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Non-ideal oblique shock waves
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From the analysis of the isentropic limit of weak compression shock waves, oblique
shock waves in which the post-shock Mach number is larger than the pre-shock Mach
number, named non-ideal oblique shocks, are admissible in substances characterized
by moderate molecular complexity and in the close proximity to the liquid–vapour
saturation curve. Non-ideal oblique shocks of finite amplitude are systematically
analysed, clarifying the roles of the pre-shock thermodynamic state and Mach number.
The necessary conditions for the occurrence of non-ideal oblique shocks of finite
amplitude are singled out. In the parameter space of pre-shock thermodynamic states
and Mach number, a new domain is defined which embeds the pre-shock states for
which the Mach number increase can possibly take place. The present findings are
confirmed by state-of-the-art thermodynamic models applied to selected commercially
available fluids, including siloxanes and hydrocarbons currently used as working
fluids in renewable energy systems.
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1. Introduction

The design of aerodynamic devices and systems often requires special care to
account for shock wave formation and related losses. Complex patterns of oblique
shock waves can indeed be found in diverse applications including, just to mention
a few, engine intakes of high-speed aircrafts and rockets, supersonic nozzle outflows,
under-expanded jets and highly loaded turbomachinery stages. The variation of the
thermodynamic and kinematic quantities across the shock wave is determined by
the Mach number of the flow ahead of the shock, relative to the shock front itself,
in dilute-gas flows to which the theory of perfect gases can be reasonably applied.
If instead the thermodynamic states of the fluid cannot be accurately described
by means of the perfect-gas model, a more or less noticeable dependence on the
pre-shock thermodynamic state, say the values of the pre-shock temperature and
pressure, is also observed. Most of the features of shock waves and, more in general,
the nonlinear dynamics of compressible fluids, depends on the evolution of the speed
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of sound c =
√
(∂P/∂ρ)s along isentropic transformations, where P, ρ and s denote

the fluid pressure, density and entropy, respectively. Following common practice,
the sound-speed isentropic variation is expressed in non-dimensional form by the
parameter Γ ,

Γ ≡ 1+
ρ

c

(
∂c
∂ρ

)
s

, (1.1)

referred to as the fundamental derivative of gas dynamics (Thompson 1971). For
perfect gases, Γ = (γ + 1)/2 > 1, where γ > 1 is the ratio of the specific heats.
Therefore, in a dilute gas, the speed of sound increases upon isentropic compression.
However, near to the liquid–vapour phase transition and critical point, the interaction
between attractive and repulsive intermolecular forces can possibly result in a decrease
in the speed of sound across isentropic compressive processes, see Colonna &
Guardone (2006) and Harinck, Guardone & Colonna (2009). This is expected to occur
in fluids with large heat capacities, corresponding to a sufficient level of molecular
complexity (Lambrakis & Thompson 1972; Thompson & Lambrakis 1973). The gas
dynamics associated with thermodynamic states featuring Γ < 1 may significantly
differ from its ideal-gas counterpart, thus justifying the use of expressions such as
non-ideal effects in reference to the related peculiarities. These include, e.g. the
decrease of the flow Mach number along supersonic expansions in fluids exhibiting
0 < Γ < 1 (Cramer & Best 1991) and so-called non-classical phenomena that are
caused by negative nonlinearities (Γ < 0) or mixed nonlinearities (Γ changing its
sign), the most striking example being the admissibility of expansion shocks and
composite waves. The reader is referred to Cramer & Kluwick (1984), Menikoff
& Plohr (1989) and Kluwick (2001) for reviews on non-classical gas dynamics.
It must be noticed, however, that experimental evidence of negative nonlinearities
is still missing at present, thus leaving the existence of non-classical phenomena
an open question in fluid mechanics. In this respect, recent advancements indicate
the possibility of observing negative nonlinearities in common substances (other
than Bethe–Zel’dovich–Thompson (BZT) fluids) due to critical-point anomalies (see
Nannan, Guardone & Colonna 2014; Nannan et al. 2016).

