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ZEROS OF RECURRENCE SEQUENCES

A.J. VAN DER POORTEN AND H.P. SCHLICKEWEI

We give an upper bound for the number of zeros of recurrence sequences defined
over an algebraic number field in terms of their order, the degree of their field of
definition and the number of prime ideal divisors of the characteristic roots of the
sequence.

1. INTRODUCTION

Let K be a number field of degree

(1.1) [ K : Q ] = d .

We consider linear recurrence sequences

(1.2) afc+n = •siafc+n-i H hsnah (h = 0,1,2, . . . )

of order n. Here we suppose that the coefficients Sj and the initial values ao ,... , an-i
are elements of some subfield F C K and that sn ^ 0, and not all the initial values are
zero. Let

(1.3) Xn-s1X
n~1

 S n =

be the companion polynomial to the recurrence sequence. We suppose that the roots
a i , . . . , a m all belong to K; thus K is an extension of F of degree at most ra! over F .
It is well known that the terms aj, are given by generalised power sums

where for each i the coefficient Ai(h) is a polynomial with coefficients in K and of
degree ^ n,- — 1.
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We shall study the equations

(1.4) ah = 0 (h = 0,1,2,...).

The number of solutions of (1.4) is called the zero-multiplicity of the recurrence se-
quence.

If equation (1.4) has infinitely many solutions A g N , then, by the Skolem-Mahler-
Lech Theorem we know that those solutions form a finite union of arithmetic progres-

sions after a certain stage.

We may infer that if a recurrence relation with companion polynomial (1.4) gener-

ates a sequence (fflfc) with infinitely many zeros then there exists a pair

i,j (1 ^ i < j' ^ rn) such that ai/ctj is a root of unity.

On the other hand, if for each pair i,j (1 ^ t < j ^ m) the quotient ai/ctj is
not a root of unity, we call the sequence nondegenerate.

It has been conjectured that the zero-multiplicity of a nondegenerate recurrence
sequence (O^ALO is bounded above by a constant Ci = ci(d,n) depending only on the
degree d of the field of definition and on the order n.

For binary recurrence sequences (that is, for n = 2) it is easy to see that the 0-
multiplicity of a nondegenerate recurrence sequence is at most 1. There is the additional
question, to wit the O-multiplicity of a recurrence sequence (an — a) with a constant
— that is, the a-multiplicity of the sequence (a^). In the binary case Kubota [3] shows
that when F = Q the a-multiplicity is at most 4 and Beukers and Tijdeman [2] have
given a bound for arbitrary number fields.

Recently, Beukers [1] has shown that the O-multiplicity of a nondegenerate ternary
recurrence sequence of rational numbers is at most 6.

In general the conjecture remains open.

It is our present purpose to prove a semi-uniform result for the general case. Ac-
cordingly, let u = w((Xi,... ,am) denote the number of prime ideals occurring in the
decomposition of the fractional ideals (aj) in K .

We show that

THEOREM 1 . Let (a^) be a nondegenerate recurrence sequence given by (1.2).
Then there is an effectively computable constant ci = C2(d,n,u>) depending only on d,
n and w such that the sequence has zero-multiplicity not exceeding ci. We may take

(1.5) ca = (4(rf + «) ) l ( * | - 1 ) (n - l ) .

Let m be a natural number and for t with 1 ^ i ^ m let n; be natural numbers
satisfying

t = l
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Theorem. 1 is an immediate consequence of

THEOREM 2 . Suppose that for each i (1 ^ t ^ m) Ai is a polynomial of
degree 7i< — 1 with coefficients in K . Suppose moreover that for each pair i,j
(1 ^ i < j ' ^ TO) t i e quotient cti/otj is not a root of unity. Then the number of so-
lutions h £ Z of the equation

m

(1.6)

is bounded above by C2(d,n,u>), with Ci as in (1.5).

