A2w(w-2) as double locus. 'Gz2n would then 
be the projection of a Cr3

2n, projective model of the linear system traced residually 
on 'G^n by hypersurfaces of order 2n — 3 through its double surface A2n(n-2). 
These two results however do not seem easy to prove, and I have not succeeded 
in establishing the sufficiency of the existence of the double curve for F*n to be 
the complete intersection of rw+i

2, Gz
2n, except for n < 5 (in which case it 

turns out that the property that Ai, . . . , An are pinch points is itself a sufficient 
condition.) The methods of proof however are different for the different values 
of n, and must be postponed until we come to consider the various values of n 
separately. 

Meanwhile however we may remark that a number of the surfaces of genus 2 
with canonical pencil of irreducible hyperelliptic curves, which I have studied in a 
recent paper (4), come under the specification of the special surfaces of 1.2, 1.3. 
For in the first place, a double rational ruled surface R2

n, branching along a 
curve (32n+* of order 2n + 4 which meets each generator in four points, and which 
is consequently the residual section of R2

n by a quartic hypersurface through 
2n — 4 generators, is a surface G3

2w, since the generators and hyperplane sections 
of R2

n form a base for curves on it, and each of these systems is clearly adjoint 
to itself on the double surface. Consequently a double rational threefold i?3

n, 
branching along a surface B2n+A which is its residual section by a quartic hyper-
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surface through 2n — 4 of its generating planes, is a G3
2w. If now we consider a 

surface $2n, the intersection of IVfi2 with i?3
w, and choose the branch surface 

B2n+A so as to touch 3>2W along the curve Kn traced on it by a particular generating 
[»], Xn, of Tn+1

2 (e.g., but not necessarily, by letting it break up into the section 
of Rzn by the tangent hyperplane Yn+i to rw+i2 along Xn, together with the 
residual section of Rzn by a cubic hypersurface through 2n — 4 generating 
planes), then Kn is not a proper part of the branch curve of the double <£2W, 
since it counts twice in the intersection of B2n+4 with $2W; and the branch curve 
of the double $2W is its residual section by a cubic hypersurface through 2/z — 4 
of the conies traced by the generating planes of Rzn. $2n has of course n double 
points Ai, . . . , An, the intersections of Rsn with the vertex 0w_i of Tn+i2; and 
these are isolated branch points on the double <J>2ra, since a general curve on $2n 

which passes simply through one of them does not touch B2n+4 there but inter­
sects it simply, and therefore has a branch point there, regarded as a curve on 
the double surface. This double $2n is thus precisely what I called the standard 
case of the bicanonical surface of genera p = 2, p(1) — n + 1, with hyper-
elliptic canonical pencil, in the paper referred to. 

Again, as the double plane with general sextic branch curve is the general 
G22, the double Veronese surface whose branch curve is a general cubic section 
is one type of G2

8, and one type of G3
8 will be the double cone PY (projecting 

the Veronese surface from a point in [6]) whose branch surface is a general 
cubic section and having also an isolated branch point at its vertex (this last 
is necessary in order to ensure that every curve on F3

4 shall have an even number 
of branch points, as it must for the double locus to exist at all). If now $8 is 
the complete intersection of PY, IV, and the branch surface is again made 
to touch $8 along K* (e.g., but not necessarily, by breaking up into the section of 
Vz4 by FB together with a general quadric section) the double <£8 has as branch 
curve a general complete quadric section, together with isolated branch points 
at its four double points, and is precisely what I called exceptional case no. 
xviii in that paper. 

The seven other exceptional cases enumerated in the paper for p = 2 clearly 
do not give surfaces $2n which are the complete intersection of r n + i 2 with a 
threefold which, doubled and suitably branching, could be regarded as a G3

2w; 
since any such threefold must have rational [n] sections, and it is familiar that 
the only w-ic threefolds in [n + 2] having this property are R%n and (for n = 4) 
F3

4. It will remain to be considered, for any of these other exceptional cases, 
whether there can be a G3

2n whose intersection with Tn+1
2 consists of the $2W 

in question, counted twice, and if so what ought to be regarded as the branch 
curve when this situation is arrived at as the limit of a variable simple intersec­
tion of order 4n. 

2. The cases n = 1 (p(1) = 2) and n = 2 (£(1) = 3). These cases having 
been studied by Enriques (7, pp. 304, 312), comparatively little remains to be 
said of them; but a few remarks are worth making. There is one type of surface 
for n = 1, namely the double quadric cone IV in [3], branching along a general 
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quintic section, and having an isolated branch point at the vertex (4, p. 208), 
and this can be thought of as the intersection of IV with the G3

2 consisting of the 
ambient [3] doubled and having as branch surface a sextic surface which touches 
T2

2 along a generator. For n = 2 there are two types of F8; one is the double <ï>4, 
intersection of r3

2 with another quadric in [4] (having two double points, and a 
pencil of conies passing through both of them, traced by the generating planes 
of T3

2) whose branch curve is a general cubic section, and having also isolated 
branch points at the two double points ; and this is precisely our standard case 
(4, p. 207) of the surface with hyperelliptic canonical pencil. The other is the 
section of IV by a quartic hypersurface which touches it along a conic in a 
generating plane, which is of course the surface F8 given by 1.2. It is worth 
remarking that 1.7 shows clearly why, in this particular case, there can be no 
more general F8, not a complete section of IV; for on the one hand as the surface 
is already in [4] no projection is involved, and F8/F8 oi 1.7 are the same surface, 
so that as fFm is in any case a complete section of ' T3

2, F8 is a complete section of 
T3

2; on the other hand the surface ' 2 , of order 4# — 7 = 1, lying on T3
2, whose 

intersection with Fs is the whole double curve of the latter, is just a generating 
plane of IV, and there can be no question of its failing to break up into a plane 
and a residual surface, complete section of T3

2 by a hypersurface of order 
2n — 4 = 0, since in this case this residual surface is null. 