On the other hand, well-established and accurate thermodynamic models predict
that several fluids currently employed in industrial processes feature 0<Γ < 1 in the
single-phase vapour region, prominent examples being hydrocarbons, fluorocarbons
and siloxanes used as working fluids in organic Rankine cycle (ORC) power systems.
Related phenomena of practical interest include the aforementioned decrease of the
flow Mach number in supersonic expansions (Cramer & Best 1991), the non-ideal
evolution of the Mach number in diabatic supersonic nozzle flows (Schnerr & Leidner
1991) and the increase of the flow Mach number across oblique shock waves (Gori,
Vimercati & Guardone 2017), which is the focus of the present investigation. This
peculiar kind of oblique shock waves, namely those characterized by a larger flow
Mach number in the post-shock state than in the pre-shock state, will be referred to
as non-ideal oblique shock waves. Following the analysis of isentropic compressions
by Cramer & Best (1991), it is straightforward to demonstrate that in the limit of
shock wave of vanishing intensity, the Mach number can possibly increase across a
compressions wave if Γ < 1. The goal of the present paper is to investigate classical
compression shock waves of finite amplitude to complement the previous study of
Gori et al. (2017), where non-ideal oblique shock waves are studied using the simple
van der Waals model. In particular, the precise conditions allowing for non-ideal
oblique shocks to occur in single-phase vapour flows of fluids exhibiting positive
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268 D. Vimercati, G. Gori and A. Guardone

nonlinearity are examined here. A convenient procedure is detailed which allows to
determine the existence domain, in terms of pre-shock state properties, of non-ideal
oblique shock waves. The non-ideal increase of the flow Mach number across oblique
shocks is arguably relevant in applications where oblique shock waves are either
intentionally formed (e.g. engine intake ramps) or a by-product of the supersonic
flow expansion (e.g. fish-tail shocks in turbine nozzle vanes, over/under-expanded jet
from a nozzle exit).

The present work is organized as follows. In § 2, the basics of shock waves are
reviewed and the properties of shock curves in classical gas dynamics are discussed.
The theoretical framework for the investigation of non-ideal oblique shocks is outlined.
Section 3 describes the computation of the existence domain, in terms of pre-shock
thermodynamic quantities and Mach number, leading to non-ideal oblique shocks.
Results are presented for different substances of practical interest. Section 4 provides
the concluding remarks.

2. Oblique shocks in the non-ideal gas dynamic regime
The present section recalls the theory of oblique shock wave starting from the

integral relation between the states across the shock and the admissibility conditions.
The properties of shock curves are analysed within the classical gas dynamic context
(Γ > 0), providing the theoretical justification for the occurrence of non-ideal oblique
shocks.

2.1. Jump relations and shock admissibility
We assume the shock wave to be a vanishing-thickness layer separating two regions of
thermodynamic-equilibrium states within a non-reacting substance (see, e.g. Zel’dovich
1946; Landau & Lifshitz 1987). In a shock-attached reference frame, the laws of
conservation of mass, momentum and energy across the shock front, namely the well-
known Rankine–Hugoniot relations for three-dimensional flows, locally assume the
form

[ρun] = 0, (2.1a)
[Pn+ ρunu] = 0, (2.1b)
[h+ ‖u‖2/2] = 0, (2.1c)

where [·] = ()B − ()A denotes the jump from the pre-shock state A to the post-shock
state B, see figure 1, h is the fluid enthalpy, n is the unit vector normal to the shock
front and u is the fluid velocity, with un = u · n its normal component (we assume
that the shock-attached coordinate system is such that un > 0). By projecting (2.1b)
onto the normal direction and tangent plane, one obtains

[P+ ρu2
n] = 0, (2.2a)

