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APPLICATIONS OF DUALITY IN THE THEORY OF
FINITELY GENERATED LATTICE-ORDERED
ABELIAN GROUPS

W. M. BEYNON

Introduction. In a previous paper by the author [3], duality theorems for
finitely generated vector lattices and lattice-ordered Abelian groups are
described. In particular, the category of finitely generated semi-simple vector
lattices is shown to be equivalent to a geometrical category V whose objects
are topologically closed cones in Euclidean space, and whose morphisms,
called ‘I-maps’, form a special subclass of the class of piecewise homogeneous
linear maps between such cones. Under this categorical duality, finitely
generated projective vector lattices and closed polyhedral cones correspond;
indeed, the category of finitely generated projective vector lattices is equiv-
alent to the dual of a category whose objects are Euclidean closed polyhedral
cones and whose morphisms consist of all piecewise homogeneous linear maps
between such cones. Two Euclidean closed polyhedral cones are then seen to be
‘l-equivalent’ (that is to say, are isomorphic in V) if and only if they have poly-
hedrally equivalent sections. (A polyhedron P is said to be a section of a closed
polyhedral cone C if every ray of C meets P in a single point).

In this paper, some of the results proved for vector lattices in [3] are
generalised to the context of lattice-ordered Abelian groups, and a number of
applications are described. In particular, it is shown that the finitely generated
projective lattice-ordered Abelian groups are the quotients of free finitely
generated lattice-ordered Abelian groups by principal ideals. (An analogous
characterisation of finitely generated projective vector lattices is described by
Kirby Baker in [1]). Other applications include a classification of projective
lattice-ordered Abelian groups with two generators analogous to that described
for vector lattices by Bleier in [6], and a characterisation of lattice-ordered
Abelian groups freely generated by the elements of a finite partially-ordered set.

Throughout the paper, proofs are geometric in spirit, and the main result
is a non-trivial application of ideas of combinatorial topology to algebra.

0. Preliminaries. For background results on lattice-ordered Abelian
groups, see Birkhoff [5].

A lattice-ordered Abelian group 4 is projective if, whenever ¢ : X — YV is a
surjective [-morphism and « : 4 — Y is an /-morphism, there is an /-morphism
0 : A4 — X such that ¢6 = a.

For elementary geometrical concepts not mentioned below, see Baker [1],
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Stallings [9], Glaser [7] and Beynon [3]. A subset of R" is a convex closed poly-
hedral come if it is the positive hull of a finite set of points. Such a cone is
stmplicial if it is the positive hull of a linearly independent set of points.

A closed polyhedral cone is a finite union of convex closed polyhedral cones.

A complex of simplicial cones in R” is a finite set.#” of simplicial cones in R”
such that

(i) if 4 is in ¢ then every face of 4 is in2#"; and

(i) if A and B are inJf then 4 M B is a face of both 4 and B.

The set of simplicial cones of %', ordered by the relation: 4 < B if and only if
A is a face of B, is an abstract simplicial complex S. 2¢” is said to be a realisation
of S by simplicial cones.

If 2 is a complex of simplicial cones in R”, the union of all the simplicial
cones of " is a closed polyhedral cone in R", and is denoted by [2¢]. If x # 0
is a point of [, then x is relatively interior to an unique simplicial cone C of
dimension k in |2¢|, where C is the positive hull of % points x1, xs, . . ., %x, and
there is a subdivision of 2#* canonically associated with x as follows: Let
Cy, ..., C, be the simplicial cones of ¥ which contain C as a face, and Cyyy,
..., C, the remaining cones. For each 7 = s the simplicial cone C;, of dimen-
sion m = m (1), is the positive hull of m points x1, X2, . . ., Xk, Xpg1, -« + 5 Lo
For each j =< k, let C;; be the simplicial cone of dimension m which is the
positive hull of the points x1, ..., &;, ..., X, Xxp1, - - -, Xm, &. If simplicial
cones C,; are constructed in this way forz =1,2,...,sand j =1,2,..., k&,
the set of simplicial cones of the form C;; with i < sand j = k together with
the simplicial cones Cyy1, - - ., C, forms a new complex of simplicial cones a2¢,
which is a subdivision of 2#. The subdivision «#" is called the elementary starring
of A at x.