It may also be pointed out here, with all diffidence, that Enriques appears to 
be wrong when he says (7, p. 315) that these two types of surface form distinct 
families with the same number of moduli; in fact, 

THEOREM 2.1 The regular surfaces of genera p = 2, p(1) = 3, whose canonical 
pencil is irreducible and hyperelliptic, are a subfamily of those whose canonical 
pencil consists of general irreducible curves of genus 3. 

In other words, the general double <ï>4, with branch points at its two double 
points and branch curve which is a general cubic section, is contained in the 
family of sections of T3

2 by a quartic touching it along a conic in a generating 
plane, and can be obtained as the limit of a variable surface of this latter type. 

For let (x0, . . . , x4) be a homogeneous coordinate system in [4], so chosen 
that the equation of IV is 

_ 2 
Xo %2 — X\ , 

and let 02 = 0 be any quadric whose intersection with IV is <£4, and / 3 = 0 
any cubic whose intersection with <£4 is the branch curve of the double surface. 
This double $4 can be taken as the section by IV of the double quadric 02 = 0, 
with branch surface consisting of its sections by the hyperplane x0 = 0 and the 
cubic / 3 = 0 ; since as the former partial branch surface touches <£4 along the 
conic K2 traced by the plane Xo — Xi = 0, this conic will contribute nothing to 
the branching of the double <ï>4 except isolated branch points at the two nodes 
(as in the example considered at the end of §1.) But the double quadric so 
branching is the limit for A —> 0 of the variable quartic 
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<t>2 + AX0/3 = 0 ' 

which for a general value of X is irreducible and simple, and touches x0 = 0, 
and hence T3

2, along K2. Thus this pencil of quartics traces on T3
2 a pencil of 

surfaces F8 of genera p — 2, p(1) — 3, whose general member is non-singular 
except for the double conic K2, whereas one surface of the pencil is the double 
<i>4 from which we started, which was the most general of its kind. It is clear 
therefore that the whole family of double <ï>4's is contained as a subfamily in that 
of the F8's. 

Enriques' arguments to the contrary are twofold. He projects F8 into an 
octavic surface 'F8 in [3], with two coincident and coplanar fourfold lines, and a 
double conic, and then says that the projection of $8 into [3] is a quartic surface 
with a double conic, which cannot (counted twice) be the limit of a variable 
fF8 unless the double conic reduces to a tacnodal line; but he seems to have 
forgotten that the projection of F8 into 'F8 was made, not from a general point 
of [4], but from a general point of T3

2, and that when <i>4 is similarly projected 
from a point of T3

2, the double conic of the projected surface does in fact reduce 
to a tacnodal line. Secondly, Enriques says that each of these families of surfaces 
has 24 moduli, without stating in either case how this figure is arrived at. For 
the double <£4, I think it is correct, as there are 00 1 projectively distinct <£4's, 
as can be seen from the plane mapping by cubics with five base points Xi, . . . , X5, 
of which X2 is in the neighbourhood of Xi, and the other three are in a line; 
the whole figure is projectively determined by the cross ratio of the lines joining 
Xi to the other four points; $4 has °°24 cubic sections, of which however only 
0023 are projectively distinct, as the surface has <»* projective transformations 
into itself (in the plane mapping, the pencil of homologies with centre Xi and 
axis X3 X4 X5) ; there are thus 0024 projectively distinct figures consisting of 
<ï>4 together with a cubic section of itself. On the other hand it seems to me that 
F8 has 26 moduli. In the first place there are 006 lines fii, each of which is the 
vertex of °°6 cones IV, each of which has 001 generating planes X2, in each of 
which are <»5 conies K2. Thus the cone T3

2 and the conic K2 can be chosen in 
0017 ways. The quartic hypersurfaces touching IV along K2 are <»48, since every 
such quartic must trace on Y$ (the tangent hyperplane to T3

2 over X2) a quartic 
surface with K2 as double conic, of which there are 0013, as they are birationally 
equivalent to the quadric sections of a quadric in [4]; while there are 0035 

quartics in [4] tracing any given quartic surface on F3. On the other hand the 
quartic hypersurfaces tracing any given F8 on T3

2 are <»15; there are thus 
œ 17+48-15 _ oo 50̂  o r oo 26 projectively distinct, surfaces F8, since there are 0024 

projective transformations in [4]. 

3. The case n = 3 (p(1) = 4). For n > 2 we have as yet no absolute 
guarantee that there are any surfaces of the required genera, other than those 
whose canonical curves are hyperelliptic, though of course the presumption is 
that there are; the construction of 1.2 requires contact of Gz

2n with rn+i2 of a 
kind whose possibility is not obvious, and we have still no information as to 
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whether the more general type of surface envisaged in 1.7 can exist at all. 
We shall therefore begin by actually constructing some surfaces, of both kinds, 
for n = 3. 

THEOREM 3.1 A G36 can be constructed in [5] to touch a IV along a rational 
cubic curve Kz lying in a generating [3] Xz of T4

2, so that their intersection F12 is the 
bicanonical model of a regular surface of genera p = 2, p(1) = 4. 

Since every non-hyperelliptic canonical curve of genus 4 is the complete 
intersection of a quadric and a cubic surface in [3], the general G2

6 and G3
6 are 

the complete intersections of a quadric and a cubic hypersurface in [4], [5] 
respectively. Since IV has the same tangent hyperplane F4 at all points of Xz, 
for G36 to touch IV along Kz is the same thing as for it to touch F4 along Ks, 
i.e., for its section by F4 to be a surface, virtually G2

6, that is the intersection of a 
quadric and a cubic, but having Kz as double curve, so that its hyperplane 
sections are not of genus 4 but elliptic, and the surface must be the projection 
of the sextic del Pezzo surface from some line. (We recall for comparison that in 
the case n = 2 the corresponding surface, section of G34 by F3, being a quartic 
with the double conic K2, was a projection of the quartic del Pezzo surface.) 

We first show therefore that the sextic del Pezzo surface [72
6 can be projected 

from a suitably chosen line / to give a surface '£/2
6 in [4] which has a double 

rational cubic curve Kz, forming a complete hyperplane section, and that 
' C/36 is the complete intersection of a quadric with a cubic hypersurface. 