[ut] = 0, (2.2b)

where ut= u− unn denotes the tangential velocity. The above relations imply that the
oblique-shock problem reduces to studying the properties of normal shocks to which
a parallel velocity field is superposed. After straightforward manipulations, the energy
and normal momentum balance equations are recast in the well-known form

[h] − 1
2 [P](vA + vB)= 0, (2.3a)

[P] +m2
[v] = 0, (2.3b)
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FIGURE 1. Qualitative illustration of the local shock front. States A and B represent the
pre-shock and post-shock states, respectively. For ease of representation, the shock-attached
reference frame is such that the plane spanned by unit vectors n and t (normal and tangent
to the shock front, respectively) contains the fluid velocity u. The angles β and θ are
the shock angle and flow deviation angle, respectively, both computed with respect to the
pre-shock flow direction.

respectively, where v is the specific volume and m,

m= ρAunA = ρBunB (2.4)

is the mass flux across the discontinuity. Equation (2.3a), known as the Hugoniot
relation, determines the set, termed the Hugoniot locus, of thermodynamic states that
can be connected by means of a shock wave. In the P–v plane, the Hugoniot locus is
commonly referred to as the shock adiabat, and the straight line defined by relation
(2.3b) as the Rayleigh line.

The Rankine–Hugoniot relations are not sufficient to isolate physically realizable
shock solutions. These are selected by enforcing extra conditions accounting for
physical effects that are not modelled in the simplified governing equations (viz.
the limit of vanishing viscosity and heat conduction). Because the second law of
thermodynamics requires that entropy does not decrease, (2.1) must be extended to
include

[s]> 0. (2.5)

Further admissibility conditions stem from mechanical stability requirements. In order
that the shock front be stable against one-dimensional perturbations of the normal flow,
the well-known speed-ordering relation

MnB 6 1 6 MnA, (2.6)

must be satisfied along the shock front, where Mn = un/c denotes the normal Mach
number (Lax 1957). The conditions for stability with respect to multidimensional
perturbations can be conveniently related to geometric properties of the shock adiabat
and Rayleigh line, namely as bounds on their relative slope R,

R=m2

/
d

dv
PH(v; PA, vA)

∣∣∣∣
B

, (2.7)

with PH(v; PA, vA) being the shock adiabat function implicitly defined by (2.3a).
D’yakov (1954) and Erpenbeck (1962) showed that the shock front is stable against
ripple perturbations if and only if

− 1 6 R 6 1+ 2MnB. (2.8)
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270 D. Vimercati, G. Gori and A. Guardone

The stability range (2.8) was further restricted by Kontorovich (1958) to read

− 1 6 R 6
1−M2

nB(1+ vA/vB)

1−M2
nB[v]/vB

, (2.9)

by noting that in the interval

1−M2
nB(1+ vA/vB)

1−M2
nB[v]/vB

< R< 1+ 2MnB (2.10)

the shock front is only neutrally stable against transverse perturbations and can
spontaneously emit acoustic waves (see also Fowles 1981). Erpenbeck (1963) and
Gardner (1963) also pointed out that violating the second inequality in (2.8) leads to
non-uniqueness of solutions of the Riemann problem. Despite the fact that conditions
(2.8) and (2.9) were derived from linear stability analysis of planar shocks, it turns
out that an arbitrarily curved shock front is stable provided (2.9) is satisfied locally
at each point of the front (Majda 1983). Yet, for some cases, (2.5) and (2.9) may
not be sufficient to rule out unphysical solutions of the Rankine–Hugoniot relations.
Further and more selective criteria, such as requiring that the shock wave admit
a one-dimensional thermoviscous profile, may solve the problem of defining the
admissible shocks, although it must be noticed that there is no general theory for
defining appropriate admissibility conditions that applies to arbitrary equations of
state (Menikoff & Plohr 1989; Kluwick 2001).