The polyhedron P is a section of the closed polyhedral cone C if every ray of
C meets P in an unique point.

If % is a simplicial presentation of P, then the collection of simplicial cones
obtained by forming the infinite cone with vertex O on each simplex 4 of ¥ is a
subdivision of C into simplicial cones, called the subdivision of C induced by .% .

Let.# be a complex of simplicial cones in R*, and ¥ a subcomplex of 27
If Oxi, Oxs, ..., Ox, are 1-dimensional simplicial cones of J¢, there is an
uniquely determined map fg:|2#| — [0, 1] piecewise homogeneous linear with
respect to ¢, such that fo(x;) = 1if x; € . and f¢(x;) = 0 otherwise. & is
then a full subcomplex of A if | L] = fo(0) (c.f. [8] p. 31).

If K is a convex closed polyhedral cone in R”, then K is rational if K can be
expressed as the positive hull of a finite set of points with rational coordinates.
If C is an arbitrary closed polyhedral cone, C is rational if C can be expressed
as the union of finitely many rational convex closed polyhedral cones.

Two basic results on subdivisions of rational closed polyhedral cones are

required; these are stated in Lemma 0.1 below. The proof of this lemma de-
pends essentially upon a theorem proved by the author in {4].
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LeEmMA 0.1. (i) If C and D are rational closed polyhedral cones which have
isomorphic subdivisions into simplicial cones, then they have isomorphic sub-
divisions into rational simplicial cones.

(ii) If C and D are rational closed polyhedral cones such that C C D, there are

subdivisions 4 and ¥ of C and D respectively into rational simplicial cones such
that A is a subcomplex of &L .

Proof. (i) Let P and Q be sections of C and D, respectively, which are
rational polyhedra in the sense of [4]. Since C and D have isomorphic sub-
divisions into simplicial cones, there exist sections S and 7" of C and D respec-
tively such that .S and T are polyhedrally equivalent. Hence (by [3, Corollary 2
to Theorem 4.1], or by direct geometrical argument), P and Q are themselves
polyhedrally equivalent. By [4, Theorem 1], there are isomorphic simplicial
presentations ¥ and .9 of P and Q respectively, both of which have vertices
at rational points. Let 2¢ be the subdivision of C into simplicial cones induced
by ¥, and £ the subdivision of P induced by.7. Then 2 and . are iso-
morphic subdivisions of C and P into rational simplicial cones.

(ii) Let Q be a rational polyhedron which is a section of D. Then P = Q N\ C
is also a rational polyhedron, and is a section of C. By [4, Corollary to Theorem
1], there are simplicial presentations . and .7~ of P and Q respectively, with
vertices at rational points, such that.% is a subcomplex of .7 . Let £ be the
subdivision of C into simplicial cones induced by .#, and .# the subdivision of
D induced by 7.

1. The category V*. Following the notation introduced in [3], the symbol
FI-G(n) will be used to denote the free lattice-ordered Abelian group on =
generators, and Z the totally-ordered group of integers under addition. If « is
an element of FI-G(n), then a can be expressed as V,(;f1;) where i and j range
over finite index sets, and each f; is a linear expression with integer coefficients
in the free generators ey, €3, ..., ¢, of FI-G(n). Accordingly, a determines a
map from Z" to Z such that the n-tuple (xi, x3, . . . , x,) is mapped to the image
of « under the unique l-morphism FI-G(n) — Z mapping e; to x; for 1 = 1,
2,...,n. Amap6:Z"— Z"is then said to be an integral l-map if there exist
n elements ay, as, ..., a, in FI-G(m) such that for each element x of Z™ the
relation 0(x) = (ai(x), a2(x), . .., a,(x)) holds. If X and Y are subsets of Z™
and Z" respectively, 6 : X — ¥ is said to be an integral /-map if it is the
restriction of an integral /-map Z™ — Z".