In the first place, just as the normal elliptic quartic £ 4 has four points (the 
vertices of the four cones in the pencil of quadrics whose intersection it is) 
from each of which it projects into a double conic, the normal elliptic 2n-\c 
curve E2n has n2 [n — 2]'s from each of which it projects into a double Kn, 
image of one of the n2 quadratic involutions on E2n which have the property that 
any n pairs of the involution are together a hyperplane section of the curve. 

Now let E6 be a general hyperplane section of £/2
6, and let / be any one of 

the nine lines from which it projects into a double cubic i£3, image of an involu­
tion I2\ the projection of [72

6 from / is a sextic surface ' U26 in [4], with the double 
curve Kz constituting its whole section by a hyperplane X3. We shall show that 
' U26 is in fact the intersection of a quadric and a cubic. For Z72

6 has on it two 
homaloidal nets of rational cubics (represented, when £/2

6 is mapped on a plane 
by cubics with three base points, by the lines of the plane and the conies through 
the base points) ; the cubics of either net that join pairs of I2 are a pencil with a 
base point on E6, say P', P " for the two nets; and since the two nets are residual 
with respect to hyperplane sections of £/2

6, P ' P " is also a pair of I2. These two 
pencils of cubics appear on '£/2

6 as pencils of plane cubics, with double points 
on Kz, and base points at a point P of Kz, projection of P ' and P". Every plane 
containing a cubic of one system meets every plane containing a cubic of the 
other in a line (which of course passes through P), since two cubics on £/2

6 

one of each net, have two intersections. Thus the two systems of planes con­
taining the plane cubics on /t/2

6 are the two systems of generating planes of a 
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quadric cone i?3
2, with point vertex P. 'U26 lies on this quadric, and since it 

traces a cubic curve on every generating plane, is its complete section by a cubic 
hypersurface 63

3. (This is of course not determinate, but can be taken to be a 
general member of the linear system of freedom 5 which all trace the same 
surface on R%2.) 

We can now take Xs to be a generating [3] of r4
2 in [5], and the ambient 

[4] of 'U26 to be the tangent hyperplane F4 to IV at all points of Xz. If now 
Q42 is a general quadric whose section by F4 is i?3

2, and 04
3 a general cubic whose 

section by F4 is 03
3, the intersection of Q4

2, 94
3 is a G3

6, whose section by F4 

is '£/2
6; thus G3

6 touches F4, and hence IV, along Ks, so that the surface of 
intersection F12 of G3

6, IV is precisely as specified in 1.2. Theorem 3.1 is thus 
proved. 

Before investigating what other surfaces may exist for n = 3 it is convenient 
to recall briefly some properties of the threefold loci ^ 3

m , of order m, having 
hyperelliptic curve sections of genus 7r, and not generated by a hyperelliptic 
pencil of planes. These were considered in rather general terms by Enriques 
(6) long ago ; proofs of any statement made here which may not appear obvious 
will be found in a recent paper of my own (5). 

The surface ^H™ of order m in [m — ir + 1] (ir > 2, ir + 2 < m < Ax + 4), 
with hyperelliptic hyperplane sections, and not ruled, was studied by Castel-
nuovo (1); it is rational, being mapped on a plane (in general) by (w + 2)-ic 
curves with one 7r-ple and 4TT + 4 — m simple base points, and has a pencil of 
conies, represented by the lines through the 7r-ple base point, which trace the 
unique g2

1 on each hyperplane section. Enriques showed that any threefold 
*Hzm whose general hyperplane section is xi?2OT, is rational and has on it a 
pencil of quadrics \Q2

2\ which trace the unique pencil of conies on each hyperplane 
section. The ambient [3]'s of these generate a normal rational fourfold RJ*-*-L, 
on which THzm is coresidual to a quadric section, together with 2w + 2 — m 
of its generating [3]'s. The projection of *H%m from a general point of itself is a 
"Hz™"1; not, however, the general "Ha™*1, since one quadric surface of its pencil 
|@22| breaks up into a pair of planes, arising respectively from the neighbourhood 
of the centre of projection and from the Q22 through this point, whereas the 
general "Hz™"1 has no such reducible Ç22. Any base point of the pencil |@22| is a 
Or + l ) - p l e point on «Hz

m. 
We will now prove: 

THEOREM 3.2 In [5], let G4
3 be a cubic hypersurface containing a plane 

O2, and having three non-collinear double points Ai, A2, A3 in this plane. There are 
three [3]'s, Xz(i) (i = 1, 2, 3) through Q2 whose residual intersections with 94

3 are 
quadric surfaces Qi2{i), tracing on 122 the three pairs of sides of the triangle Ax A2 A3. 
If T4

2 is a quadric cone with vertex fi2, and having X%(1\ X3
(2), X3

(3) as generators, 
then the residual intersection F12 of 04

3, r4
2, and another cubic hypersurface 

through the three quadrics Q2
2(t\ is the bicanonical model of a regular surface of 

genera p = 2, p(1) = 4; the base points of the canonical pencil are Ai, A2, A3, 
which are simple points on the surface, &2 being the tangent plane at each of them. 
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In the first place the quadric surfaces traced residually by [3]'s through a 
fixed plane on a cubic hypersurface through the plane trace on the plane a 
net of conies, in projective correspondence with the net of [3]'s through the 
plane. The necessary and sufficient condition for this net to have a base point 
at a point A of the plane is that A is a double point of the cubic ; thus in the case 
of the cubic 94

3 the net is that of all conies through Ai, A2, A3, three members 
of which are the pairs of sides of the triangle Ai A2 A3, so that there are, as stated, 
[3]'s X3

( 1 \ X3
(2), X3

(3), whose quadric residual sections Q2
m\ (V (2), (?2

2(3), trace 
these three degenerate concics on 122, and thus touch S22 in Ai, A2, A3 respectively. 
(Any [3] through 122 cuts the quadric cone tangent to 94

3 at A* in a pair of 
planes, namely 122 and the tangent plane to the quadric residual section; thus 
X3

( i ) is the unique [3] whose section with the tangent cone at A* consists of 02 

counted twice, namely the base of the pencil of hyperplanes Which touch this 
cone along its pencil of generating lines in Q2.) The quadric residual sections 
\Q2