2.2. Properties of shock curves in classical gas dynamics
In the reference frame shown in figure 1, the Rankine–Hugoniot relations involve 8
parameters in total: the 2 velocity components (normal and tangent to the shock) and
2 thermodynamic quantities (e.g. pressure and density), for both the pre-shock and
post-shock states. In these coordinates, the Rankine–Hugoniot relations consist of 4
functional relations (the equation of the tangential velocity (2.2b) reduces to a scalar
one), so that 4 remaining parameters are needed to parametrize the solution. The
choice of this set of parameters is typically based on the specific context. On many
occasions, for instance, one knows the evolution of the flow up to the point where
a shock wave occurs. In this respect, it is customary to specify the thermodynamic
state and the total or kinetic energy content of the flow upstream of the shock, which
together correspond to a triplet such as, e.g. A = (PA, vA, ‖uA‖) or A = (vA, sA,MA).
Any other equivalent triplet can be obtained by simple manipulation. Given a triplet A,
the Rankine–Hugoniot relations determine the state downstream of an oblique shock
from the considered pre-shock state, as a function of β, the angle between the shock
front and the pre-shock flow direction (see figure 1). By analogy with one-dimensional
unsteady flows (given a pre-shock state, one obtains the post-shock state as a function
of the shock speed), the resulting locus is called the shock curve.

In the following, some renowned properties of the shock curves of oblique shocks
are recalled by resorting to analogies with the one-dimensional case. Our attention,
hereinafter, will be restricted to single-phase fluids exhibiting Γ > 0 in the vapour
phase (BZT fluids are thus excluded), i.e. to classical gas dynamics in which shock
waves are of the compressive type only. For a detailed discussion of shock curves
for arbitrary equations of state, see Menikoff & Plohr (1989) and Kluwick (2001).
To establish notation, a quantity X evaluated on the shock curve will be denoted as
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Non-ideal oblique shock waves 271

XH(β;A). On occasion, it will be useful to perform a change of independent variable;
for ease of notation the same symbol XH will be maintained.

The properties of the shock curves can be conveniently analysed starting from their
projection in a thermodynamic plane, namely the Hugoniot locus, solution set of
equation (2.3a) for a given pre-shock thermodynamic state (PA, vA). The Bethe–Weyl
theorem (Bethe 1942; Weyl 1949) states that if Γ > 0 throughout the thermodynamic
domain of interest, the Hugoniot locus is a continuous curve parametrized by the
post-shock entropy and it satisfies

[v]< 0 and MnB < 1, if [s]> 0,
[v]> 0 and MnB > 1, if [s]< 0.

}
(2.11)

Substitution of [v] < 0 into (2.3b) immediately yields that compressive shock waves
([P] > 0) only satisfy the entropy inequality and the first inequality in (2.6). By
combining (2.3) with the fundamental thermodynamic identity T ds= dh− v dP, one
obtains

d
ds

mH(s;A)
∣∣∣∣

B

=
TB

m[v]2
, (2.12)

thus showing that the Hugoniot locus can be parametrized also by the mass flux m.
Monotonicity of the mass flux implies that MnA > 1 along the compressive branch
of the Hugoniot locus. Therefore, if Γ > 0, compressive shock waves simultaneously
fulfil the entropy inequality and the speed-ordering condition.

The Hugoniot locus can be also parametrized by the shock angle β ∈ [βac,π/2], in
which the lower bound βac = sin−1(1/MA) is the angle of the Mach lines or acoustic
waves, corresponding a shock wave of vanishing intensity ([s] = 0, Mn = 1). Indeed,
unA = ‖uA‖ sin β, and hence differentiation of (2.4) yields the monotonicity condition

d
dm
βH(m;A)

∣∣∣∣
B

=
tan β

m
. (2.13)

Any of the post-shock entropy, mass flux and shock angle (or another quantity
that varies monotonically with one of these) can be regarded as measuring the
shock strength. The β-parametrization of the Hugoniot locus, in particular, appears
as a natural choice in the context of oblique shock waves, where it allows for
direct geometrical interpretation. Once the relationship between the pre-shock and
post-shock thermodynamic quantities is determined as a function of the shock
angle, the remaining kinematic quantities (post-shock velocity) are obtained from
the conservation of mass (2.1a) and tangential momentum (2.2b); it follows that the
shock angle parametrizes the shock curve.