As in [3], the symbol V* will denote the category which has as its typical
object the set of integer lattice points lying within a closed cone in an Euclidean
space R”, and whose morphisms are integral /l-maps between such cones. The
following duality theorem is proved in [3].

TraeEOREM 1.1. The full subcategory of the category of finitely generated lattice-
ordered Abelian groups consisting of subdirect products of copies of the totally-
ordered Abelian group Z is equivalent to the dual of V*.
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The principal object of this paper is to examine the nature of the category
V*, and to give an interpretation of the subcategory of V* corresponding
(under the duality of Theorem 1) to the category of finitely generated projec-
tive lattice-ordered Abelian groups. Note first that if C is a closed cone in R”,
and C’ denotes the set of integer lattice points in C, then C is uniquely deter-
mined by C’, as the closure of the set of rational points which lie on rays
passing through points of C’. If now C and D are closed cones in R™ and R”
respectively, and if C" and D’ denote the set of integer lattices points in C and
D respectively, then an integral [-map 6: C' — D’ can be extended in an
unique way to a piecewise homogeneous linear map 8 : C — D, for the image
under 6 of an integer lattice point ¢ determines the image under 6 of each
rational point on the ray Og, and the set of rational points is dense in C.

Indeed, if a3, @y, . . ., a,are elements of FI-G(m) such that 6(¢) = (a1 (q), a2(q),
., ay(q) for all ¢ in C’, then ay, as, . . ., a, determine [-maps @, @z, . . ., @,
respectively, mapping C to D, and 0(y) = (a:1(y), @ (y), ..., @,(y)) for all

yin C. A map 8 : C — P defined in this way will be called an integral l-map
between closed cones. It is not difficult to show that if V* denotes the category
whose objects are closed cones and whose morphisms are integral /-maps be-
tween closed cones, then there is an equivalence between V* and V* under
which the set of integer lattice points C’ corresponds to C, the closed cone
which envelops C’, and a morphism 6 : ¢’ — D’ in V* corresponds to § the
associated integral I-map C — D. It will be convenient to identify V* with V*
under the canonical equivalence defined in this way.

In (3, § 3], it is shown that a map R” — R is an [-map if and only if it is
piecewise homogeneous linear. Let a piecewise homogeneous linear map R* —
R Dbe said to have integer coefficients when there exists a finite set of linear
functions fi, fo, . . ., fn with integer coefficients such that given x there is an
index 7 < m for which f(x) = f;(x). A theorem proved by the author in [2]
and quoted as Theorem 3.1 in [3] shows that a piecewise homogeneous linear
map R* — R is an integral /-map if and only if it has integer coethcients. This
characterisation of integral /-maps will be used subsequently.

2. Subdivisions of rational closed polyhedral cones. Let C be a rational
simplicial cone of dimension k in R*. Then C is the positive hull of & linearly
independent rational points gi, g2, ..., g and on each ray Og; there is an
unique non-zero integer lattice point a; such that the open line segment (0, a,)
contains no integer lattice point. The point «¢,; will be called the initial integer
lattice point on Og,. 1f the simplicial cone C of dimension & is the positive hull of

the k integer points aq, as, . . ., a; where @, the initial lattice point on the ray
Oa; for each 17, it will be convenient to denote C by C(ai, as, ..., a;). This
notation is unambiguous, for C uniquely determines a1, @z, ..., a;. By the

same token, the number of integer lattice points of the form Y %_; e;a; with
0 = e; <1 is uniquely determined by C, and will be called the modulus of
C(a, as, . . ., a;). The rational simplicial cone C(ay, as, . . . , a;) is then primitive
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if its modulus is 1. It is easy to verify that the modulus of C is the index of the
subgroup generated by ay, as, . . ., i in the additive group of all integer lattice
points in the linear subspace spanned by ai, as ..., a. In particular,
C(ay, as, . . ., a;) is primitive if and only if a4, as, . . . , a; considered as elements
of the additive group R*, generate the lattice of all integer lattice points in
the linear subspace spanned by ay, as, . . ., a;. Consequently the n#-dimensional
rational simplicial cone C(a1, as, . . ., a,) is primitive if and only if the determi-
nant of the matrix [a1, as, . . . , a,], whose 7th column is a,;, has modulus 1.

