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A DUAL CHARACTERISATION OF THE EXISTENCE
OF SMALL COMBINATIONS OF SLICES

ROBERT DEVILLE

We characterise, by a property of roughness, the norms of a Banach space X such that the
dual unit ball has no small combination of w*-slices. Among separable Banach spaces,
the existence of an equivalent norm for this new property of roughness characterises spaces
which contain an isomorphic copy of {1 (N).

1 INTRODUCTION

Throughout this paper, X denotes a Banach space, B(X) its unit ball, S{X) its
unit sphere, B(X*) the unit ball of its dual and S5(X*) the unit sphere of its dual. Let

us first recall some basic definitions and introduce the notion of “average rough norm”:
Definitions.

1. Let C be a closed convex subset of X . We say that C is e-dentable (respectively
c-w*-dentable if X is a dual space) if there exists a slice S (respectively w* -slice 5)
with diam (S) < ¢ (diam (.S) denotes the diameter of S). ’

We say that C contains an e-combination of slices (respectively an ¢ -combination
of w*-slices) if there are slices (respectively w*-slices) Si,...,8, of C with
diam (-'1;(51 + .-+ Sn)) <e.

2. A one-sided Gateaux differential of the norm || || of X at = € X is a function

tull —
d*||z]l : X — R such that, for all v € X, dt|z||(u) = lim,_¢+ ﬂmt”—”m”- .

3. We say that the norm of X, or merely X where there is no ambiguity, is ¢-rough
if for all z € S(X) and for all n > 0 there exist y,z € S(X) and u € S(X) such that

(a) lly—=ll <n and |z -zl <7
(b) (d*llyll - d*lzl)(w) > e — 7.
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4. We say that the norm of X , or merely X when there is no ambiguity, is £-average
rough if, for all z,,...,z, € S(X) and for all 7 > 0, there exist ¥3,...,Yn, 215-++,2n €
S(X) and u € S(X) such that:

(a) forall i, 1<i<n, |yi—z] <7 and |z;—z|<n

(b) &35 (@l — d*flzll)(w) > e — 7.

We refer the reader to [2] and [7] for a study of the small combination of slices
property.

An obvious observation is that, if X is ¢-average rough, then X is e-rough. More
precisely, in the definition of ¢-average roughness, for any n € N and any zy,...,z, €
S(X), there exists a common direction of roughness « for many of the z;, 1 <7 < n
(but not necessarily for all of them).

In [6], Leach and Whitfield introduced and studied rough norms. In 5], John and
Zizler have shown that X is e-rough if and only if B(X*) is not £-w*-dentable. More-
over, it is shown, for instance in [3], that for separable Banach spaces, the existence of
an equivalent rough norm characterises the separable Banach spaces with non-separable
dual.

We shall show that X is e-average rough if and only if B(X*) does not contain
any ¢-combination of w”-slices. Moreover, for separable Banach spaces, the existence
of an equivalent e-average rough norm, for some € > 0, characterises the spaces which
contain £1(N).

2 CHARACTERISATION OF AVERAGE ROUGH NORMS.
THEOREM 1. Let 0 < e <1 and let X be a Banach space. The following condi-

tions are equivalent:
1. X is e -average rough;

2. For each zy,...,z, € S(X),

R ; i—yll -2
limsup_‘z(ﬂzfy”ﬂilgﬁ yl| )25;

B(X*) does not contain any e -combination of w* -slices.

i=1

w

Dually, an analogous result holds:

THEOREM 2. The following conditions are equivalent:
1. X* is ¢ -average rough;
2. For each zj,...,z} € 5(X*),

. 1 Pyt oyt -2
lim sup _Z(Ilzl+yll+llw, vl )25;

yreX= lly*ll—o ™ ly*|l
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3. B(X) does not contain any e -combination of slices.

REMARK:: These two results are isometric, and give dual characterisation of the
existence of small combinations of slices B(X) (respectively small combinations of w*-
slices of B(X™)).

PROOF OF THEOREM 1: Some of the arguments are refinements of ideas in [5] and
[8].

(1) = (3): Suppose X is e-average rough and let Sj,...,S, be w*-slices of
B(X*). Replacing Si,...,S5. by smaller w*-slices, we can assume that for all ¢ €
{1,...,n}, S; —S(z,,B(X ):m) ={f € B(X*); f(=:) >1—n}, with z; € S(X) and
n1>0.

By hypothesis there exists y1,...,¥n, 21,...,2n € S(X) and u € S(X) satisfying:

a. forall i, |lys — zi|| <7 and |z; — zi|| < n;
% 2 (@l — d¥llzd)(w) > e —n.