We now comment on the dependence of selected thermodynamic and kinematic
quantities of interest on the shock strength, which we conveniently identify with the
shock angle β. Firstly, the variation of the post-shock specific volume along the shock
curve is considered, which ultimately determines the shape of the shock adiabat. By
differentiating the Hugoniot relation (2.3a), one finds that

1
vB

d
dβ
vH(β;A)

∣∣∣∣
B

=−
[P] cot β

ρBc2
B(1−M2

nB)

(
2+
[v]

vB
GB

)
, (2.14)

where G = v(∂P/∂e)v is the Grüneisen coefficient, which has the same sign of the
coefficient of thermal expansion. The post-shock specific volume decreases with
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272 D. Vimercati, G. Gori and A. Guardone

increasing shock angle only if

2+
[v]

vB
GB > 0, (2.15)

which is true in the limit of weak shocks, but may be violated for finite-strength
shocks if G is sufficiently large. Ordinary-shaped Hugoniot loci, however, do satisfy
(2.15). This is the typical behaviour of the shock curves for most real fluids (see,
e.g. Landau & Lifshitz 1987). Moreover, if G > 0 and thus the substance expands
upon isobaric heating, which is true in most situations of interest (with the notable
exception of water near freezing), equality in (2.15) determines the maximum density
increase across compression shock waves. Combining the expressions of the variation
of two independent thermodynamic quantities along the shock curve (e.g. the entropy
and specific volume), the variation of any other post-shock thermodynamic quantities
can be derived using the standard thermodynamic identities. It is readily obtained that
if (2.15) holds (and Γ > 0 by earlier assumption), the post-shock pressure, internal
energy and enthalpy all increase with shock strength along the compression branch
of the Hugoniot locus; the same holds for the temperature if G > 0 in addition.
Monotonicity of vH(β; A) also guarantees that the shock adiabat is convex and
that the shock front is stable with respect to multidimensional perturbations, cf.
inequalities (2.8), though it might satisfy the conditions for spontaneous acoustic
emission, namely the upper bound in (2.9) could be negative.

A thermodynamic quantity of particular interest in this work is the speed of sound,
since it is directly related to the occurrence of non-ideal effects across oblique shocks.
The variation of the post-shock speed of sound along the shock curve is given by

1
cB

d
dβ

cH(β;A)
∣∣∣∣

B

=
[P] cot β

ρBc2
B(1−M2

nB)

{
KB
[P]
ρBc2

B

(
1

M2
nB
− 1
)

+ (ΓB − 1)
(

2+
[v]

vB
GB

)}
, (2.16)

where we introduced the dimensionless isochoric derivative of the speed of sound with
the entropy K= (c/T)(∂c/∂s)v. Assuming KB> 0 and that (2.15) is satisfied, the post-
shock speed of sound increases with the shock strength along the compression branch
of the shock curve if ΓB > 1, but can possibly decrease if ΓB < 1.

Finally, we report the variation of the post-shock Mach number along the shock
curve, which allows us to evaluate the kinematic state of the flow in the post-shock
state. By combining the variations of the velocity magnitude and speed of sound, one
obtains

1
MB

d
dβ

MH(β;A)
∣∣∣∣

B

=
[P]
ρBc2

B

cot β
1−M2

nB

{
[v]

vB
(1−M2

nB)

(
KB +

1+GB

M2
B

)
+ JB

(
2+
[v]

vB
GB

)}
, (2.17)

in which we have defined
J = 1− Γ −

1
M2
, (2.18)

which is a non-dimensional measure of the Mach number dependence on the density
in isentropic flows with constant total enthalpy (see Thompson 1971; Cramer & Best
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1991). Assuming that KB > 0, GB >−1 and (2.15) is satisfied, the post-shock Mach
number decreases with increasing shock angle along the compression branch of the
shock curve if JB < 0. If instead the values of the post-shock Mach number and
fundamental derivative are such that JB> 0, the post-shock Mach number can possibly
increase.

