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ON JOINT EIGENVALUES OF COMMUTING MATRICES

R. BHATIA AND L. ELSNER

ABSTRACT. A spectral radius formula for commuting tuples of operators has been
proved in recent years. We obtain an analog for all the joint eigenvalues of a commuting
tuple of matrices. For a single matrix this reduces to an old result of Yamamoto.

1. Introduction, formulation of the result. Let T = (71,..., T) be an s-tuple of
complex d X d-matrices. The joint spectrum o (T) is the set of all points A = (Ay,..., ;)
€ C° (called joint eigenvalues) for which there exists a nonzero vector x € C? (called
Jjoint eigenvector) satisfying

e)) Tx=Mxforj=1,...,s.

If the 7;’s are commuting then ou(7T) # (. The joint spectrum can be read off the
diagonal of the common triangular form: There exists a unitary d x d-matrix U such that

e
0 X\ .. ..

) UITU = 2T T  forj=1,. s
o o

0 0 0 X\
Then
oM ={ =, A ri=1,...,d}.

We order the joint eigenvalues according to their norms
®) Ml > > (Al

Here || - || denotes the Euclidean norm in C" and later on also will denote the associated
operator norm for matrices. We omit the reference to the dimensions.

The s-tuple T can be identified with a linear operator mapping C¢ into C*¢. If § =
(81, . ..,Sm) is another m-tuple of d X d-matrices, we define as 7S the sm-tuple of matrices,
whose entries are 13S;,i = 1,...,s,j = 1,...,m, ordered lexicographically. Continuing
in this way we define 7™, consisting of s™ entries, each of which is a product of m of
the T;’s. Identifying again 7™ with an operator mapping C¢ into C*"¢, T™ has d singular
values

@ siT™) 2 52(T") 2 -+ 2 sa(T").

In this note we will prove
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THEOREM 1. For any s-tuple T = (T, ..., T;) of commuting d x d-matrices

(5) lim (M) =Nl =14

Forj = 1 this has been proved in [2]; hence we know

Q) Il = im (siT™)*.

We also remark that (6) has been proved in [1] for /,-norms and in [5] for infinite-
dimensional Hilbert spaces. If s = 1 then 7™ is the usual m-th power of 7 = T}, and
the joint spectrum is the usual spectrum. For this case (5) has been proved by Yamamoto
[6], who showed that for a d X d matrix T with eigenvalues )\; ordered according to their
moduli

L
™ Jim (s(T)" =y j=1,....d
We will prove Theorem 1 in the following section.

2. Proof of the Theorem. It is convenient to introduce a Kronecker-type matrix
product “®” in the following way:
Let 4 and B be two (r, s) and (¢, u) block matrices

A= (Ayi=1,.rj=1,..s B=Byi=1, tj=1,..u

where the 4;; and B;; are d X d matrices. Define

.....

and the rz X su-block matrix
AnB ... AB
® ABB=| :
4.8 ... A.B
of dimension rtd x sud. This product is associative. For d = 1 this is the usual Kronecker
product, which we will denote by “®”, following the customary notation (see, e.g., [4]).
Except ford = 1, however, 4 ® B is different from 4 ® B which is an rtd* x sud* matrix.
So the product depends on d. However in order to avoid an overload of indices and as
we keep d fixed throughout, we refrained from stressing this fact in the notation.

The main relation for ® carries over to &, namely

€)) (A®BYC®D) =AC®BD

if all the blocks in B commute with those in C, and the dimensions are fitting. For this
it suffices that AC and BD can be formed. We observe that 7™, as defined in the first
section, has the representation

m=T® --T
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as the m-fold product of T with itself.
First we show that we can transform T to a simpler form without changing the mag-
nitudes involved in (5). Then we prove the theorem for this simple form using (6) and

).

Let S be a nonsingular d X d matrix,
Ti=ST.s'  i=1,...s,

and
r=({,...,T).

Obviously the 7;’s commute too, and Um(T) = op(T). We show
(10) s @™ < ISI IS~ s(T™  i=1,....d,

which implies that the lefthand side of (5) is not changed if we replace 7™ by 7™.
T™ consists of s™ blocks of d X d matrices C;,i = 1,...,s™, each of which is a product
of m of the T;’s. Hence the corresponding block C; of T™ satisfies C; = SC;S~". Thus

m

“

(11) (THIT" =5 Cl'C
i=1
Sm
(12) - (s*‘)”(z Cf’S”SC,)S”
i=1
(13) < |ISIPe= TS
Here “<” is the Loewner partial ordering. Let z € C? and x = Sz. The last inequality
implies
x (T H T (T2
14 = < ISP ——=.
(14) S <ISPIS PR,
Using the Courant-Fischer representation of the eigenvalues u; > --- > py of a her-

mitean d X d matrix B (e.g., [4])

. xl'Bx
i4; = min max —
dim V=d+1—i xeV,x#0 X'X

for B = (™) 7™ and then for B = (T™)"T™ and taking (14) into account, (10) follows.
Another transformation of 7 which doesn’t change the numbers || \;|| is the following:
Given a unitary s X s matrix U = (uy), let W = U ® I, where I, is the unit matrix of
dimension d, and

(15) T = WT,

ie.,
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Then it is obvious that the joint spectrum of 7 is given by the vectors X; = U);, i =
1,...,d, where \; € o(T). Hence || ;]| = ||\i]l,i = 1,...,d. Also by using (9) we get

(16) ™=WNg--- W)
(17) =W W(TR---B®T)
(18) = T

Again by (9) we see that W™ defined in the last equation is a unitary mapping of C*"¢
into itself, hence
si(T™) = s(T™), i=1,...,d.

Having now assembled our tools, we invoke a result in ([3], Vol. L, p. 224), by which
there exists a nonsingular d X d matrix S and positive integers sy, ...,s, with ©/_, s; = d,

such that
T, = ST,S™! = diag(T!,..., 7Y i=1,...,s,
where
5
(19) Tv=|¢o .  |fori=1l...,s wv=1,.,t
0 0 X\

is an s, x s, matrix, upper triangular with constant diagonal. Observe also that (77)/ 7™
is block diagonal with s, X s, blocks. This shows that we have to prove (5) only for
T;’s of the form (19). Clearly then ||\;]| = --- = ||\4]|- Also by applying a suitable
transformation of the form (15), we can assume that T5,...,T; have zero diagonals,
while the diagonal of T is ||\ ]].
Now from
(T > (T Ty

we get

(@) = (™) = (suTP)*  i=1..rd.

But the leftmost term converges to ||A;|| by (6), while the rightmost term converges to
min |\(71)| = ||M\]] by (7). Hence (5) holds fori = 1,...,d.
This finishes the proof.
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