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Abstract

Given a metrizable locally convex-solid Riesz space of measurable functions we provide a procedure to
construct a minimal Fréchet (function) lattice containing it, called its Fatou completion. As an application,
we obtain that the Fatou completion of the space L1(ν) of integrable functions with respect to a Fréchet-
space-valued measure ν is the space L1

w(ν) of scalarly ν-integrable functions. Further consequences are
also given.
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1. Introduction

Let X be a Banach space and ν be a (σ -additive) X -valued measure. Then the Banach
space L1(ν) of all ν-integrable functions is a closed subspace (typically proper) of
the Banach space L1

w(ν) of all scalarly ν-integrable functions [20]. Both L1(ν)

and L1
w(ν) are Banach function spaces (relative to a control measure for ν and

the pointwise almost everywhere order), with the distinction that L1(ν) has order
continuous norm (that is, a Lebesgue topology), whereas L1

w(ν) always has the
σ -Fatou property [6, 7]. Actually, L1(ν) is the order continuous part of L1

w(ν), that
is, the largest ideal inside L1

w(ν) with each element having order continuous norm,
and L1

w(ν) is the σ -Fatou completion of L1(ν), that is, the minimal Banach function
space which has the σ -Fatou property and contains L1(ν) [7].

What is the situation when ν takes its values in a Fréchet space X? It has been
known for some time that L1(ν) is complete, that is, is a Fréchet space [12]. In a
recent article [8] it was shown that L1

w(ν) is also complete and contains L1(ν) as a
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closed subspace. It is worth pointing out that the strong dual of a Fréchet space (or
lattice or function space) is typically not a Fréchet space (or lattice or function space)
and so certain duality arguments used in the Banach setting are not available in the
Fréchet setting. It is also shown in [8] that both L1(ν) and L1

w(ν) are Fréchet function
spaces with L1(ν) having a Lebesgue topology, L1

w(ν) having the σ -Fatou property
and L1(ν) being the order continuous part of L1

w(ν). The aim of this note is to establish
the ‘missing link’, namely, that L1

w(ν) is the σ -Fatou completion of L1(ν). In this
regard, we develop various aspects of the theory of Fréchet function spaces (especially
in relation to Lorentz function seminorms), which are not available in the literature
in the form needed here; this, of interest in its own right, is done in Section 2. With
these techniques we are able to establish close connections between L1(ν) and L1

w(ν)

which are known in the Banach space setting [7]. Namely, in Section 3 it is shown that
the following are equivalent: L1(ν)= L1

w(ν); L1(ν) has the σ -Fatou property; L1
w(ν)

is order continuous; L1(ν) is weakly sequentially complete; and L1
w(ν) is weakly

sequentially complete.

2. Fréchet function spaces

Let (�, 6, µ) be a σ -finite measure space and M := L0(µ) be the space of all
6-measurable, finite R-valued µ-a.e. functions on �. Functions in M differing on a
µ-null set are identified. We define M+

:= { f ∈M | f ≥ 0}, where the notation f ≤
g means that f and g are R-valued and f (x)≤ g(x) for µ-a.e. x ∈�. According to
[22, Ch. 15], a function seminorm in M is any function ρ :M+

→ [0,∞] satisfying:

(i) ρ(u)= 0 if u = 0 (µ-a.e.);
(ii) ρ(au)= aρ(u) for all a ≥ 0 and u ∈M+;
(iii) ρ(u + v)≤ ρ(u)+ ρ(v) for all u, v ∈M+;
(iv) ρ(u)≤ ρ(v) whenever u, v ∈M+ satisfy u ≤ v.

One can then extend ρ to the whole of M (the extension is again denoted by ρ) by set-
ting ρ( f ) := ρ(| f |), for any f ∈M. The closed unit ball Bρ := { f ∈M | ρ( f )≤ 1}
is solid, that is, if f ∈ Bρ and g ∈M satisfy |g| ≤ | f |, then also g ∈ Bρ . If ρ has
the additional property that ρ( f )= 0 if and only if f = 0 (µ-a.e.), then it is called a
function norm. In this case Lρ := { f ∈M | ρ( f ) <∞} is a normed space (with ρ as
its norm) and is an ideal in M, that is, f ∈M and g ∈ Lρ with | f | ≤ |g| implies that
f ∈ Lρ and ρ( f )≤ ρ(g); see [22, Ch. 15] for all of these facts. Any normed space
of this kind is called a Köthe function space and, if it is complete, a Banach function
space.

