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ON JOINT EIGENVALUES OF COMMUTING MATRICES 

R. BHATIA AND L. ELSNER 

ABSTRACT. A spectral radius formula for commuting tuples of operators has been 
proved in recent years. We obtain an analog for all the joint eigenvalues of a commuting 
tuple of matrices. For a single matrix this reduces to an old result of Yamamoto. 

1. Introduction, formulation of the result. Let T = (Tu..., Ts) be an s-tuple of 
complex d x ^-matrices. The joint spectrum o-pt(T) is the set of all points A = (A i , . . . , \s) 
G Cs (called joint eigenvalues) for which there exists a nonzero vector x G C* (called 
joint eigenvector) satisfying 

(1) TjX = Xjx for y = l,...,s. 

If the T/'s are commuting then (7pt(T) ^ 0. The joint spectrum can be read off the 
diagonal of the common triangular form: There exists a unitary d x d-matrix U such that 

(2) UHTjU-
' 0 Xf * 

0 0 '•• : 
\ 0 0 0 \®l 

fory'= \,...,s. 

Then 

api{T)={\t = Q^\...,\f):i=\,...,d}. 

We order the joint eigenvalues according to their norms 

(3) | | A , | | > - - - > | M | . 

Here || • || denotes the Euclidean norm in C and later on also will denote the associated 
operator norm for matrices. We omit the reference to the dimensions. 

The s-tuple T can be identified with a linear operator mapping C1 into Csd. If S = 
(S\,..., Sm) is another m-tuple of dxd-matrices, we define as TS the sm-tuple of matrices, 
whose entries are 7/5), / = 1,. . . ,sj = 1,...,m, ordered lexicographically. Continuing 
in this way we define 7™, consisting of sm entries, each of which is a product of m of 
the T/'s. Identifying again T™ with an operator mapping C1 into Cfd

9 T™ has d singular 
values 

(4) sl(T
m)>s2(T

m)>-.>sd(T
m). 

In this note we will prove 
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THEOREM 1. For any s-tuple T = (T\,..., Ts) of commuting d x d-matrices 

(5) hm(sJ(T
m))" =\\Xj\\ j=U...,d. 

m—KX>V ' 

For y = 1 this has been proved in [2]; hence we know 

(6) || A, | | = Um(SlÇT))'. 

We also remark that (6) has been proved in [1] for lp-norms and in [5] for infinite-
dimensional Hilbert spaces. If s = 1 then T™ is the usual m-th power of T = T\, and 
the joint spectrum is the usual spectrum. For this case (5) has been proved by Yamamoto 
[6], who showed that for a d x d matrix T with eigenvalues A, ordered according to their 
moduli 

(7) \im (sj(Tmj)" = \\j\ 7 = l,...,rf. 

We will prove Theorem 1 in the following section. 

2. Proof of the Theorem. It is convenient to introduce a Kronecker-type matrix 
product "(g>" in the following way: 

Let A and B be two (r, s) and (/, u) block matrices 

^ = Ç4ij)i=\,...,r,j=\,...j B = (#*>)/= l,...,fj=l,...,M 

i matrices. Define 

AijB — (AijBki)k=\,...,t,i=\,...,u 

where the Ay and By are d x d matrices. Define 

and the rt x .sw-block matrix 

/AnB . . . AXsB\ 

(8) A®B=\ : : 

\AriB . . . ArsB, 

of dimension rtd x sud. This product is associative. For d = 1 this is the usual Kronecker 
product, which we will denote by "(g)", following the customary notation (see, e.g., [4]). 
Except for d — 1, however, A® Bis different from A<g>B which is an rtd1 x sud2 matrix. 
So the product depends on d. However in order to avoid an overload of indices and as 
we keep d fixed throughout, we refrained from stressing this fact in the notation. 

The main relation for 0 carries over to §), namely 

(9) (A®B)(C®D)=AC®BD 

if all the blocks in B commute with those in C, and the dimensions are fitting. For this 
it suffices that AC and BD can be formed. We observe that I™, as defined in the first 
section, has the representation 

Tm = T®'"^T 
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as the m-fold product of T with itself. 
First we show that we can transform T to a simpler form without changing the mag­

nitudes involved in (5). Then we prove the theorem for this simple form using (6) and 

(7). 
Let S be a nonsingular d x d matrix, 

Ti = STiSTl i= 1,...,J, 

and 
f = ( 7 i , . . . , ? , ) . 

Obviously the f/'s commute too, and crpt(f) — crpt(T). We show 

do) ^(n^i i^i i i i^ ikcn / = i,...,rf, 
which implies that the lefthand side of (5) is not changed if we replace 7™ by 7™. 

7™ consists of sm blocks of J x d matrices Q,i = 1,...,sw, each of which is a product 
of m of the T/'s. Hence the corresponding block C, of 7™ satisfies C/ = SCtS~l. Thus 

(11) (Tmf7m = J2€?Ci 

(12) = or ̂ ( s cf sFsCi)sr1 

\-=i y 

(13) < | | S | | 2 ( r Y ( r , ) / / r , , r 1 

Here " < " is the Loewner partial ordering. Let z G C^ and x = Sz. The last inequality 
implies 

(,«, ;W!5s|]f|r,fW5. 

Using the Courant-Fischer representation of the eigenvalues /ii > • • • > \id of a her-
mitean d x d matrix B (e.g., [4]) 

\ii = mm max „ 
dim V=d+1 - i xG K, x^O X^JC 

for B = (J™/77™ and then for B = (J™)*1!™ and taking (14) into account, (10) follows. 
Another transformation of T which doesn't change the numbers 11 A/11 is the following: 
Given a unitary s x s matrix U = {Uy\ \etW = U® Id, where Id is the unit matrix of 

dimension d, and 

(15) T=WT, 

i.e., 
s 

fi = Y,UijTj i= l,...,s. 
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Then it is obvious that the joint spectrum of t is given by the vectors A/ = [/A/, / = 
1, . . . , d, where A/ G crpt(T). Hence || A,-|| = ||A/||, z = 1, . . . , J. Also by using (9) we get 

(16) Tm = (WT)®--®(WT) 

(17) =(W®---®W){T®--®T) 

(is) =: VTT. 

Again by (9) we see that W™ defined in the last equation is a unitary mapping of Cfd 

into itself, hence 

si(t
m) = si{Tm\ i= l , . . . , r f . 

Having now assembled our tools, we invoke a result in ([3], Vol. I, p. 224), by which 
there exists a nonsingular dxd matrix S and positive integers s\9...,st with £ J=} st = d, 
such that 

Ti = STiS-l=diag(T},...,%) i = l , . . . , 5 , 

where 

. / * \ 
(19) 77= 0 •.. f o r / = l , . . . , 5 i / = l , . . . , f 

\ o o vj 
is an sv x .?„ matrix, upper triangular with constant diagonal. Observe also that {j^^Hf™ 
is block diagonal with sv x sv blocks. This shows that we have to prove (5) only for 
Tj's of the form (19). Clearly then ||Ai|| = • • • = ||A^||. Also by applying a suitable 
transformation of the form (15), we can assume that Tj,..., Tj have zero diagonals, 
while the diagonal of T\ is 11A111. 

Now from 
/nrvn\Hnr<m ^ /rrvn\Hrvm 

we get 

(*i(7"))i > {siiDf > (sd{T?))" i= l,...,d. 

But the leftmost term converges to ||Aj || by (6), while the rightmost term converges to 
min|A/(ri)| = ||Ai|| by (7). Hence (5) holds for i = 1,...,</. 

This finishes the proof. 
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