Using the Ascoli-Mazur theorem ([4]), choose fiy9i € S(X*) satisfying fi(y;) =1,
fi(uw) = d¥|lyill(v), gi(z) = 1 and gi(u) = d¥||z||(x). Condition (b) implies that
Ly (fi—gi)(v) > e —n hence [|L X% (fi —g:i)ll > € — n. On the other hand,

fi(z:) = filyi) = ||l#z: —y:|| > 1 —n and so f; € S;; an analogous calculation shows that
gi € S; and we have shown that diam (2(X1, S:)) > ¢ — 1.
Since if we replace n by #' € (0,7), then the S; are replaced by S} C S; and

e (53] o (2 (555)) >

this shows that diam (1(X 0., S:)) >«
(3) = (2): Let z;,...,2, € S(X), let X and a be two non-negative real num-
bers, and let § € (0,a)e) be fixed. By hypothesis, B(X*) does not contain any

e-combination of w* -slices, so there exist fi1,..., fn, g1,--..gn so that
a. forall ¢, f; €S; and g; € Si, where S; = S(z;, B(X"),0);

1 — 1 —
;;fi_;;gi

>e(l— a).
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So there exists u € S(X) such that £ 3" | (f; — gi)(u) > e(1 ~ a), hence

n

n

LS (o M+l = 2al) > 23 (il o Do) + g = )
i=1

=1

>~ > fil=i) + - > gi(=i) + 2 (; S o(fi- gi)(u))
i=1 i=1 i=1

21—-6+1-6+2(l - @)

> 2 -2 ae+ Ae(l - @)

22+ (1 - 30).

So we have:

1 Z (||:c, + Aull +!z,~ — dul| —2) > e(1 - 3a).
n

i=1

This shows that, for every A > 0:

1¢ IIm.-+yI|+|!:c,-—y||—2)
sup - Ze€
2, ( Iyl

yeX, llyll=2 n i=1

whence

1 — ; iyl —2
limsup _Z(uz+y||+nw vl )26

yEX, llyll—0 ™ § lyll

i=1
(2) = (1): Let z,,...,2, € S(X) and 7 € (0,1). By hypothesis, there exists
u € S(X) and t € (0,7/3) such that

1<~ (=i + tull + |z — tul| — 2 n
(1) EZ( - Ze-3

i=1

Since the real functions ¢; : t — ||l@; +1u|| are convex, if ¢} denotes the right derivative
of ¢;, we have, for £t > 0:

1
t

(9i(0) — pi(—1)).

PU(t) > (pilt) ~ pi(0)) and pl(~1) <

So
d*lzi + tufl(v) >

S

(=i + tull - 1)

and
. 1
—d%||z; — tulj(u) > 't-(llzi - tuf| - 1).
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Summing these inequalities for 1 <1 < n:

3 (@ + tul = ¥ — tul) () > 0 Mt el sl 22
=1 =1

Therefore, using (1):

(2) =3 (@l tul - o - () > <~ 7

R Ty + tu Ty — tu

Putting y; = m , Ty = m we have that
(a) Forall 7, y;,2; € §(X).

. L | + tul| ~ 1 {ftull 2t .

) Foralt i, s~ < (B2t oy < R <

llz: ~ yif] <n and similarly |z — zi| <.
() 7 X (vl — dtljzi])(w) 2 & — 7.

Let us check condition {c). Indeed, for each 1,
s + tulld® (ly:(l(w) = d* f|zi + tul|(w)

and

Nz — tufjd® fjzi(u) = d* |lz; — tulj(=)
therefore

A llyall(w) — d¥l[zefl(w) > d¥ |z + tull(v) — d* |z - tulj(v)
=i + tull = 1)d* flz; + tu]|(w)|
—(lle: — tull — 1)d* flz; — tufj(w)]
> dt||z; + tul(u) — d¥|jz; — tufl(w) - 2t.