Let {ρn}n∈N be any increasing sequence of function seminorms in M. We always
assume that {ρn}n∈N is fundamental, meaning that if f ∈M \ {0}, then there exists
m ∈ N such that ρm( f ) 6= 0. We then define

L{ρn} := { f ∈M | ρn( f ) <∞, ∀n ∈ N} =
⋂
n∈N

Lρn .

The following fact is immediate from [15, Lemma 22.5]. For the notion of a locally
solid topology we refer to [3, p. 33].
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LEMMA 2.1. If {ρn}n∈N is any increasing fundamental sequence of function
seminorms, then L{ρn} is a metrizable, locally solid, locally convex Hausdorff space for
the topology induced by {ρn}n∈N. Moreover, if f ∈M and g ∈ L{ρn} satisfy | f | ≤ |g|,
then f ∈ L{ρn} and ρn( f )≤ ρn(g) for all n ∈ N.

Any locally convex Hausdorff space L{ρn} as given by Lemma 2.1 is called a (locally
solid, metrizable) function space and, if complete, a Fréchet function space (F.f.s.).

Let �= [0, 1] be equipped with Lebesgue measure µ. For each n ∈ N, let An =

[0, 1/n] and define ρn on L0(µ)+ by

ρn( f ) :=


∫ 1/n

0
f dµ if f χAn = f (µ-a.e.)

∞ otherwise.

Then {ρn}n∈N is an increasing fundamental sequence of function norms for which
L{ρn} = {0}. Let ρ := ρ2 be as above. Every Borel set A ⊆ [1/2, 1] with µ(A) > 0
satisfies ρ(χA)=∞, that is, [1/2, 1] is a ρ-purely infinite set [22, Ch. 15, Section 67].
In this case, the carrier of the ideal Lρ ⊆ L0(µ) is not all of �, but rather [0, 1/2].
To avoid pathologies of the above kind, we call an increasing fundamental sequence
of function seminorms {ρn}n∈N determining if there exists u ∈ L+

{ρn}
satisfying u > 0

pointwise µ-a.e. on �. It is useful to exhibit some examples in the nonnormable
setting.

EXAMPLE 1. Let X be a metrizable locally convex Hausdorff space generated by an
increasing fundamental sequence of seminorms (‖ · ‖(n))n∈N in X and with continuous
dual space X∗. For each n ∈ N, let

Bn := {x ∈ X : ‖x‖(n) ≤ 1},

B◦n := {x
∗
∈ X∗ : |〈x, x∗〉| ≤ 1, ∀x ∈ Bn}.

Given a (σ -additive) vector measure ν :6→ X , defined on a measurable space
(�, 6), a set A ∈6 is called ν-null if ν(B)= 0 for all B ∈6 with B ⊆ A. Let L0(ν)

denote the Riesz space of all (equivalence classes modulo equality ν-a.e. of) scalar-
valued, 6-measurable functions defined on �, with respect to the ν-a.e. pointwise
order. For each n ∈ N, define a [0,∞]-valued seminorm ‖ · ‖(n)ν in L0(ν) by

‖ f ‖(n)ν := sup
x∗∈B◦n

∫
�

| f | d|〈ν, x∗〉| ∀ f ∈ L0(ν), (2.1)

where |〈ν, x∗〉| is the variation of the signed measure 〈ν, x∗〉 : A 7→ 〈ν(A), x∗〉 for all
x∗ ∈ X∗. If ‖ f ‖(n)ν <∞ for all n ∈ N, then f is called scalarly ν-integrable. This is
equivalent to

∫
�
| f | d|〈ν, x∗〉|<∞ for all x∗ ∈ X∗ [8, Proposition 2.1]. The space of

all such functions f ∈ L0(ν) is denoted by L1
w(ν). Given a control measure µ for ν

[12, pp. 19–21], we define the function seminorms

ρn( f ) := ‖ f ‖(n)ν ∀ f ∈ L0(µ)= L0(ν) ∀n ∈ N, (2.2)

in which case L{ρn} = L1
w(ν). So L1

w(ν) is a F.f.s. [8, Theorem 2.5].
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A function f ∈ L1
w(ν) such that for each A ∈6 there exists

