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A DUAL CHARACTERISATION OF THE EXISTENCE
OF SMALL COMBINATIONS OF SLICES

ROBERT DEVILLE

We characterise, by a property of roughness, the norms of a Banach space X such that the
dual unit ball has no small combination of w*-slices. Among separable Banach spaces,
the existence of an equivalent norm for this new property of roughness characterises spaces
which contain an isomorphic copy of t\ (N).

1 INTRODUCTION

Throughout this paper, X denotes a Banach space, B(X) its unit ball, S(X) its

unit sphere, B(X*) the unit ball of its dual and S(X*) the unit sphere of its dual. Let

us first recall some basic definitions and introduce the notion of "average rough norm":

Definitions.

1. Let C be a closed convex subset of X. We say that C is e-dentable (respectively

£-w*-dentable if X is a dual space) if there exists a slice 5 (respectively w* -slice 5)

with diam(S) < e (diam(S) denotes the diameter of 5 ) .

We say that C contains an e-combination of slices (respectively an £ -combination

of w*-slices) if there are slices (respectively ID*-slices) Si,...,Sn of C with

d ia in( i (5 j + • • • + Sn)) <e.

2. A one-sided Gateaux differential of the norm || || of X at x € X is a function

d+\\x\\ : X -> R such that, for all u 6 X, d+\\x\\{u) = limt_0+ N * + *ttN ~ NZN .

3. We say that the norm of X, or merely X where there is no ambiguity, is e-rough

if for all x € S(X) and for all 77 > 0 there exist y,z £ S(X) and u £ S(X) such that

(a) \\y - x\\ < r, and \\z - x\\ < r,

(b) (d+|M|
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114 R. Deville [2]

4. We say that the norm of X , or merely X when there is no ambiguity, is e -average
rough if, for all X j , . . . , xn £ S(X) and for all r] > 0, there exist J/J , . . . , yn , z j , . . . , zn 6
S(X) and u € S(X) such that:

(a) for all i, 1 < i ^ n, ||j/j - xt\\ < t] and ||z; - z;|| < TJ

We refer the reader to [2] and [7] for a study of the small combination of slices
property.

An obvious observation is that, if X is £-average rough, then X is e-rough. More
precisely, in the definition of e-average roughness, for any n £ N and any Xj,..., xn 6
S(X), there exists a common direction of roughness tt for many of the xi, 1 < i ^ n

(but not necessarily for all of them).

In [6], Leach and Whitfield introduced and studied rough norms. In [5], John and
Zizler have shown that X is e-rough if and only if B{X*) is not e-w* -dentable. More-
over, it is shown, for instance in [3], that for separable Banach spaces, the existence of
an equivalent rough norm characterises the separable Banach spaces with non-separable
dual.

We shall show that X is e -average rough if and only if B(X*) does not contain
any e -combination of w* -slices. Moreover, for separable Banach spaces, the existence
of an equivalent e -average rough norm, for some e > 0, characterises the spaces which
contain

2 CHARACTERISATION OF AVERAGE ROUGH NORMS.

THEOREM 1. Let 0 < e < 1 and let X be a Banach space. The following condi-

tions are equivalent:

1. X is e-average rough;

2. For each x\,... ,xn £ S(X) ,

3 . B{X*) does not contain any e -combination of w* -slices.

Dually, an analogous result holds:

THEOREM 2. The following conditions are equivalent:

1. X* is e -average rough;

2. For each x\, ...,x*n£ S(X*) ,

1 V^ / IK + 2/11 + Ik* - 2/11 - 2\hmsup - > " ' " > e;
,,*<=Y* ll.,»ll_n n r—i \ \\V \\
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3. B(X) does not contain any e -combination of slices.

REMARK:: These two results are isometric, and give dual characterisation of the

existence of small combinations of slices B{X) (respectively small combinations of w* -

slices of B(X*)).

PROOF OF THEOREM 1: Some of the arguments are refinements of ideas in [5] and
[8].

(1) =>• (3): Suppose X is £-average rough and let Si,...,Sn be w* -slices of

B{X*). Replacing S\,...,Sn by smaller w*-slices, we can assume that for all i €

{ l , . . . , n} , Si = Si(xi,B(X*),V) = {f e B(X*); f(Xi) > 1 - 77} , with z< 6 S(X) and

f] > 0 .