A result implying the same parameters has been obtained recently by Schlickewei
[9]. However, in [9] the upper bound depends doubly exponentially on n! and d\. The
method of proof employed in this paper uses only p-adic analysis in contrast to [9],
where diophantine approximation (the Subspace Theorem) is the main tool.

The advantage of the current approach as compared to [9], apart from the fact
that it gives a better bound, is the rather simple proof. However the method applied
in [9] has the strength that it may be generalised to count the number of solutions of
multivariable exponential polynomial equations

(1.7) X)A'(^'-'fc*)«l? •••«?** =0
t=i

We do not see that the method of the present paper allows one to attack equations (1.7)
with k £s2.

Our proof uses Strafimann's Theorem on the number of zeros of p-adic power series
in a given disc. This has been applied in our context already by Laxton [4], Mignotte
[5], van der Poorten [6] and Robba [7].

2. p-ADIC ANALYSIS

Let p be a rational prime. Denote by Qp the p-adic completion of Q and let Cj,
be the completion of the algebraic closure of Q p . We denote the valuation of Cp by
| \p, normalised so that \p\p = p " 1 .

Let p be a prime ideal in the number field K which lies above p . Then we may
embed the completion K p of K with respect to p in Cp. We denote by O p the ring of
integers of K p consisting of those elements a £ K p having \a\p ^ 1. Recall the classic
theorem of StraSmann.

LEMMA 1 . (StraBmann [10]) Let

(2.1)
h=o
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be a nonzero power series in Cj, with coefficient bh. in Op . Assume that F(t) converges
in the circle {t : \t\p ^ 1} and suppose that some coefficient an has |afc|p = 1. Set

(2.2) Jfe = max{n : \ah\p = 1} .

Then there is a factorisation

(2.3)

where \U(t)\p = 1 for \t\p ^ 1 and P(t) is a polynomial of degree k. In particular,

F(t) has not more than k zeros in the circle {t : \t\p ^ 1}.

For a proof see, for example, van der Poorten [6].

In the sequel it will be convenient to use exponential valuations. Accordingly, given

a G Cp with \a\p = p-M°0 we write ordp(a) = vp{a) = - log \a\p.

LEMMA 2 . (van der Poorten [6]) Suppose e > 0 is given. Let <j>i,. •• ,4>m be
distinct elements of Kp having

(2.4) ordp(&) > + ( i l , . . . , m ) .
p - 1

Let Bi(t),... ,Bm{t) be nonzero polynomials in Kp[$] of degree ni — 1, . . . ,nm — 1

respectively. Set

and write n = y^ rij.
i-l

Then the number of zeros of F(t) in the disc \t\p ^ 1 does not exceed

(2.5)

PROOF: For completeness we detail the proof. Denote by D the differential oper-
ator D — d/dt. Then F satisfies the differential equation

(2.6) DnF = hDn~1F + f 2 D n ~ 2 F + ••• + fnD°F,

where the /j are given by

(2.7) f[ (X - 4>i)ni =Xn- hX"-1 fn-iX - fn.
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We expand F as a power series

fc=O h=0

The differential equation (2.6) now entails that the c& satisfy the recurrence relation

(2.8) Ci+ti = /l^l+n-l H + fnCh (A = 0,1, . . . ) -

After multiplying F by a constant if necessary we may suppose without loss of generality
that

min{ordp b^ : h = 0 , 1 , . . . } = 0 .

Set

p - 1 -

By (2.4), that is ordp (<fc) > R, it follows from (2.7) that

(2.9) ordp fj > jR (j = 1 , . . . , n) .

By the recurrence relation we have

ordpCn ^ min {ordp fjCn-j} .

Thus using (2.9) we get

(2.10) ord p c n > min {JR + ordp cn_j} .
1 ^ j ^ n

On the other hand, since c^ = h\bk and ordp 6fc ^ 0

where sp(h) denotes the sum of the digits of h expressed in base p. Thus, in particular,
(2.10) implies

ordp cn > min < jR -\ — > ^ R.