∫
A f dν ∈ X satisfying

〈
∫

A f dν, x∗〉 =
∫

A f d〈ν, x∗〉 for all x∗ ∈ X∗ is called ν-integrable. The subspace
of L1

w(ν) consisting of all ν-integrable functions is denoted by L1(ν). If X is a Fréchet
space and, for all n ∈ N,

ρ̃n( f ) :=

{
ρn( f ) if f ∈ L1(ν)

∞ if f ∈ L0(µ) \ L1(ν)= L0(ν) \ L1(ν),
(2.3)

then L{ρ̃n} = L1(ν) is also a F.f.s. [8, Theorem 2.5]. If X is not complete, then the
{ρ̃n}n∈N are typically not function seminorms [17, Section 3]. Since the constant
function χ� is positive µ-a.e. and belongs to L{ρn} and to L{ρ̃n}, both {ρn}n∈N and
{ρ̃n}n∈N are determining.

EXAMPLE 2. Let ρ be any determining function norm in L0(µ), with (�, 6, µ) a
σ -finite, positive measure space. A Köthe matrix A = (an)n on � is any sequence of
functions an ∈M+ which satisfy 0< an ≤ an+1 <∞ (µ-a.e. on �), for each n ∈ N.
Define the normed Köthe function space Lρ(an) := { f ∈M | ρ(an f ) <∞}, in which
case Lρ(an+1)⊆ Lρ(an) and L{ρn} =

⋂
∞

n=1 Lρ(an) is a locally solid, metrizable
function space, where ρn( f ) := ρ(an f ), f ∈M, for each n ∈ N, is an increasing
fundamental sequence of function norms. Such spaces have been treated in [4, 18],
for example. If� is a countable set and µ is counting measure, then L{ρn} corresponds
to a classical Köthe echelon space. For instance, with ρ(x) := (

∑
i∈� |xi |

p)1/p and
p ∈ [1,∞) fixed, such spaces are traditionally denoted by λp(A) [15, Ch. 27].

Further examples include L p− :=
⋂

1≤r<p Lr ([0, 1]) for p ∈ (1,∞) [5], `p+
:=⋂

p<q `q for p ∈ [1,∞) [16], and L p
loc(R), that is, pth power locally integrable

functions on R for p ∈ [1,∞) [1, 2].
Let (F, τ ) be a metrizable locally convex-solid Riesz space generated by a

fundamental sequence of Riesz seminorms {qn}n∈N [3, Theorem 6.1]. Then F has
a Lebesgue (σ -Lebesgue) topology if uα ↓ 0 implies uα

τ
→ 0 in F (uk ↓ 0 implies

that uk
τ
→ 0 in F) [3, Ch. 3]. The space F has the Fatou (σ -Fatou) property if,

for every increasing net (uα)α (increasing sequence (uk)k) in the positive cone F+

of F that is topologically bounded in F , the element u := sup uα exists in F+ and
qn(uα) ↑α qn(u) (u := sup uk exists in F+ and qn(uk) ↑k qn(u)) for all n ∈ N. This
notion is not ‘standard’; for example, in [3, p. 94] such a space F is called a Nakano
(σ -Nakano) space.

An element u of a Fréchet lattice F is σ -order continuous if it has the property
that uk

τ
→ 0 as k→∞ for every sequence (uk)k ⊆ F+ satisfying |u| ≥ uk ↓ 0. The

σ -order continuous part Fa of F consists of the collection of all σ -order continuous
elements of F ; it is a closed ideal in F [23, pp. 331–332], and clearly has a σ -Lebesgue
topology.

If F = L{ρn} is a F.f.s., then there is no distinction between using nets and sequences
for the Lebesgue and Fatou properties. Indeed, L0(µ) is a σ -Dedekind complete Riesz
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space [14, pp. 126–127], and F is an ideal in L0(µ); see Lemma 2.1. So F is also
σ -Dedekind complete [14, Theorem 25.2]. Hence whenever F has a σ -Lebesgue
topology, it also has a Lebesgue topology [3, Theorem 17.9]. The converse is obvious.
Concerning the Fatou and σ -Fatou properties, we need a preliminary result. For the
notion of an order basis in a general Riesz space we refer to [14, Section 28] and
for the concept of order separability we refer to [14, Section 23]. A normed lattice
possessing these two properties has the Fatou property whenever it has the σ -Fatou
property [23, Theorem 113.2]. The same is valid for Fréchet lattices.