By hypothesis there exists y-y,..., yn , Z j , . . . , zn £ S(X) and u £ S(X) satisfying:

a. for all z, \\yi — Xi\\ < 77 and ||z; — X{\\ < r/;

b- iE7=1(d
+\\yi\\-d+\\zi\\)(u)>e-V.

Using the Ascoli-Mazur theorem ([4]), choose fi,gi G S(X*) satisfying fi(yi) = 1,
fi(u) = d+\\yi\\(u), gi(z) = 1 and gi(u) = d+||zi||(w). Condition (b) implies that
i E"=i (/• ~ 9i)iu) > e - V hence ||£ ^"=1 {fi ~ 9i)\\ > e - V. On the other hand,
fi(%i) ^ fi{yi) — \\xi — Vi\\ > 1 — V anc^ so /j 6 5; ; an analogous calculation shows that
gi £ Si and we have shown that diam (^-(5Z"=i ^«)) > e — V•

Since if we replace r\ by r/' € (0,77), then the Si are replaced by S\ C S; and

this shows that diam (^(X)i*=i ^i)) ^ e •

(3) =£> (2): Let Xi,...,xn 6 S(X) , let A and a be two non-negative real num-
bers, and let 6 £ (0,a\e) be fixed. By hypothesis, B(X*) does not contain any
e-combination of w* -slices, so there exist f 1 , . . . , fn , gi, • • •. gn so that

a. for all i, /< £ Si and gi£ S{, where St = S(xi,B(X*),6);

b. 1 ^ . 1 "
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So there exists u G S(X) such that ^ ]C£=i (/» ~" 9i)(u) > e ( l ~ a ) > hence

1 n

\\xi + \u\\ + \\Xi - A«||) > - V (/((xi + Au) + fliCxi - Au))

> 1 - 5 + 1 - * + Ae( l -a)

> 2-2Aae + Ae(l - a)

> 2 + Ac(l - 3 a ) .

So we have:

s e ( l - 3 a ) .

This shows that, for every A > 0:

sup
ygX, ||y||=A

whence

limsup —

(2) => (1): Let Xi,. . . ,xn G S(X) and 77 G (0,1). By hypothesis, there exists

u G S(X) and < G (0, rj/3) such that

l ^ / | | x < + f a | | + | | » i - t u | | - 2 \ y

Since the real functions y>i : t —» ||x< +tu\\ are convex, if y?J denotes the right derivative
of <pi, we have, for t > 0:

Vi(^) ^ ""(^»(^) — Vi(0)) and ̂ j(—t) ^ —(y?i(0) — fi{—^)).
t t

So

^ t

and
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Summing these inequalities for 1 < * ̂  n:

\xi + tu|| - d+\\xi - te||)(u) ^ > - y J a .

Therefore, using (1):

(2) - £ (d+\\xi + te|| - d+|K - te||(«)) >t-\.

Putting yi = ——-r , Zi = T —r we have that
\)Xi + tu\\ \\xi - tu\\

(a) For all i, yi,Zi£S(X).

(b) For all i, \\xi-yi\\
\\Xi + tu\\ - 2t

s°
11*. ~ Vi\\ < V and similarly \\xi - ^«|| < rj.

Let us check condition (c). Indeed, for each i,

and

\\xi - tttllrf+U^IKu) = d+H^ - tu\\(u)

therefore

i - tu\\{v.)

- 2t.