Again applying the recurrence relation (2.8) for h = 1,2,... and using (2.9) we obtain
by induction

ordp Cfc+n-i > hR for h = 1,2,... .
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We conclude that for ft = 1 ,2 , . . .

h+n-i > hR~ ordp((ft + n - 1)!)

= nit

^ hR-

= he-

p-1
h + n-2

P-1
n-2

p - 1

It follows that
n-2

ordp ah+n-i > 0 once ft > — - r .

e(p - 1 )
Thus we can apply Lemma 1 and infer that F has at most

n - 2
n-l+- —

e ( p - l )
zeros in the disc \t\p ^ 1, as asserted.

3. APPLICATION TO EXPONENTIAL POLYNOMIALS.

We resume the notation of the introduction and now turn to a study of the solutions
ft £ Z of the equation (1.6). Accordingly K is a number field of degree d over Q. We
choose a rational prime p so that

(3.1) none of the primes pi, ..., pw from the decomposition

in K of the ideals (a,-) divides (p).

Let e — ep and f = fp denote respectively the ramification index and the residue class
degree of Kp over Qp.

Our choice of p implies that

\ai\p = 1 f°r each t (1 ^ t ^ m).

But then

(3.2) la? '" ' - l |p < p-1'* (t = l , . . . ,m) .

However, we have e ^ d/f. Therefore, if we choose p with

(3.3) p>d+l
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then (3.2) yields

(3.4) l a ? ' - 1 - l | p < p - i M i . - i > - i / < p - i > (i = l , . . . , m ) .

Given h 6 Z we set
h = r + {pf - \)k

where 0 ^ r < p ' — 1. Equation (1.6) splits into p ' — 1 equations

(3.5) £ili(r+(p'-l)*)a:(a?'-1)* = 0 * 6 Z.
i=l

Given r with 0 ̂  r < p ' — 1 we may define B* and <j>i by

J3;(Jfe) = Ai(r + (pf - l)k)ari and a?'1 = e*< .

Then (3.5) may be rewritten as

(3.6)

We note that since none of the ratios oti/aj is a root of unity the <j>i are pairwise

distinct.

The definition of <f>i and (3.4) imply that the left hand side of (3.6) may be con-

tinued to a function

*•(*) =

analytic in the disc \t\p ^ 1.

We are now in a position to apply Lemma 2. By (3.4) the hypotheses of that lemma
are satisfied with

1
£ = P(P ~ 1) "

Consequently, the function F(t) in (3.7) does not have more than

zeros in the disc |t|p ^ 1 and thus, a fortiori the equation (3.6) does not have more

than (n — l)(p + 1) solutions k £ Z .

Since we have pf — 1 residue classes j (mod p ' — l) we may conclude that equation

(1.6) has not more than

solutions h £ Z .

To summarise, we have shown that
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LEMMA 3 . Let p be a rationai prime satisfying conditions (3.1) and (3.3). Then

the number of solutions h £ Z of equation (1.6) does not exceed

(3.7) (pd-l)[p + l){n-l).

4. THE CHOICE OF p

To get our semi-uniform bound we still have to choose p in Lemma 3 appropriately.

For this purpose we have to study conditions (3.1) and (3.3).

It obviously suffices to find an integer I so that the interval [d + 2,1] contains more

than w rational primes. Thus we have to solve the inequality

(4.1) ir(l) - ir(d + 1) > w .

Using the estimate (Rosser and Schoenfeld [8, Corollary 1])

(4.2) h/logh ^ Tv{h) for h ^ 17

we see that (4.1) will certainly be satisfied for I with I ^ 17 and

(Z/ logZ)-(d + l ) > «

that is for Z ̂  17 having

(4.3) l/logl>d

If we choose I = (4((£ + w)) then (4.3) is true, and indeed with this choice of I we may

find a p satisfying (3.1) and (3.4) having p < I.

Using this bound for p in (3.3) we obtain at once Theorem 2 and hence also

Theorem 1.
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