2.3. Non-ideal oblique shocks
Within the context of classical gas dynamics, diverse qualitative differences can
be found between shock waves in the ideal-gas and non-ideal regime. Anomalies
that are related to violation of condition (2.15) and to fluid states exhibiting G < 0
or K < 0 are discussed by Menikoff & Plohr (1989). Here we restrict attention to
compressibility-related effects that are caused by fluid states exhibiting 0<Γ < 1, that
are therefore not possible in the ideal-gas limit. The parameter Γ directly controls
the sound speed variation in isentropic processes as well as adiabatic, possibly
non-isentropic, processes (assuming K does not change its sign). For the case of
oblique shock waves, the well-known formulas for ideal gases (see, e.g. Thompson
1988) indicate that the speed of sound necessarily increases across the shock (a
consequence of the temperature rise). On the contrary, in the non-ideal gas dynamic
regime, the speed of sound can possibly decrease following the adiabatic compression
across an oblique shock, as suggested by relation (2.16).

Because the flow velocity magnitude is required to decrease across a compressive
shock (the normal component decreases by mass conservation while the tangential one
is conserved by momentum balance), the peculiar behaviour of the speed of sound
ultimately determines the variation of the Mach number across an oblique shock,

M2
B =M2

nB + ‖ut‖
2/c2

B ≶ M2
nA + ‖ut‖

2/c2
A =M2

A. (2.19)

The speed-ordering condition (2.6) requires that the normal Mach number is larger
in the pre-shock state than in the post-shock state. On the contrary, no constraint is
imposed on the tangential Mach number ‖ut‖/c, whose variation across the shock
is inversely proportional to the sound speed. It follows that whenever cB > cA, as
in the ideal-gas limit, the Mach number necessarily decreases across any admissible
shock waves. If instead cB < cA, which is possible in the non-ideal regime, the Mach
number can either decrease or increase across an oblique shock; the Mach number
increase will occur if the sound speed decrease is sufficiently large that the increase in
the tangential Mach number compensates the necessary decrease in the normal Mach
number.

Because the Mach number is the parameter of primary interest in many applications,
the Mach number increase across oblique shock waves is arguably the most significant
of all non-ideal compressible-fluid effects. In this sense, hereinafter we will refer to
oblique shock waves featuring MB > MA as non-ideal oblique shock waves. The
analysis of the weak shock limit β − βac� 1 provides a condition of existence
of non-ideal oblique shocks in terms of pre-shock quantities, since Taylor series
expansion of the post-shock Mach number in the neighbourhood of the acoustic
angle reads

[M]
MA
= 2

JA

ΓA

√
M2

A − 1 (β − βac)+O((β − βac)
2), β→ β+ac. (2.20)

For weak oblique shock waves, the sign of the Mach number variation is related to
the values of the pre-shock fundamental derivative ΓA and Mach number MA only.
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Name M (g mol−1) Tc (K) Pc (kPa) EOS Γmin

MDM 236.531 565.36 1437.5 Thol et al. (2017) 0.1646
MM 162.378 518.75 1939.0 Colonna et al. (2006) 0.3389
Octane 114.229 569.32 2497.0 Span & Wagner (2003) 0.3625
Cyclopentane 70.1629 511.72 4571.2 Gedanitz, Davila & Lemmon (2015) 0.6433
Toluene 92.1384 591.75 4126.3 Lemmon & Span (2006) 0.5637
Benzene 78.1118 562.02 4907.3 Thol, Lemmon & Span (2012) 0.6155
Sulphur 146.055 318.78 3755.0 Guder & Wagner (2009) 0.8050
Hexafluoride
R245fa 134.048 427.16 3651.0 Lemmon & Span (2006) 0.7089