In this section, some properties of subdivisions of rational closed polyhedral
cones into primitive simplicial cones are established; these are applied to the
study of integral /-maps in Section 3.

LemMa 2.1. Let C = C(ay, aq, . . ., ay) be a rational simplicial cone of dimen-
sion n in R™, and let z be an integer lattice point of the form 35—y ea, where
0 <e <1fori=1,2,...,k and kb = n. Suppose further that z is initial on
the ray Oz.

Then, forj = 1,2, ..., k, the rational simplicial cone C(ay, . .., &;, ..., a,
Qii1y - - - Uy, 2) 15 Of modulus strictly smaller than the modulus of C(ay, as, . . ., @y).

Proof. Consider the set X of all integer lattice points of the form

M=

aa;+az, where 0 £a<1l and 0= qa;< 1lfors ;.

T¥
LR

Let T denote the lattice of all integer lattice points lying in the linear subspace
spanned by ay, as, . . ., a, and A the sublattice of T generated by a4, az, . .., a,.
Let I denote the canonical projection from T to T'/A.

Let x and y be elements of X (a subset of T'), which are equivalent in T'/A.
Suppose that

x = E a@;+az and y = Z Ba, + Bz
= =

-,

i=1 1=

where 0 = a,8 < land 0 = ay, B; < 1 forz # j. Then

£—y= ; (@ — BIas+ (@ — )z

oo
—_—

has integer coefficients relative to the basis a4, a2, ..., a, of T. Now, the
coefficient of a; in x — y is (@ — B)e;. Since ¢; # 0, and 1 > |a — Ble; = 0,
it follows that @ = B. Thus for 7 # j the coefficient of a¢; in x — y is @y — B4
Since 1 > |a; — B4 = 0 for ¢ = j it follows thata; = B;for7 # j,and x = y.
Hence II maps the elements of X to distinct equivalence classes in T'/A, and
the modulus of C(ay, ..., d;, ..., G, Gry1y - - ., Ay, 2), Which is the cardinality
of X, cannot exceed the modulus of C(ay, as, . . ., a,), that is, the cardinality

of T'/A. Indeed, the cardinality of X is strictly smaller than the cardinality of
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were an element of X congruent to z, then x — 2z = > .01 @a; + (@ — 1)z
would have integral coefficients relative to the basis a1, as, ..., a, of T. But
the coefficient of a;in x — zis (@ — 1)¢;, which cannot be an integer, since the
relations 0 < a < land 1 > ¢; > 0 together imply 1 > |(@ — 1)¢;| > 0.

/A forife = 31 aa; + az, where0 £ o < land0 = a; < 1forz # 7,

PrOPOSITION 2.1. Let 2 be a complex of rational simplicial cones in R™. There
1s a sequence of subdivisions oA = A ,axH ,. .., a K such that
(i) for 1 <1 £ t,af is an elementary starring of a; 1A at a rational point;
(i1) all the simplicial cones in a4 are primitive; and
(iil) any primitive simplicial cone in K is also tn o, A .

Proof. Let ap¥ = 24, and suppose that e, . . ., ax_1# have been defined,
such that ¥ is an elementary starring of a,_;J¢ at a rational point for
1=1,2,...,k — 1, and such that any primitive simplicial cone in¢" is also
in a1 . Let a;,_; A consist of the set of simplicial cones K;, K, ..., K,, and
let p be the maximum value attained by the modulus K; as 7 ranges over
1,2,...,n.