2\ by the generating [3]'s of T4
2 thus trace on fi2 a quadratic family of conies 

of which the three pairs of sides of the triangle are members, and whose envelope 
is accordingly a quartic with cusps at Ai, A2, A3. The intersection of 94

3, IV 
is a special type of 3i2"3

6, on which Œ2 is double (generated by the quadratic 
family of conies, and hence having the three cusped quartic as locus of pinch 
points) ; for whereas the general hyperelliptic sextic curve of genus 3 in [3] is the 
residual section of a quadric surface by a quartic through two generators of one 
system, when the quadric is a cone this curve reduces to the complete section 
by a cubic through the vertex; so that though the general 3iJ3

6 is the residual 
section of the general i?4

2, a cone with line vertex and two systems of generating 
[3]'s, by a quartic through two [3]'s of the same system, when R42 becomes 
T4

2, 3if3
6 becomes its section by a cubic through £22. The points At are quadruple 

points of lfiT3
6, being double on each of the intersecting hypersurfaces ; the 

tangent cone to 3iï3
6 at A t is in fact a (non-normal) i?3

4, generated by the tangent 
planes to the pencil of quadrics |Q2

2| at A*; each of these planes meets 122 in a 
line (the tangent to the conic traced by Q22 on 02), and fi2 is itself one of the 
family, being the tangent plane at A t to Q2

(i); thus the cone is that projecting 
a normal rational i?2

4 in [5], with directrix line, from a point coplanar with the 
directrix line and a generator. 

Now consider the surface F12, residual section of 3i73
6 by a general cubic 

hypersurface through Q2
2(1), (?2

2(2), Ç2
2(3). F12 has no curve of intersection with 

fi2, since the three quadric surfaces meet this plane altogether in the lines 
A2 A3, A3 Ai, Ai A2, each twice, which accounts for the whole intersection of 
the secant cubic with the double S22. Moreover, since the secant cubic meets fi2 

in these three lines, it touches the plane in Ai, A2, A3; it is clear in fact that 
F12 touches fi2 in these three points; for the tangent planes to the three quadric 
surfaces at A* are Œ2 (tangent to Ç2

2(i)) and two other generating planes of the 
tangent cone i?3

4; these are joined by a hyperplane, which is necessarily the 
tangent hyperplane to the secant cubic, and whose residual intersection with 
i?3

4 is 02 counted a second time ; £22 is thus the tangent plane at A t to the residual 
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intersection F12. On each quadric of the pencil |(?22| on 3i73
6, F12 traces a sextic 

curve C6 of genus 4, complete section of Ç22 by the secant cubic, since (V ( ï ) 

has no curve of intersection with the general Q22; and this C6 clearly touches 122 

in Ai, A2, A3, both because the secant cubic does so, and because F12 does so. 
The hyperplane sections |/12| of F12 are the double of the pencil |C6|, i.e., any 
two curves of | C6| are a hyperplane section of F12, and every hyperplane through 
fi2 meets F12 in two curves of |C6|, since it meets IV in two generating [3]'s, and 
W3

6 in two surfaces of the pencil |(?22|. 
We shall now show that the canonical series on the general f12 is traced on it 

residually by quadrics in its ambient [4], through its intersections with any one 
curve of the pencil |C6|, i.e., with any generating [3] of T4

2. For this purpose we 
consider the corresponding hyperplane section 3iJ2

6 of 3iJ3
6. The general ZH2

6 

is mapped on a plane by qu in tics with a triple base point X and ten simple 
base points Yi, . . . , Y10, the lines through X representing the conies on the 
surface; since in the present case W26 has a double line (the section of Œ2) 
which with any two conies forms a hyperplane section, this is represented by a 
cubic curve on which all the base points lie. /12, being the residual section of the 
surface by a cubic through three particular conies of the pencil, is mapped by a 
curve of order 12 with a sextuple point at X and triple points at Yi, . . . , Yi0; 
and on this the canonical series is traced by curves of order 9 with a quintuple 
base point at X and double base points at Yi, . . . , Y10, which are just what 
represent the residual scetions of 3 f t 6 by quadrics through any one of its 
conies. 

Thus the adjoint system to the hyperplane sections |/12| of F12 is traced on 
F12 residually by quadrics through any one Q22 of the pencil on 3i73

6, i.e., through 
any one C6 of the pencil on F12, and is accordingly the system |2/12 — C6| = 
| / 1 2 + C6|, which means that |C6| is the canonical system on F12. Theorem 3.2 
is thus established. 

THEOREM 3.3 There is a type of 2iJ3
5 in [5], residual intersection of r4

2 

with a cubic hyper surface through one of its generating [3]' s> with the following 
features: the pencil of quadrics \Q2

2\ on 2iJ3
5 trace on 02 a pencil of conies with 

three base points Ai, A2, A3, and with a fixed tangent k in A3; and one quadric of the 
pencil \Q22\ breaks up into a pair of planes K, X, meeting 122 in the lines k> Ai A2 

respectively. There are also cubic hypersurfaces 94
3, containing the plane X, con­

taining also that quadric Q2
2 of the pencil which traces on Q2 the pair of lines 

A2 A3, A3 Ai, and further touching 2iJ3
5 along a line s lying in the plane K and 

passing through A3. If
 2i73

5, G43 satisfy these conditions, their residual intersection 
F12 is the bicanonical model of a surface of genera p = 2, £(1) = 4, on which the 
canonical pencil is traced by the pencil |(?22|, and has the base points Ai, A2, A3, 
of which the two former are simple points on the surface whereas A3 is a pinch 
point. 

In the first place we will satisfy ourselves that a 2 i /3
5 exists with the desired 

peculiarities. The residual section of IV by a general cubic through one generat-
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ing [3] is a 2iJ3
B, its pencil of quadric surfaces |Q2

2| being the sections of the cubic 
by the generating [3]'s of IV, residual to Q2, and these trace on 02 a pencil of 
conies, since 02 is simple on 2iJ3

5, and hence one Q2
2 passes through a general 

point of it. The base points of this pencil of conies are double on the secant cubic 
and triple on 2i73

5, the tangent cone at each being an i?3
3 (cone projecting a ruled 

cubic surface from a point), intersection of r4
2 with the tangent cone to the 

secant cubic, residual to the common [3]; it is generated by the tangent planes 
to the quadrics |(?2

2|, and has 122 as directrix plane, on which the generating 
planes trace a pencil of lines. 