PROPOSITION 2.2. Any order separable Fréchet lattice F with a countable order
basis and the σ -Fatou property has the Fatou property.

PROOF. Since F has the σ -Fatou property, it follows from [14, Theorem 23.2(ii)]
and [3, Theorem 5.4(i)] that F is σ -Dedekind complete. By order separability, F is
then Dedekind complete [14, Theorem 23.6].

Let {bn}n∈N be an increasing, positive order basis of F [14, p. 161]. Consider a
net 0≤ uλ ↑ that is topologically bounded in F . We need to show that supλ uλ exists
in F and that qn(supλ uλ)= supλ qn(uλ) for all n ∈ N. The proof proceeds as for
normed spaces [23, Theorem 113.2]. Set vλ,k := uλ ∧ kbk for all λ and all k ∈ N.
For k ∈ N fixed, vλ,k ≤ kbk for all λ and so sk := supλ vλ,k exists in F (by Dedekind
completeness). Also, sk = sup j vλ j ,k for some increasing sequence (vλ j ,k) j , by order
separability of F [14, Theorem 23.2(iii)].

For all k ∈ N, since vλ j ,k ↑ j sk , the σ -Fatou property of F implies that qn(sk)=

sup j qn(vλ j ,k) for all n ∈ N. Hence (sk)k is an increasing sequence that is topologically
bounded in F since, for all n ∈ N,

qn(sk)= sup
j

qn(vλ j ,k)≤ sup
j

qn(uλ j )≤ sup
λ

qn(uλ) <∞ ∀k ∈ N.

By the σ -Fatou property of F , it follows that s := supk sk exists in F and that

qn(s)= sup
k

qn(sk)≤ sup
λ

qn(uλ) ∀n ∈ N. (2.4)

Since {bn}n∈N is an order basis, we have s = supλ uλ [14, Theorem 28.2]. Thus
uλ ↑ s. Moreover, uλ ≤ s implies that qn(uλ)≤ qn(s) for all n and λ which, combined
with (2.4), yields qn(s)= supλ qn(uλ) for all n ∈ N. So F has the Fatou property. 2

COROLLARY 2.3. In every Fréchet function space, the σ -Fatou property and the
Fatou property are equivalent.

PROOF. Let L{ρn} be a F.f.s. (over (�, 6, µ)) with the σ -Fatou property. Note that
L0(µ) is a Dedekind complete, order separable Riesz space [14, pp. 126–127]. Since
L{ρn} is an ideal in L0(µ) (see Lemma 2.1) it follows that L{ρn} is order separable
[10, Theorem 18.C]. Observe that χ� ∈ L0(µ)+ satisfies supk( f ∧ kχ�)= f for all
f ∈ L0(µ), and hence that {χ�} is a countable order basis of L0(µ). Applying the last
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statement in [14, Theorem 29.3] to L := L0(µ), we see that the order separable ideal
L{ρn} of L0(µ) has a countable order basis. According to Proposition 2.2, F has the
Fatou property. 2

A function seminorm ρ in M= L0(µ) has the Fatou property if ρ(uk) ↑ ρ(u)
whenever 0≤ uk ↑ u in M [22, Ch. 15]. An increasing fundamental sequence of
function seminorms {ρn}n∈N is said to have the Fatou property if each ρn , for n ∈ N,
has it.

THEOREM 2.4. If {ρn}n∈N is an increasing fundamental sequence of function
seminorms with the Fatou property, then L{ρn} is a Fréchet function space with the
Fatou property.