If p = 1, then a1 is a complex of simplicial cones satisfying the required
conditions. Otherwise p > 1, and there is an index » for which the simplicial

cone K, has modulus p. Let K, = K(ay, as, . .., a;). Since K, is not primitive
there is a non-zero integer lattice point z = Y_j—; e;a;, which may be supposed
initial on the ray Oz, such that forz =1, 2, ..., s the relation 0 < ¢; < 1

holds. Let a; ¢ be that subdivision of ay_; ¢ obtained by an elementary star-
ring at the point z. If F is that face of K, which contains z as a relatively
interior point, then the simplicial cones of a;_;#” which are subdivided in this
way are precisely those which contain F as a face, and none of these is primi-
tive. Hence, every primitive simplicial cone of ¥ is in at.# . Finally, applying
Lemma 2.1, the maximum value of the modulus of simplicial cones in ;%" does
not exceed p, whilst the subdivision a,# of ¥ necessarily has at least one
fewer simplicial cone of modulus p then a;_12¢. Thus the result follows by
induction.

COROLLARY 1. Let C be a primative rational simplicial cone of dimension k
in R™. There is a primitive simplicial cone of dimension m in R™ which contains
Cas a face.

Proof. Let K be a rational simplicial cone of dimension m containing B as
a face, and apply Proposition 2.1 to the complex # consisting of K and all

its faces.

COROLLARY 2. Let C = C(ay, as, ..., a;) be a primitive rational simplicial
cone of dimension k in R™, and let y1, vo, . . . , 1. be any integer lattice points in R™.
There 1is a linear map R™ — R™ with integer coefficients mapping a; to y; for
1=1,2,...,k

Proof. In view of Corollary 2, it suffices to consider the case £ = m. In that
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case let qi, . .., qn be the elements of the standard basis for R™. Since C is
primitive, then the matrix [ai, @y, . . ., a,], whose ith column is a; for 7 = 1,
2, ..., m, has an inverse which also has integer coefficients. That is to say
the unique linear map R™ — R™ which maps a; to ¢; for72 =1,2, ..., m has
integer coefficients, and the result follows immediately.

COROLLARY 3. Suppose that K and L are rational closed polyhedral cones in
R™ which have isomorphic subdivisions into simplicial cones. Then K and L have
isomorphic subdivisions into primitive rational simplicial cones.

Proof. By Lemma 0.1, there are isomorphic subdivisions ¢ and . of K
and L respectively into rational simplicial cones. Let ao ¥ =4, a0, ..., 0,4
be a sequence of subdivisions of the complex 2#" which satisfy the conditions
prescribed in Proposition 2.1. Suppose that rational subdivisions g% =
L, 8L, ..., B have been defined such that for< = 0, 1, ...,k —1 there
is an isomorphism between the complexes o ¢ and 8,.%.

Suppose that the complex oy ¢ is obtained from «;_;2¢ by an elementary
starring at the rational point z, and that z is relatively interior to the simplicial
cone A4 of a;_1 ¢ . Let # be an isomorphism between the complexes a;_1¢ and
Bi-1Z, and let B be the simplicial cone associated with A under 6. Suppose
that v is a relatively interior rational point of B, and let the complex 8,-%¢ be
obtained from B,_1.% by an elementary starring at the point y. Then 8, and
oA are isomorphic, and by induction there is a subdivision 8,.% of & iso-
morphic with the subdivision a ¢ of .

The above argument shows that there are isomorphic subdivisions 2¢* and
Z* of K and L respectively into rational simplicial cones, such that #* con-
sists entirely of primitive simplicial cones. As in Proposition 2.1, there is a
sequence yoL* = L*, vi L*, ..., v L* of subdivisions of £ * such that v £*
is an elementary starring of v, .%* for i = 1, 2, ..., r, and v, &* consists
entirely of primitive simplicial cones. Suppose that for some 2 < r rational
subdivisions 8¢ * = JH*, §: 4%, ..., 61K * of A* have been defined such
that for ¢ = 1, 2, ..., k the complex §,_;¢* consists entirely of primitive
simplicial cones, and is isomorphic with y ;_;£*.