Now let RAZ in [6] be a cone with line vertex /, and a directrix [3] on which 
its generating [3]'s trace the pencil of planes through /; the section of this by a 
general quadric is a 2i73

6, with two triple points Ai, A2, the intersections of / 
with the secant quadric; these are base points of the pencil |Q2

2| on 2i73
6; there 

is also a quadric surface Q2
2 traced by the secant quadric on the directrix [3], 

and on this the pencil \Q2
2\ trace the pencil of plane sections with base points 

Ai, A2. If we now project 2i73
6 into [5] from a point K of Q2

2, Q2
2 is projected 

into a plane 122, Ri3 into IV with Œ2 as vertex, and of course 2i73
6 into a 2i73

5 

lying on IV. The conies traced by the projected pencil |(22
2| on Œ2 are the pro­

jections of those traced by the original pencil |Ç2
2| on $2

2, so that they form a 
pencil on conies in Q2l whose base points are the projections of Ai, A2, together 
with the points A3, A4 arising from the two generators of Q2

2 through K. The 
neighbourhood of K on 2iJ3

6 gives rise to a plane K on 2i73
5, passing through 

A3, A4, and the quadric Q2
2 through K to a plane X passing through Ai, A2. 

We can thus get a 2i73
5 answering our requirements by letting the secant quadric 

in [6] either touch the directrix [3] of i?4
3, so that Q2

2 is a cone and A3, A4 

coincide, or touch / so that Ai, A2 coincide. The notation we have used supposes 
the former, but the 2i73

5's obtained by these two specializations of the construc­
tion are in fact identical. 

We remark also that at the point A3, where the conies in Œ2 have the common 
tangent k, the (cubic) tangent cone to 2 i /3

5 has not a point vertex but the line 
vertex k, and any three of its generating planes form a hyperplane section. 
Î22 is one of these, and K is another. We may call this cone T3

3. 
Consider now an arbitrary line 5 in /c, passing through A3. Let Xz be the 

generating [3] of IV which contains K, X, and F4 the tangent hyperplane to 
T4

2 at all points of X3. The tangent [3]'s to 2i73
5 at points of s all contain K, 

and all lie in F4, and thus form a pencil, each member of which touches 2H$b 

in just one point, since the secant cubic has a double point in s, namely A3, 
and thus no plane or [3] through s is bitangent to it. In this one-one (and hence 
projective) correspondence between the pencil of [3]'s through K in F4 and their 
points of contact on s, the tangent [3] to T3

3 at all points of K corresponds to 
A3, and X 3 to the point of intersection of s with X, since X3 clearly touches 
2Hz5 at all points of the line of intersection of K with X. 

Now if a cubic hypersurface in [5] contains a line, its tangent hyperplanes at 
points of the line form a cone TV, since a general plane through the line touches 
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the cubic in two points; thus there is a unique plane through the line, the vertex 
of TV, which touches the cubic at all points of the line, i.e., whose intersection 
with the cubic consists of this line counted twice and some other line; and the 
[3]'s traced by the tangent hyperplanes in question on any one of them are just 
the pencil of [3]'s in this [4], passing through the vertex plane of TV, and in 
projective correspondence with their points of contact on the line. If therefore 
we make a cubic hypersurface 04

3 contain the plane X and that particular 
quadric QV of the pencil |<22

2| which traces the line pair A3 Ai, A2A3 on 02, 
and make it also touch F4 in A3 and K at all points of s, so that its intersection 
with K consists of 5 counted twice together with the line of intersection of K 
with X, the tangent hyperplanes to 04

3 at points of 5 will trace on F4 the pencil 
of [3]'s through AC, in projective correspondence with their points of contact on 
5; that at the point of intersection of s with X traces X3; so that it is only neces­
sary to make 94

3 touch in two further points of s the tangent [3]'s to 2iJ3
5, to 

ensure that it shall do so in all points of s, so that 5 is a double line on the 
intersection of 94

3 with 2i73
5. All this imposes only 31 linear conditions, while 

the freedom of cubics in [5] is 55, so that there is an ample supply of cubics 
satisfying all the conditions. 

The intersection of 04
3, 2i73

5, residual to X and QV, is a surface F12 of order 12. 
At Ai, A2 it has simple points with fi2 as tangent plane, since the tangent hyper-
plane to 94

3 at either of these contains two generating planes of the tangent 
cone to 2Hz

h (namely X and the tangent plane to ÇV) and thus meets this cone 
further in its directrix plane Q2, which is accordingly the tangent plane to the 
residual intersection F12. At A3 on the other hand the tangent hyperplane to 
94

3 is F4, which meets the tangent cone T3
3 to 2iJ3

5 in the planes K (doubly) 
and fi2 (simply), the latter being the tangent plane to Q'2

2. F12 has thus a double 
point at A3 (as of course it must, since 5 is a double line) with K counted twice 
as tangent cone; the natural assumption from this is that A3 is a pinch point, 
which will become certain when it appears in the sequel that A3 is an improper 
singularity. 94

3 traces on fi2 the three lines A2 A3, A3 Ai, Ai A2 (the first two 
being on QV, the third on X), and thus touches S22 in Ai, A2, A3; it thus traces 
on the general surface Q2

2 a sextic curve C6 of genus 4, touching 122 in Ai, A2, A3, 
and this curve belongs wholly to F12, since neither X nor Q'2

2 has any curve of 
intersection with the general Ç2

2. On the other hand, X and QV account for the 
whole intersection of 94

3 with 122, so that F12 meets Q2 only in the three points 
Ax, A2, A3. 