PROOF. Let (uk)k ⊆ L+
{ρn}

be increasing and topologically bounded. Fix n0 ∈ N.
Since ρn0 is a function seminorm with the Fatou property and supk ρn0(uk) <∞, it
follows from [22, Section 65, Theorem 3] that ρn0(u)≤ supk ρn0(uk) <∞, where
u = supk uk = limk uk (pointwise). Hence u ∈ L{ρn}. Moreover, ρn0(uk) ↑ ρn0(u) as
ρn0 has the Fatou property as a function seminorm. This shows that L{ρn} has the
σ -Fatou property. Thus, Corollary 2.3 and [3, Theorem 13.9] guarantee that L{ρn} is
complete, that is, a F.f.s. with the Fatou property. 2

Recall that the Lorentz function seminorm ρL associated with any function
seminorm ρ in M= L0(µ) is defined by

ρL(u) := inf
{

lim
k
ρ(uk)

∣∣∣uk ∈M+, uk ↑ u
}
∀u ∈M+

; (2.5)

it is the largest function seminorm with the Fatou property that is majorized by ρ
[22, Ch. 15, Section 66]. The following property of ρL is established in the proof of
Theorem 2 in [22, pp. 450–451].

FACT 1. Given u ∈M+, there exists a sequence (uk)k ⊆M+ satisfying uk ↑ u and
ρ(uk) ↑ ρL(u).

LEMMA 2.5. Let {ρn}n∈N be an increasing sequence of function seminorms in L0(µ).
Then also {(ρn)L}n∈N is an increasing sequence of function seminorms. Moreover,
{ρn}n∈N is fundamental if and only if {(ρn)L}n∈N is fundamental.

PROOF. The first statement follows from (2.5).
Concerning the second statement, suppose that {(ρn)L} is fundamental. Then it

follows from (ρn)L ≤ ρn that {ρn}n∈N is also fundamental.
Conversely, assume that {ρn} is fundamental. Suppose that there exists 0< u ∈

L0(µ)+ satisfying (ρn)L(u)= 0 for all n ∈ N. Now, there is some r > 0 and a
subset A ∈6 of {w ∈� | u(w) > r} ∈6 such that 0< µ(A) <∞. Since rχA ≤ u,
we have (ρn)L(χA)= 0 for all n ∈ N. We proceed to construct a decreasing sequence
(An)n ⊆6 satisfying An ⊆ A with µ(An) >

1
2µ(A) and ρn(χAn )= 0 for all n ∈ N.
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For each n ≥ 2, define αn := (1+ 2n)/(2+ 2n) and βn :=
1
2 + 2−n . Observe that

1
2 < αn < αn+1 < 1 with αn ↑ 1 and that 1

2 < βn+1 < βn < 1 with βn ↓
1
2 . Moreover,

αnβn = βn+1 >
1
2 for all n ≥ 2.

Since (ρ1)L(χA)= 0, Fact 1 ensures for us the existence of a sequence (uk)k ⊆M+

with uk ↑ χA and ρ1(uk)= 0 for all k ∈ N. Define Bk := {w ∈� | uk(w) >
1
2 } for

all k ∈ N, in which case Bk ↑ A. Accordingly, µ(Bk) ↑ µ(A) and so there exists k0
such that µ(Bk0) > β2µ(A). Moreover, from 1

2χBk0
≤ uk0χBk0

≤ uk0 , we conclude
that ρ1(χBk0

)= 0. Set A1 := Bk0 ⊆ A so that ρ1(χA1)= 0 and µ(A1) > β2µ(A).
Observe that (ρ2)L(χA1)≤ (ρ2)L(χA)= 0. Repeat the process with ρ1 and χA

replaced by ρ2 and χA1 , to produce A2 ⊆ A1 such that ρ2(χA2)= 0 and µ(A2) >

α2µ(A1), that is, µ(A2) > α2β2µ(A)= β3µ(A).
Note that (ρ3)L(χA2)≤ (ρ3)L(χA)= 0. Again repeat the process for ρ3 and χA2

to produce A3 ⊆ A2 such that ρ3(χA3)= 0 and µ(A3) > α3µ(A2), that is, µ(A3) >

α3β3µ(A)= β4µ(A).
Proceed inductively so that at stage n one produces An ⊆ An−1 such that

ρn(χAn )= 0 and µ(An) > αnµ(An−1), that is, µ(An) > αnβnµ(A)= βn+1µ(A) >
1
2µ(A). So the sequence of sets (An)n with the properties claimed above exists.

Finally, define B :=
⋂
∞

n=1 An . Then

µ(B)= lim
n→∞

µ(An)≥
1
2µ(A) > 0.