Let v;-£* be the complex obtained from v, #* by an elementary starring
at the point ¢. Let C be the unique simplicial cone of v,;_;-¢* which contains g
in its relative interior, and suppose that D is the simplicial cone of &, 2¢*
associated with C under an isomorphism ¢ between the complexes 6, ;¢ * and
vi—1. Suppose that D = D(ay, as, . . ., an), and let x = Y7y a;. If §,50* is the
complex obtained from 6, 2¢* by elementary starring at x, then certainly
8: 4% and v L* are isomorphic. If I is a simplicial cone in §,2¢*, then either
I belongs to §,_1¢* and is primitive by the inductive hypothesis, or else I is
the result of starring a primitive simplicial cone J of §,_;2¢* at the point x.
In the latter case J necessarily contains D as a face, so that

J=J(al,(l2,...,am,b1,b2,...,bs)
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and I = I(ay, as, ..., 45 ..., Qn b1, ..., 05 x) for somej, wherel <j =< m.
Since the vectors aq, as, . .., a, generate under addition the same subgroup
of R™ as is generated by ay, as, ..., d;, ..., a, and x, it follows at once that I

is primitive.
Thus, by induction, there are isomorphic subdivisions §.2¢* and v,.£* of
K and L respectively, both of which are complexes of primitive simplicial cones.

3. Applications.

THEOREM 3.1. The projective lattice-ordered Abelian groups which are generated
by n elements are the quotients of FI-G(n) by its principal ideals.

Proof. For the proof that a projective lattice-ordered Abelian group gener-
ated by n elements is the quotient of FI-G(n) by a principal ideal, see Baker
[1, Theorem 5.1]. (Baker's proof generalises directly to the context of lattice-
ordered Abelian groups).

For the converse, let 4 be the quotient of FI-G(n) by a principal ideal. Under
the categorical duality of Theorem 1, 4 is associated with a rational closed
polyhedral cone C in R* (see Baker [1] and Beynon [3, § 1]), and there are
subdivisions % and %, of C and R" respectively into rational simplicial cones,
such that.¢ is a subcomplex of ¥ (see Lemma 0.1). Form the subdivision ¢’
of &4 by starring each simplicial cone 4 of &, ## which meets ¢ in its
whole boundary at a rational interior point. Then.# and .¢ are subdivisions
of C and R” respectively into rational simplicial cones such that 2 is a full
subcomplex of .&. (cf. (8, Lemma 3.3]).

By Proposition 2.1,.% has a subdivision £’ consisting entirely of primitive
rational simplicial cones. The associated subdivision, #” of ¢ is then a full
subcomplex of & consisting of primitive simplicial cones. (See [8, Lemma 3.3]).

Suppose that the 1-dimensional simplicial cones in ¥’ are Ox;, Oxs, . ..,
Ox;, and let r be the uniquely determined map R* — R” which is piecewise
homogeneous linear with respect to ¢’, and maps x; to itself if Ox; is a 1-
dimensional simplicial cone of #”, and to zero otherwise. Since ¢ is a full
subcomplex of &, 7 is a piecewise homogeneous linear retract from R” onto C.
By Corollary 2 to Proposition 2.1, the retract » acts as the restriction of a
linear map with integer coefficients R* — R” on each simplicial cone of %, As
remarked in § 1, this shows that each of the maps R* — R obtained by com-
posing 7 with a canonical projection R* — R is an integral /-map, so that 7 is
an integral /-map R* — C, by definition.

Consider the I-morphism r*: A — FI-G(n) associated with 7 under the
categorical duality of Theorem 1.1. Then the composite map II»* : 4 — 4 is
the identity on A (here II denotes the canonical projection FI-G(n) — A),
and 4 is the retract of a free algebra. Thus A is projective.

If C is a rational closed polyhedral cone in R™, a map f: C — R" will be
called precewise homogeneous linear with integer coeffictents if and only if it is
the restriction of a piecewise homogeneous linear map with integer coeffi-
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cients R” — R". Theorem 3.1 makes it possible to characterise integral /-maps
between rational closed polyhedral cones.

CorOLLARY 1 (to Theorem 3.1). Let C be a rational closed polyhedral cone in
R™ and f : C — R* a piecewise homogeneous linear map with integer coefficients.
Then f is an integral I-map.

Proof. It suffices to consider the case » = 1, for if » > 1, then f can be
regarded as the product of # maps C — R, each of which is a piecewise homo-
geneous linear map with integer coefficients.