The general hyperplane section f12 of F12 can best be studied by means of 
the plane mapping of the corresponding hyperplane section 2H2

b of 2i73
5. This 

is by quartics with a double base point X (lines through which represent the 
conies on the surface, sections of the pencil \Q2

2\) and seven simple base points 
Yi, . . . , Y7. The fact that the i?3

2 generated by the planes of the conies is not 
the general R%2 (cone with point vertex) but a T3

2 with line vertex 00, section of S22, 
means that there is a line co on the surface, bisecant to the conies, which together 
with any two conies makes up a hyperplane section ; and this in turn requires that 
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Yi, . . . , Y7 all lie on a conic, the image of œ. Seven of the conies break up into 
line pairs, represented by XYt and the neighbourhood of Y*; we can suppose 
that the neighbourhood of Y7 represents the section of the plane K, and the line 
XY7 that of A./12, being the residual section of 2H2

b by a cubic through this last 
line and also through the conic, section of QV, is mapped by a curve of order 
10, with a quadruple point at X, triple points at Yi, . . . , Y6, and a double 
point at Y7; it has also a double point Z in the neighbourhood of Y7, corres­
ponding to the actual double point of/12 at its intersection with s. The canonical 
series is traced on this curve by septimics with a triple base point at X, double 
base points at Yi, . . . , Ye, and simple base points at Y7, Z, amongst which are 
those which have a double point at Y7 and do not pass through Z ; these last 
clearly represent residual sections of 2H2

b by quadrics through one of its pencil 
of conies; thus the canonical series on/12 is traced residually by quadrics through 
its intersections with any one surface Q2

2, and the adjoint system to the hyper-
plane sections |/12| is traced residually on Fn by quadrics through any one curve 
C6, i.e., it is the system |2/12 — C6| = |/12 + C6| which means that the pencil 
|C6| is the canonical system. Theorem 3.3 is thus established; it remains only to 
note that the general/12 is of genus 10, which is what the genus of |2C6| would 
be if the three base points of |C6| were all simple points of the surface; A3 is 
thus an improper singularity, and as it cannot be the intersection of two simple 
sheets (since the pencil |C6| which passes simply through A3, and of which any 
two curves are a hyperplane section, is irreducible) it can only be a pinch point. 

Before showing that the surfaces constructed in these three theorems include 
the bicanonical models of all surfaces of genera p = 2, p(1) = 4, with irreducible 
and non-hyperelliptic canonical pencil, it is convenient to digress, and devote 
some study to a surface which exhibits many of the features which we should 
expect of our bicanonical surface F12, but which proves nevertheless to be of 
genus 1, and not 2. 

THEOREM 3.4 There exist surfaces F12 in [5], lying on r4
2, and having a 

pencil \C6\ of canonical curves of genus 4 traced by the generating [3]'s of IV, 
with three base points Ai, A2, A3, simple points of the surface, in each of which the 
tangent plane to the surface is the vertex Q2 of IV, so that the base points are a 
semicanonical set on each curve of the pencil; but on which nevertheless the canonical 
system is not the pencil | C6|, but contains only one curve, which breaks up into three 
conies, each forming part of a different curve of the pencil | C6| and each passing 
through one of the base points Ai, A2, A3; these three conies are exceptional curves, 
and the surface belongs to the familiar series of surfaces with all genera equal to 
unity, the unique curve of whose reduced canonical system is the null curve, so that 
every linear system on the surface is adjoint to itself (7, p. 247). 

First we must show that there exists a type of 2Hz5, special in two respects: 
the R2

4 generated by the ambient [3]'s of its Q2
2's is IV (with plane instead of 

line vertex), and three of these (V's break up into pairs of planes. The latter 
peculiarity is evidently ensured by obtaining 2iJ3

5 as the projection of 2H/ in 
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[8] (residual section of i?4
5 by a quadric through two of its generating [3]'s 

from three points Ki, K2, K3 of itself) ; the former can be ensured by choosing 
Ki, K2, K3 suitably. For the general R45 is generated by the [3]'s joining corres­
ponding points of three lines and a conic, projectively related; it thus has on it 
an R^y generated by the planes joining corresponding points of the three lines, 
which is its residual section by a hyperplane through two generating [3]'s, 
and which of course meets each generating [3] in a plane. The quadric which 
cuts R*b in two [3]'s and 2i73

8, cuts R^ in two planes and a ruled quartic surface 
i?2

4, which is accordingly the intersection of 2i73
8 and i?3

3 on RA
b. The conies on 

i?2
4 are traced by the planes of i?3

3, and are the sections by these planes of the 
Q2

2's in the corresponding [3]'s of Rib. If now Ki, K2, K3 are not general points of 
2i73

8, but are on i?2
4, it is clear that the directrix lines au a2l a3 of i?3

3 through 
Ki, K2, K3 respectively are projected into points Ai, A2, A3, that R2

4, as well 
as every generating plane of i£3

3, is projected into the plane fi2 = A1A2A3, 
and that the generating [3]'s of R^ are projected into [3]'s which all pass through 
Œ2, so that the projection of R*b is not the general R42 with line vertex, but a 
T4

2 with vertex £22. The conies on R2
4 are projected into a pencil of conies in 

Q2y which are the traces on it of the pencil of quadrics \Q2
2\ on 2Hzb

y the projec­
tions of those on 2i73

8; this pencil of conies has as base points Ai, A2, A3, and 
a fourth point B, the projection of the unique rational cubic.curve b on R2

A 

through Ai, A2, A3. These four points are triple points of 2Hib, the tangent 
cone at each being generated by the tangent planes to the quadric surfaces 
|Ç2

2|, and having fi2 as directrix plane. The three plane pairs in the pencil 
|Q2

2| evidently trace on fi2 the three line pairs in the pencil of conies; if we denote 
by *i, \{ respectively the planes arising from the neighbourhood of K* and 
from the Q2