But ρn(χB)≤ ρn(χAn )= 0 for all n ∈ N. Since {ρn} is fundamental, it follows that
χB = 0 in L0(µ), that is, µ(B)= 0, which is a contradiction. 2

Let {ρn}n∈N be any increasing fundamental sequence of function seminorms. By
Lemma 2.5, the same is true of {(ρn)L}n∈N. Hence Theorem 2.4 shows that L{(ρn)L } =⋂

n∈N L(ρn)L is a F.f.s. with the Fatou property. The inequality (ρn)L ≤ ρn for all
n ∈ N, implies that L{ρn} ⊆ L{(ρn)L } with a continuous inclusion. Moreover, given
n ∈ N, if ρ is any function seminorm in L0(µ) with the Fatou property such that
(ρn)L ≤ ρ ≤ ρn , then ρ = (ρn)L [22, Section 71, Theorems 2 and 3(d)]. Accordingly,
L{(ρn)L } is the minimal F.f.s. in L0(µ)with the Fatou property and which contains L{ρn}

continuously. By minimal we mean that if {ηn}n∈N is any increasing fundamental
sequence of function seminorms in L0(µ) (for the same measure space (�, 6, µ))
with the Fatou property and such that ηn ≤ ρn for all n ∈ N, then L{(ρn)L } ⊆ L{ηn}.

DEFINITION 2.6. L{(ρn)L } is called the Fatou completion of L{ρn} and is denoted by
(L{ρn})

F .

3. Applications

As a first application of Theorem 2.4, observe that the completeness of L1
w(ν) follows

immediately since the function seminorms ρn given by (2.2), which induce this space,
obviously have the Fatou property by [22, Section 65, Theorem 4]. For an alternative
proof see [8, Theorem 2.5].
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It is important to note that (L{ρn})
F is not necessarily obtained from L{ρn} in any

topological sense. Indeed, if X is a Banach space and ν is an X -valued vector measure,
then for the (single) function norm

ρ( f ) :=

 sup
x∗∈BX∗

∫
�

| f | d|〈ν, x∗〉| if f ∈ L1(ν)

∞ if f ∈ L0(ν) \ L1(ν),

we have Lρ = L1(ν) whereas (Lρ)F
= L1

w(ν) [7]. For certain ν, the space L1(ν) can
be a proper closed subspace of L1

w(ν); [7], [12, p. 31]. So in the Banach space setting
we see that L1

w(ν) is the Fatou completion of L1(ν). We show that the same result
holds in Fréchet spaces.

THEOREM 3.1. Let ν be any vector measure taking its values in a Fréchet space. Then
the Fatou completion of L1(ν) is precisely L1

w(ν). Thus, L1(ν) has the Fatou property
if and only if L1(ν)= L1

w(ν).

PROOF. We use the notation of Example 1. Fix n ∈ N. As noted above, ρn has
the Fatou property and, clearly, ρn ≤ ρ̃n in L0(µ). By the maximal property of the
Lorentz seminorm we conclude that ρn ≤ (ρ̃n)L in L0(µ). On the other hand, let
f ∈ L1

w(ν)
+. Choose 6-simple functions 0≤ sk ↑ f , in which case (sk)k ⊆ L1(ν)⊆

L1
w(ν). By (2.5) applied to ρ̃n ,

(ρ̃n)L( f )≤ lim
k
ρ̃n(sk)= lim

k
ρn(sk)≤ ρn( f ),

from which we can conclude that (ρ̃n)L( f )= ρn( f ) for all f ∈ L1
w(ν). These

inequalities imply that L1
w(ν)= L{ρn} ⊆ L{(ρ̃n)L } = (L

1(ν))F .
Let f ∈ (L1(ν))F , that is, (ρ̃n)L( f ) <∞, for all n ∈ N. Fix m ∈ N. By Fact 1

applied to ρm there exists (uk)k ⊆ L0(µ)+ satisfying uk ↑ f with ρ̃m(uk) ↑ (ρ̃m)L( f ).
Then supk ρ̃m(uk)≤ (ρ̃m)L( f ) <∞. From the definition of ρ̃m , we see that (uk)k ⊆

L1(ν)⊆ L1
w(ν). Since ρm has the Fatou property, we conclude that

ρm( f )= sup
k
ρm(uk)= sup

k
ρ̃m(uk) <∞.