Condition (c) is obtained by summing these inequalities and applying (2). This shows

that the norm of X is e -average rough and completes the proof of Theorem 1. R

The proof of Theorem 2 is similar and left to the interested reader. Note that in

the proof of Theorem 2, ( l ) =» (3), it is enough to choose / , , £ , £ S{X) satisfying

fi(yi) > 1 - (V - IN - 3/i||). 9i(zi) > ! - ( » ? - ||-*i - *i||) and analogous conditions for

/,(w) and gi{u), and to apply the local reflexivity principle ([10, Theorem 3.1, p.33]).
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3 EXAMPLES AND APPLICATIONS

In [3], Godefroy and Maurey define a norm || || on X to be everywhere octahedral
if, for every finite dimensional subspace Y of X and every e > 0, there is an x G ^ \{0}
(depending on Y and t) such that for all t G Y, \\t + x\\ > (1 -0(11*11 + ||z||)-

EXAMPLE:: The usual norm in ^i(N) is everywhere octahedral. Indeed, let Y be
a finite dimensional supspace of ^i(N) and £ > 0. By compactness of 5(y) , we can
find an n G N such that, if Z is the subspace of ^i(N) whose elements are supported
by the n first coordinates, then for all y G S(Y),

d(y,Z)=ini{\\y-z\\;zeZ}<e/2.

Let x G £1(N)\{0} have its first n coordinates equal to 0. If y G Y, choose z G Z
such that ||a/ - z|| < f ||y]|, then

a s r e q u i r e d .

PROPOSITION 3. An everywhere octahedral norm is 2-average rough.

PROOF: Observe that by homogeneity, a norm on X is everywhere octahedral if
and only if, for every finite dimensional subspace Y of X and every e > 0, there is an
x G X, \\x|| = 1 such that, for all t £Y and aG R, \\t + ax\\ ^ (1 - e)(||<|| + \a\).

Let e > 0 and let x\,... ,xn G X be of norm 1. Denote by Y the linear space
spannned by Z j , . . . , z n . By the previous remark, there is an x G S(X) such that for

a n d

||< - ^ | | £ ( i -

A p p l y i n g t h i s i n e q u a l i t y s u c c e s s i v e l y for < = x ; , l ^ z ^ C n , a n d s i u i n n i n g :
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where ht — yfix. This inequality holds for arbitary e > 0, so the proposition follows
from Theorem 2(2). I

REMARKS: (a) The usual norm in ^i(N) is everywhere octahedral, hence, by

Proposition 3, it is 2-average rough.

(b) Remark (a) is false if we replace the usual norm of ^1(N) by an equivalent norm.
Indeed, there exists on co(N) an equivalent locally uniformly rotund norm, hence its
unit ball is dentable and the dual norm in £J(N) is not even rough.

(c) The author does not know if the converse of Proposition 3 holds.

PROPOSITION 4. Let X be a separable Banach space. The. following are equiva-

lent:

1. X has an equivalent e -average rough norm for some e > 0 ;

2. X has an equivalent 2-average rough norm;

3. X contains

PROOF: (1) => (3): If there exists an e-average norm on X , then, by Theorem 1,
B(X*) does not contain any e -combination of w* -slices, and so, by a result of Bourgain
([1, lemme 3-7]), X contains £J(N).

(3) => (2): If X is separable and contains £J(iV), then Godefroy and Maurey ([3,
corollaire 111.13]) showed that there exists on X an everywhere octahedral norm and
by Proposition 3, this norm is 2-average rough.

(2) => (1) is obvious. |

PROPOSITION 5. If a Banach space X is e -average rough, then there is a separable
closed subspace Y C X such that Y, with the restricted norm of X, is also average
rough.

PROOF: Let Yo be a one-dimensional subspace of X and let us define a sequence

of finite dimensional subspaces of X in the following way: suppose Yo, Y\,..., Yp have

been defined and choose a - -net Ap = {xt, X2,..., sjfcp} in S(Yp) and for each subset A

o f A p , i f w e d e n o t e A = { h , . . . , t n } , c h o o s e y ^ , . . . , V n , z\,-- - , z n anc* u A S S ( X )

satisfying:

a. forall i € { l , . . . , n } , \\yf-U\\<^ and \\zf - U\\ < $;

Let Yp+i be the subspace of X spanned by Yp and all the yf , zf , uA (for all
A C Ap). Let Y = [J Yp. Then Y is a separable subspace of X and Y is e -average

rough. |
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COROLLARY 6. Let X be a Banach space (not necessarily separable) which is
e-average rough for some e > 0. Then X contains ^(N).

PROOF: By Proposition 5, there exists a separable subspace Y of X which is
e -average rough. By Proposition 4, Y contains ^1(N) and the corollary follows. |
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