2 through Kt on 2i/3
8, we see that as at and b both pass through K*, 

At and B both lie in KU while as the Q2
2 through K* meets ajy ak1 in general 

points, \i passes through A ;, Ak. Thus KU X* trace on Q2 the lines A< B, AjAk 

respectively. 
Now consider the surface F12, residual section of this 2Hzb by a general cubic 

hypersurface through the planes Xi, X2, X3. It is of order 12, and meets fl2 in no 
curve, since the whole intersection of the secant cubic with £22 consists of the 
three lines A2 A3, A3 Ai, Ai A2, traced by Xi, X2, X3; F12 passes simply through 
Ai, A», A3, its tangent plane in each of these being 02, since the tangent hyper­
plane to the secant cubic at At contains the planes X̂ , \k, which are generating 
planes of the tangent cone to W36, and thus cuts this cone residually in 02, 
which is accordingly the tangent plane there to the residual intersection F12. 
Since Xi, X2, X3 trace no curve on the general Q2

2, F12 traces on each Q2
2 its com­

plete section by the secant cubic, a canonical curve C6 of genus 4, touching Q2 

in Ai, A2, A3. F12 traces on each plane #c< a conic su since ** meets the secant 
cubic in a cubic curve of which the intersection of KU \ t is part. The curve tt 

traced by F12 on Xf is accordingly a quartic, since s<, t{ together form a curve of 
the pencil \C6\ on Fl2\ and it is clear that st touches fi2 in Au and tt touches it 
in A^, A*. 
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All the properties of F12 so far-found are consistent with (and indeed strongly 
suggest) the idea that it is the bicanonical model of a surface of genera p = 2, 
p(1) = 4, |C6| being its canonical pencil. We shall show however that F12 is on 
the contrary of genus 1, its unique canonical curve consisting of the three conies 
S\} $2» $3-

To prove this we shall consider as before the general hyperplane section 
J12 0{ pn a s a c u r v e o n the corresponding section 2H2

5 of 2iJ3
5. 2H2

b as we have 
seen is rational, being mapped on a plane by quartics with a double base point X 
and seven simple base points Yi, . . . , Y7, the latter all lying on a conic. Seven 
conies of the pencil break up into pairs of lines; we may suppose that amongst 
these, the lines represented by the neighbourhoods of Y5, Ye. Y7 are the sections 
of KI, K2, K3, and those represented by XY5, XY6, XY7 are the sections of Xi, X2, 
X3. Thus J12, being the residual section of 2H<f by a cubic through these last 
three lines, is represented by a curve of order 9 with triple points at X, Yi, . . . , 
Y4, and double at Y5, Ye, Y7; on this curve the canonical series is traced resi-
dually by sextics with double base points at X, Yi, . . . , Y4, and simple at 
YB, Ye, Y7; amongst which are those that break up into the conic through 
Yi, . . . , Y7 (which has no residual intersection with the curve) and quartics 
with a double base point at X and simple base points at Yx, . . . , Y4; and in 
this latter system, those which pass also through Y5, Ye, Y7 trace on the curve 
sets corresponding to hyperplane sections of /12, together of course with the pairs 
of points coinciding in Y5, Ye, Y7, which represent the pairs of points traced on 
J12 by Si, s2, £3- Thus canonical sets are traced on f12 by all the reducible curves 
on F12 consisting of another hyperplane section together with the three conies 
Si, S2, S3 ; which means that these three conies are together a curve of the canonical 
system. That there is no other curve of this system is fairly obvious, and 
becomes certain when we remark that the three conies are of negative grade, 
and are in fact exceptional curves. That the grade of 51 is — 1 follows from the 
fact that as siy tt are together a curve of the pencil |C6|, the virtual intersections 
of St with itself are equivalent to its intersections with a general C6, minus its 
intersections with tu which are two in number, namely its intersections with the 
line traced by \ t on its ambient plane **. Theorem 3.4 is thus established. 

It is now comparatively easy to prove: 

THEOREM 3.5 Every regular surface on which is a pencil \C\ of irreducible 
non-hyper elliptic curves of genus 4, with three base points which are a semicanonical 
set on the general curve of the pencil, has as projective model of the system \2C\ 
one of the four surfaces constructed in Theorems 3.1, 3.2, 3.3, 3.4. 

In the first place, as in Theorem 1.1, the projective model of \2C\ is a surface 
F12 lying on r4

2 in [5]; the curves \C\ are canonical sextics C6 on this model, 
and are traced by the generating [3]'s of IV, whose vertex Œ2 they all touch 
in the base points Ai, A2, A3 of the pencil. Also, as in Theorem 1.4, these base 
points are simple points or pinch points of F12 according as the variable curve 
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of the pencil has variable or fixed tangent there. The general curve of \2C\ is 
of genus 10. 

The general C6 lies on a unique quadric surface Q2
2 in its ambient [3], which 

traces on Œ2 a conic passing through Ai, A2, A3 and touching there the tangents 
to C6. If m of these conies pass through a general point of S22, the threefold locus 
generated by the surfaces Q2

2 is of order 4 + m, having 122 as w-ple locus, and is 
(for even values of ni) the section of r4

2 by a hypersurface of order 2 + Jra, 
passing Jm-ply through S22, or (for odd values) the residual section by a hyper­
surface of order 2 + \(m + 1) passing simply through a generating [3] and 
\{m + l)-ply through S22. We shall show that m < 2. For if the tangents at at 
least two of the base points to the curves |C6| and the conies in 122 are fixed, the 
conies all coincide, and m = 0; if the tangents are variable at at least two base 
points, they correspond projectively, so that the conies are transformed by 
a quadratic transformation with base points at Ai A2 A3 into a family of lines 
which trace projective ranges of points on at least two sides of the triangle; 
such a family of lines is either a pencil, or the tangents to a conic which touches 
the sides of the triangle, and the family of conies is thus either a pencil (giving 
m = 1) or a quadratic family enveloping a quartic with cusps at Ai, A2, A3 

(w = 2). 

If m = 0, the locus of the quadrics Q2
2 is a quadric section S3

4 of IV, and 
since F12 traces a C6 of genus 4 on each Q2

2, the virtual difference on 53
4 between 

F12 and a cubic section must be of order zero, and have no intersection with the 
general Q2

2, i.e., must be null; thus F12 is a cubic section of 53
4, i.e., it is the com­

plete intersection of T4
2, another quadric, and a cubic, i.e., of IV with the G3

6 

which is the intersection of the second quadric with the cubic. Thus the surface 
is that constructed in Theorem 3.1. 