But m ∈ N is arbitrary and so f ∈ L{ρn} = L1
w(ν). This shows that L1

w(ν)= (L
1(ν))F ,

with equality both as vector spaces and topologically.
If L1(ν)= L1

w(ν), then L1(ν) has the Fatou property. Conversely, assume that
L1(ν) has the Fatou property. It is always the case that L1(ν)⊆ L1

w(ν). Let
f ∈ L1

w(ν)
+ and choose 6-simple functions 0≤ fk ↑ f . As ( fk)k ⊆ L1(ν), it follows

from (2.2) and (2.3), for each n ∈ N, that

ρ̃n( fk)= ρn( fk)≤ ρn( f ) <∞ ∀k ∈ N.

Hence ( fk)k is topologically bounded in L1(ν). Since L1(ν) has the Fatou property, it
follows that f = supk fk ∈ L1(ν). So L1(ν)= L1

w(ν). 2
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For Banach spaces the above result is known [7], after observing that the second
associate norm ρ′′ of a function norm ρ is precisely ρL [22, p. 471].

The following result [8, Theorem 3.2], alluded to in the Introduction, is recorded
for the sake of completeness.

THEOREM 3.2. For any vector measure ν taking values in a Fréchet space we have
(L1
w(ν))a = L1(ν). In particular, L1

w(ν) has a Lebesgue topology if and only if
L1
w(ν)= L1(ν).

We provide further equivalent conditions for L1
w(ν)= L1(ν) to hold.

A Fréchet lattice F is called a KB-space if every topologically bounded, increasing
sequence in F+ is convergent. If every topologically bounded, increasing sequence
in F+, with F a Fréchet lattice, has a supremum in F , then F is said to satisfy the
σ -Levi property.

LEMMA 3.3. For any Fréchet lattice F the following are equivalent.

(i) F is a KB-space.
(ii) F satisfies the σ -Levi property and has a σ -Lebesgue topology.
(iii) F has a σ -Lebesgue topology and the σ -Fatou property.
(iv) F contains no lattice copy of c0.
(v) F is weakly sequentially complete.

PROOF. The equivalence of (i) and (ii) is part of [9, Proposition 2.1].
To establish that (ii) implies (iii), let {qn}n∈N be a fundamental system of solid

seminorms generating the topology τ of F . Let (uk)k ⊆ F+ be an increasing and
topologically bounded sequence. By the σ -Levi property of F , u = supk uk exists

in F+. Since (ii) implies (i), there exists v ∈ F with uk
τ
→ v. By [3, Theorem 5.6(iii)],

v = supk uk , that is, u = v. Fix n ∈ N. The inequality |qn(uk)− qn(u)| ≤ qn(uk − u),
for each k ∈ N, shows that qn(uk) ↑k qn(u).

That (iii) implies (ii) is obvious.
To establish that (iv) implies (ii), observe that the completeness of F ensures

the monotone completeness property (see [3, p. 45] for the definition). Then
[9, Theorem 2.5] implies that F satisfies the σ -Levi property and has a σ -Lebesgue
topology.

To see that (ii) implies (iv), again note that the completeness of F ensures the
monotone completeness property. Then [9, Proposition 2.2 and Theorem 2.5] imply
that F cannot contain a lattice copy of c0.

That (v) implies (iv) is clear. For if F is weakly sequentially complete, then it
cannot contain an isomorphic lattice copy of the Banach lattice c0 [11, 19].

Finally, that (iv) implies (v) follows from [21, Theorem 1]. 2

For Banach spaces the following result occurs in [7].

PROPOSITION 3.4. Let ν be any vector measure taking values in a Fréchet space.
Then the following statements are equivalent.
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(i) L1
w(ν)= L1(ν).

(ii) L1
w(ν) has a σ -Lebesgue topology.

(iii) L1(ν) has the σ -Fatou property.
(iv) L1

w(ν) is a KB-space.
(v) L1(ν) is a KB-space.
(vi) L1

w(ν) contains no lattice copy of c0.
(vii) L1(ν) contains no lattice copy of c0.
(viii) L1

w(ν) is weakly sequentially complete.
(ix) L1(ν) is weakly sequentially complete.