If » =1, let r be a retract R* — C constructed as in Theorem 3.1 and
consider the composite map fr : R* — R. Since fr is a piecewise homogeneous
linear map with integer coefficients R* — R it is an integral /-map R* —» R,
asremarked in § 1. Hence f, which is the restriction of fr to C, is also an integral
l-map.

CoROLLARY 2. The full subcategory of the category of finitely generated lattice-
ordered Abelian groups consisting of projective lattice-ordered Abelian groups is
equivalent to the dual of the category whose objects are rational Euclidean closed
polyhedral cones, and whose morphisms are piecewise homogeneous linear maps
with integer coefficients.

Proof. It is enough to observe that every integral /-map between rational
closed polyhedral cones is piecewise homogeneous linear with integer coeffi-
cients, and that rational closed polyhedral cones are in bijective correspondence
with quotients of FI-G(n) by its principal ideals. (See Beynon [3, § 1], or
Baker [1]).

COROLLARY 3. Let V and W be rational closed polyhedral cones in R™. Then V
and W are integrally l-equivalent if and only if they are l-equivalent.

Proof. It is sufficient to show that if V and W have polyhedrally equivalent
sections then there is an integral /-equivalence mapping V to W. (See [3,
Corollary 2 to Theorem 4.1]).

Let P and Q be polyhedral sections of 17 and W respectively, and suppose
that.¥ and 7 are isomorphic simplicial subdivisions of P and Q respectively.
Let # be the subdivision of V into simplicial cones induced by .#, and ¥
the subdivision of W into simplicial cones induced by .7 ; then.# and .¥ are
isomorphic subdivisions of 7 and W into simplicial cones.

By Corollary 3 to Proposition 2.1 there exist isomorphic subdivisions J¢*
and.Z* of V and W into primitive rational simplicial cones. Let Ox;, Oxs, . . .,
Ox; be the 1-dimensional simplicial cones of #* and Oy, Oy, ..., Oy, the
corresponding 1-dimensional simplicial cone of £*, where for each ¢ the points
x; and v, are the initial integer lattice points on their respective rays. There is
an uniquely defined bijective map 6 : IV — W, piecewise homogeneous linear
with respect to ¢, mapping x; to y, for 2 = 1, 2, ..., k and 6 is an integral
I-map in view of Corollary 2 to Proposition 2.1 and Corollary 1 to Theorem 3.1.
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Corollary 3 makes it possible to give simple proofs of non-trivial algebraic
results about finitely generated projective lattice-ordered Abelian groups; this
is illustrated by the examples described below. It is convenient to introduce
the symbol FI-G*(n) to denote the finitely generated projective lattice-ordered
Abelian group which is associated with a rational closed cone in R* having as

its section a polyhedral (n — 1)-ball. It is easy to see that if ey, e, . . ., e, are
free generators of FI-G(n), then FI-Gt(n) is the quotient of FI-G(n) by the
ideal generated by the relationse; = Oforz =1,2,..., n.

Example 1. A classification of projective lattice-ordered Abelian groups with
2 generators. (cf. Bleier [6] where an analogous characterisation is described
for projective vector lattices with 2 generators).

By Corollary 3, there is a bijective correspondence between isomorphism
types of projective lattice-ordered Abelian groups with 2 generators and
[-equivalence classes of rational closed polyhedral cones in R2. Each rational
closed polyhedral cone C in R? can be expressed uniquely as a union of finitely
many rational closed polyhedral cones Cy, Cs, ..., C;, where C; N C; = {0}
if 2 5% j, such that each cone is either a single ray or has its section a polyhedral
1-simplex. Following the notation of [3], let T'(C) be the projective lattice-
ordered Abelian group associated with C under the duality of Theorem 1.1.
Then T'(C) is isomorphic with the algebra of all integral I-maps C to R under
pointwise operations of addition, supremum and infimum (See [3, Lemma 2.1]
and § 1 of this paper), and is identified with the direct product T'(C;) X T'(C:)
X ... X I'(C,) by the map sending the integral [-map f: C —> R to
(flers feas - - - s flen)- Since each of the lattice-ordered Abelian groups T'(C;) is
isomorphic to Z or to FI-Gt(2), this shows that every projective lattice-
ordered Abelian group with 2 generators other than FI-G(2) itself is a direct
product of finitely many copies of Z and copies of FI-G*(2), and has an unique
representation of this form.