In the case m = 2 on the other hand, when the conies in 02 envelope a tri-
cuspidal quartic, the locus of the quadrics Q2

2 is the section of T4
2 by a cubic 

through 02, i.e., it is a 3i73
6, and is precisely the 3i73

6 considered in Theorem 
3.2. On this the virtual difference between F12 and a cubic section must be of 
order 6, and must as before have no intersection with the general Q2

2, i.e., F12 

is the residual section of 3i73
6 by a cubic through some surface of order 6, which 

consists of quadrics Q2
2 or planes forming parts of these. Moreover, since each 

C6 touthes 122 in Ai, A2, A3, the secant cubic must touch fi2 in these points, i.e., 
must cut it in the lines A2 A3, A3 Ai, Ai A2, and its total intersection with the 
double fi2 on 3iJ3

6 consists of these three lines each counted twice; and this 
must be accounted for entirely by the trace on £22 of the sextic surface of inter­
section residual to F12, since F12 has no curve of intersection with fl2. But the 
three pairs of these three lines are the traces on 02 of particular quadrics of the 
pencil |(?22|; these three quadrics thus form the residual intersection, i.e., F12 

is the residual section of 3i73
6 by a cubic through these three quadrics, and is 

thus the surface constructed in Theorem 3.2. 
If on the other hand the conies traced by |Ç22| on 02 are a pencil, they have 
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either a fourth base point B, distinct from Ai, A2, A3, or a fixed tangent k in 
one of these, say A3. In either case m = 1, and the locus of the quadrics | (V| 
is a 2jff3

5, residual section of IV by a cubic through one generating [3]. F12 

must differ from a cubic section by some residual surface of total order 3, which 
as before must consist entirely of quadrics Q2

2 or planes forming part of these ; 
as before, the secant cubic must cut 02 in the three lines A2 A3, A3 Ai, Ai A2, 
and these must be entirely accounted for as the trace on 122 of the residual inter­
section of order 3. 

If the conies in 02 have a fixed tangent k in A3, two of them are line pairs, 
namely A2 A3, A3 Ai and Ai A2, k; thus the Q2

2 tracing the former line pair must 
be part of the residual surface, and that tracing the latter must break up into 
two planes K, X, tracing k, Ai A2 respectively, of which X must be the other part 
of the residual surface. A general F12 however, residual to this quadric and plane, 
would trace a conic on K, which (by an analysis of the properties of the hyper-
plane section of the surface, on that of 2i73

5, precisely similar to that in Theorem 
3.3, merely omitting the double point Z in the neighbourhood of Y7) can be seen 
to be a fixed part of the canonical system, the variable part being the pencil 
|C6| ; thus though the surface is of genus 2, it is not the bicanonical model, nor 
is the canonical pencil irreducible; moreover, the general curve of |/12| = |2C6| 
is of genus 11, instead of 10, showing that A3 is a proper singularity. The only 
way to make this singularity improper, and the general hyperplane section of 
genus 10, is to give the surface a double line passing through A3; and this 
double line must lie in K, replacing the conic which would otherwise be traced 
on the surface by K, since it is precisely the pair of points traced by this conic 
on the general hyperplane section which we need to subtract from the canonical 
series on the latter. Thus we have the surface constructed in Theorem 3.3. 

Finally, if the pencil of conies in £22 has a fourth base point distinct from 
Ai, A2, A3, the lines A2 A3, A3 Ai, Ai A2 form parts of three distinct conies of 
the pencil, so that the residual surface must consist of three planes, meeting Q2 

in these three lines respectively, and forming parts of three distinct quadrics 
of the pencil |(?2

2|. Thus we have the surface F12 of Theorem 3.4. 
From this result an obvious corollary is 

THEOREM 3.6 Every regular surface of genera p = 2, p{1) = 4, has as its 
bicanonical model one of the following four surfaces: 

I. That constructed in Theorem 3.2, without singularities-, 
II. That constructed in Theorem 3.3, with a double line, passing through one 

of the base points of the canonical pencil, which is a pinch point, the other two 
being simple-, 

III. That constructed in Theorem 3.1, with a double rational cubic curve passing 
through all three base points of the canonical pencil, all of which are pinch points-, 

IV. That given in my paper referred to above (4), on which the general curve of 
the canonical pencil is hyper elliptic; the surface is the double 2H<£, complete inter­
section of TA2 with a general i?3

3, with branch curve of order 14, residual section of 
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2iJ2
6 by a cubic hyper surface through two of its pencil of conies, and having also 

isolated branch points at its three nodes, the intersections of Œ2 with i?33, which are 
the base points of the canonical pencil. 

The point of view adopted in Theorem 1.8 makes it natural to regard type I 
as the general case, of which all the others are specializations. Whether, however, 
every surface of types II, III, IV can be obtained as the limit of a variable 
surface of type I seems to be quite a difficult problem, to which we shall not 
attempt a definite answer. In this connexion, however, two simple and obvious 
remarks present themselves: 

(i) Though type III seems to be in some sense more special than type II, 
the general surface of type III cannot be the limit of a variable surface of type 
II, as if this assumes such a limiting form the double cubic curve of the latter 
will break up into a line (limit of the double line on the variable surface) and 
a conic. 

(ii) Similarly, though type IV is in fact, as was remarked at the close of 
§1, the complete intersection of IV with a G$6, in this case the double i?3

3, with 
branch surface of order 10 which is its residual section by a quartic hypersurface 
through two generating planes, the general surface of type IV is not the limit 
of a variable surface of type III, since the general Rzz is not, counted twice, 
the complete intersection of a quadric and a cubic. Every quadric hypersurface 
containing the general i?3

3 is in fact an R42 with line vertex (which is any one of 
the 002 directrix lines of R$z) ; and this has on it two distinct systems of i?33's, 
whose generating planes lie respectively in the two systems of generating 
[3]'s of R42; and a cubic hypersurface through an Rzz of one system cuts R42 

residually in one of the other system. Raz can only be the complete intersection 
of a quadric and a cubic if it is a cone with (in general) a point vertex and a 
directrix plane; the quadric is then a cone with plane vertex, which is the direc­
trix plane of i?3

3. 
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