PROOF. The equivalence of (i) and (ii) occurs in the statement of Theorem 3.2 and the
equivalence of (i) and (iii) occurs in the statement of Theorem 3.1.

The equivalences of (ii) and (iv), of (iv) and (vii), and of (vii) and (viii) are
immediate from Lemma 3.3, since the space L1

w(ν) always has the Fatou property.
Finally, the equivalences of (iii) and (v), of (v) and (vii), and of (vii) and (ix) are also

immediate from Lemma 3.3 since the space L1(ν) always has a Lebesgue topology. 2

According to [12, p. 31] and [13, Theorem 5.1], condition (i) of Proposition 3.4 is
satisfied whenever the Fréchet space in which ν takes its values does not contain an
isomorphic copy of c0.

An examination of the proof of Proposition 3.4 shows that it can be adapted to
establish the following more general result. Recall that L{ρn} is super order dense
in (L{ρn})

F means that for every element 0≤ u ∈ (L{ρn})
F there exists a sequence

(uk)k ⊆ L+
{ρn}

satisfying uk ↑ u in (L{ρn})
F
[3, Definition 1.9].

PROPOSITION 3.5. Let L{ρn} be a Fréchet function space generated by the increasing
fundamental sequence of function seminorms {ρn}n∈N. Assume, for each m ∈ N, that
the restriction of (ρm)L to L{ρn} coincides with ρm , that ((L{ρn})

F )a = L{ρn} and that
L{ρn} is super order dense in (L{ρn})

F . Then the following assertions are equivalent.

(i) L{ρn} = (L{ρn})
F .

(ii) (L{ρn})
F has a σ -Lebesgue topology.

(iii) L{ρn} has the σ -Fatou property.
(iv) (L{ρn})

F is a KB-space.
(v) L{ρn} is a KB-space.
(vi) (L{ρn})

F contains no lattice copy of c0.
(vii) L{ρn} contains no lattice copy of c0.
(viii) (L{ρn})

F is weakly sequentially complete.
(ix) L{ρn} is weakly sequentially complete.

We conclude with an application to function spaces induced by a Köthe matrix
which was stated, without proof, in [4, p. 94].

COROLLARY 3.6. In the notation of Example 2, let ρ be a determining function norm
with the Fatou property. Then L{ρn} is complete and {ρn}n∈N is also determining.
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PROOF. Since ρ has the Fatou property, so does each ρn , for n ∈ N, that is, {ρn}n∈N
has the Fatou property. By Theorem 2.4, L{ρn} is complete.

Since ρ is determining, choose u ∈ Lρ that is positive µ-a.e. Then the sets An :=

{w ∈� | u(w)≥ n−1
}, for all n ∈ N, satisfy An ↑�. Let A ∈6 satisfy µ(A) > 0.

Then A ∩ An ↑ A and so there exists m ∈ N such that µ(Am ∩ A) > 0. Moreover,
χA∩Am ∈ Lρ because χAm∩A ≤ χAm ≤ m · u with m · u ∈ Lρ . So ρ is saturated
[22, Ch. 15, Section 67]. It follows from [18, Lemma 1.1] that there is an increasing
sequence (�(k))k ⊆6 with

⋃
∞

k=1 �(k)=� (µ-a.e.) such that (χ�(k))k ⊆ Lρ and,
for each (k, n) ∈ N2, there exists β(k, n) > 0 satisfying anχ�(k) ≤ β(k, n)χ�(k) for all
(k, n) ∈ N2, pointwise on �. All these inequalities and the definition of ρn imply that
ρn(χ�(k)) <∞ for all k, n ∈ N, that is, (χ�(k))k ⊆ L{ρn}. Since L{ρn} is metrizable,
there exist positive numbers λk , for all k ∈ N, such that (λkχ�(k))k is a bounded
sequence in L{ρn}. Moreover, we can choose 0< αk ≤ λk with

∑
k αk <∞. Then

the series
∑

k αkχ�(k) = v is absolutely summable in L{ρn}. Completeness of L{ρn}

ensures that v ∈ L+
{ρn}

, with v > 0 (µ-a.e.) on �. So {ρn}n∈N is determining. 2
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