Example 2. A characterisation of lattice-ordered Abelian groups freely
generated by finite partially-ordered sets.

Let X be a finite partially-ordered set, and let F(X) denote the lattice-
ordered Abelian group freely generated by X. That is to say, let u be an order-
preserving map from X into a lattice-ordered Abelian group F(X) with the
universal property that if 6 is any order-preserving map from X into a lattice-
ordered Abelian group 4 there is an unique /-morphism ¢ : F(X) — 4 such
that ¢u = 0. A presentation for F(X) can be described as follows: let xi, xo,
..., x, be the elements of X and let P be the subset of X X X consisting of
pairs (x;, x;) such thatx; < x;. Let FI-G(r) be freely generated by ey, s, . . . , e,
and let F(X) be the quotient of FI-G(r) by the ideal generated by all relations
of the form e; v e; = e;, where (x4, x;) € P. The map p: X — F(X) mapping
x; to e; is then order-preserving, and has the stated universal property.
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To examine the isomorphism type of F(X), consider the rational closed
polyhedral cone in R” canonically associated with F(X). (See Baker [1], or
[3, § 1]). Then C is the set of points (a1, as, ..., a,) such that a; va,; = a;
whenever (x4, x;) € P. Since a; va; = a; if and only if «¢; —a; 20, it
follows that C is an intersection (possibly empty) of closed half-spaces, so that
C is a convex closed polyhedral cone in R”. Thus, C has as section either a
polyhedral n-sphere for some n < r — 1 or a polyhedral n-ball forn < 7» — 1.
Hence, by Corollary 3, F(X) has the isomorphism type of FI-G(n) or FI-G*(n)
for some # = r, and each of these possibilities is realised for some partially-
ordered set X.

Example 3. Consider the lattice-ordered Abelian group Z, consisting of
elements of FI-G(n) fixed under all l-automorphisms of FI-G(n) which are
obtained by mapping the free generators ey, e, ..., ¢, into themselves. For
r=1,2,...,n let s, denote the element A(e; Ve, V... ve;) where
the intersection is taken over all distinct r-subsets {7, s, ..., 7,} of
{1,2,...,n}. Each s,isan elementof 2,,ands; < s, < ... < 5, Moreover,
if a1, a2, ..., @, are integers such that a; < ay = ... < q, then for r = 1,
2, ..., n, the identity s,(a1, az, . . ., a,) = a, holds. Since each element of Z,
is determined by the integral /-map Z" — Z which it defines, it follows that
ifw(ey, ey, ..., e,) isanelementof Z,, then w(ey, ez, ... ,e,) = w(sy, Se,...,S,).
Hence the elements sy, sq, . . ., 5, generate Z,.

Consider the kernel K of the map P : FI-G(rn) — Z, defined by setting
P(e;) = sgfore=1,2,..., n Since every element of 2, is fixed by P it is
easy to show that K consists of those elements of FI-G(n) which can be
expressed in the form w(ey, e, . . ., €,) — w(s1, S2, ..., 5,) Wherew(ey, e, . . ., €,)
is an arbitrary element of FI-G(n). The quotient FI-G(n)/K is then associated
with the closed cone C in R” consisting of all points & = (ay, as, . .., a,) for
which f(e1, @z, ..., a,) = 0 for all fin K (see [3, § 1]). Trivially C contains
the rational closed polyhedral cone C’ consisting of all points « such that
a; £ as £ ... £ a, On the other hand, if 8 = (84, Ba, ..., B,) lies outside
C’, then there is an index 7 for which B, is strictly greater than 8, for at least »
distinct values of the index j, and the element e, — s,, which lies in K, is
non-zero at the point 8. Hence C and C’ coincide.

Thus the elements sy, so, . . ., s, generate Z, freely subject to the relations
s1 £ 52 £... =5, and in particular Z, is isomorphic with FI-G*(n).
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