Condition (c) is obtained by summing these inequalities and applying (2). This shows
that the norm of X is e-average rough and completes the proof of Theorem 1. n

The proof of Theorem 2 is similar and left to the interested reader. Note that in
the proof of Theorem 2, (1) = (3), it is enough to choose f;,g; € S(X) satisfying
filys) > 1 — (n ~ l=: — wil|), gi(2:) > 1 — (7 — ||2i — z:||) and analogous conditions for
f:(x) and g;(v), and to apply the local reflexivity principle ([10, Theorem 3.1, p.33}).
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3 EXAMPLES AND APPLICATIONS

" In [3], Godefroy and Maurey definea norm || || on X to be everywhere octahedral
if, for every finite dimensional subspace Y of X and every € > 0, thereis an z € X \{0}
(depending on Y and ¢) such that forall t €Y, ||t +z| > (1 —e)(|itl + ||]])-

EXAMPLE:: The usual norm in £;(N) is everywhere octahedral. Indeed, let Y be
a finite dimensional supspace of #;(N) and ¢ > 0. By compactness of S(Y'), we can
find an n € N such that, if Z is the subspace of ¢;(N) whose elements are supported
by the n first coordinates, then for all y € S(Y),

d(y, 2) = inf{Jly — zll; z € Z} < e/2.

Let = € £*(N)\{0} have its first n coordinates equal to 0. If y € Y, choose z € Z
such that ||y — z|]| < £||y||, then

2 ||z + =l — lly — 2|l

Z izl + ll=ll = lly — =l
2 [lyll + ll=ll = 2lly — =l
2

(1 =e)ligll + ll=H)

lly + |l

as required.
PROPOSITION 3. An everywhere octahedral norm is 2 -average rough.

PROOF: Observe that by homogeneity, a norm on X is everywhere octahedral if
and only if, for every finite dimensional subspace Y of X and every € > 0, there is an
z€ X, |lz||=1 suchthat,forall t€Y and a€R, |t+az| =1 -¢e)(|t]+ la|).

Let € > 0 and let z1,...,2, € X be of norm 1. Denote by Y the linear space
spannned by z,,...,z,. By the previous remark, there is an = € S(X) such that for

al yeY,

it + vezll > (1 — &) (It + Ve)
and

lit = Vez|l > (1 - €)(|Itll + V).
So

It + Vez|| + II\f/E— Vez| - 2|t >2(1 —e — Velltl)-

Applying this inequality successively for t =z;, 1 <1 € n, and summing:

1« ”zi + he” + ”zi — he” -2
- >2(1-e— ),
> T ( )
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where h, = \/ex. This inequality holds for arbitary ¢ > 0, so the proposition follows
from Theorem 2(2). 1
REMARKS: (a) The usual norm in £;(N) is everywhere octahedral, hence, by
Proposition 3, it is 2-average rough.
(b) Remark (a) is false if we replace the usual norm of £!(N) by an equivalent norm.
Indeed, there exists on co(N) an equivalent locally uniformly rotund norm, hence its
unit ball is dentable and the dual norm in £}(N) is not even rough.

(c) The author does not know if the converse of Proposition 3 holds.

PROPOSITION 4. Let X be a separable Banach space. The. following are equiva-

lent:

1. X has an equivalent e -average rough norm for some € > 0;
2. X has an equivalent 2 -average rough norm;

3. X contains £}(N).

PROOF: (1) = (3): If there exists an ¢-average norm on X , then, by Theorem 1,
B(X*) does not contain any ¢-combination of w* -slices, and so, by a result of Bourgain
({1, lemme 3-7]), X contains ¢*(N).

(3) = (2): If X is separable and contains £!(NN), then Godefroy and Maurey ([3,
corollaire I11.13]) showed that there exists on X an everywhere octahedral norm and
by Proposition 3, this norm is 2-average rough.

(2) = (1) is obvious. [}

PROPOSITION 5. If a Banach space X is e -average rough, then there is a separable
closed subspace Y C X such that Y, with the restricted norm of X , is also average
rough.

PrOOF: Let Yy be a one-dimensional subspace of X and let us define a sequence
of finite dimensional subspaces of X in the following way: suppose Yy,Y1,...,Y, have
been defined and choose a %-net Ay, = {z1,22,...,2k,} in S(¥};) and for each subset 4
of A,,if we denote 4 = {t;,...,t,}, choose yf!,...,y2, =zf,...,z2 and v € S(X)
satisfying:

a. forall i€ {l,...,n}, [y —t:ll <3 and [|zf — il < 3;

b. L300, (@ llyfll - dHllzA 1) () > e~ 2.

Let Y,41 be the subspace of X spanned by Y, and all the y#, =2, «* (for all

ACAp). Let Y = |J Y,. Then Y is a separable subspace of X and Y is e-average
PEN

rough. n
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COROLLARY 6. Let X be a Banach space (not necessarily separable) which is

€ -average rough for some € > 0. Then X contains ¢}(N).

PROOF: By Proposition 5, there exists a separable subspace Y of X which is

e-average rough. By Proposition 4, Y contains £!(N) and the corollary follows. ]
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