TABLE 1. Molecular weight M, critical temperature Tc, critical pressure Pc for selected
substances. The fluid properties are computed from the equation of state (EOS) indicated
in the fifth column of the table; Γmin is the minimum value of the fundamental
derivative in the vapour phase, as predicted by the EOS (Γmin occurs along the
vapour–liquid equilibrium curve). Properties and thermodynamic models are taken from the
well-established REFPROP library (Lemmon, Huber & McLinden 2013).

If the combination of these values is such that JA > 0, the Mach number increases
across a weak oblique shock. It is readily seen that if ΓA< 1 non-ideal oblique shocks
necessarily occur when MA is sufficiently large. The role of the fundamental parameter
J will be further clarified in the following.

3. The existence domain of non-ideal oblique shocks

This section addresses the flow conditions, in terms of pre-shock thermodynamic
quantities and Mach number, resulting in the non-ideal Mach number increase across
oblique shocks. The choice of pre-shock Mach number as the parameter accounting
for the kinematic state of the fluid ahead of the shock waves is twofold. Firstly, it
is the quantity that directly enters into the definition of the parameter J, whose sign
determines the direction of the Mach number variation across weak oblique shocks.
Secondly, in the perfect-gas limit, several quantities of interest such as ϑ (deflection
angle of the flow across the shock, see figure 1), MB, PB/PA, [s], etc. (see, e.g.
Thompson 1988), depend uniquely on MA and β. This also legitimizes the use of β
for the shock-curve parametrization in the perspective of evaluating the differences
between ideal-gas and non-ideal regime.

After identifying the different scenarios for the observation of non-ideal oblique
shocks, the domain of pre-shock states that possibly lead to non-ideal oblique shocks
is computed. The mentioned domain includes all the pre-shock states for which
MH(β; A) > MA for some values of the shock angle. Results are given for each of
the fluids listed in table 1.

3.1. Influence of the pre-shock state

A parametric study is carried out to evaluate the dependence of MH(β; A) on the
pre-shock state, in the parameter space of pre-shock thermodynamic states and Mach
number. To do this, we consider the projection of the shock curve on the MB–β plane
for exemplary pre-shock states that allow to illustrate the different scenarios for the
occurrence of non-ideal oblique shock waves.
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The fluid employed here throughout for explanatory purposes is siloxane MDM
(ocatmethyltrisiloxane, C8H24O2Si3), which is modelled via the state-of-the-art
multiparameter equation of state reported in table 1 together with relevant thermo-
physical properties of MDM and of other substances considered in the following.
MDM exhibits Γmin < 1, where Γmin is the minimum value of the fundamental
derivative in the vapour phase, indicating that the selected fluid is endowed with
a finite vapour-phase Γ < 1 region. Therefore, according to the arguments of the
previous section, MDM is expected to allow for the occurrence of non-ideal oblique
shock waves, provided the pre-shock state is carefully chosen. As for the other
non-dimensional quantities that enter into the definition of the Mach number variation
(2.17), MDM exhibits G> 0 and K > 0 in the single phase vapour region to which
this discussion is restricted. Moreover, G is small enough that condition (2.15) is
always satisfied along shock curves originating from pre-shock thermodynamic states
in the vapour region.

In contrast to the case of perfect gases, for which the post-shock to pre-shock ratios
of most quantities of interest can be expressed as functions of the pre-shock normal
Mach number only, the full pre-shock state plays a major role in determining the
properties of oblique shock waves for arbitrary equations of state. In order to facilitate
the following analysis, two parametric studies are conducted. Firstly, a parametric
analysis is carried out for a fixed pre-shock Mach number and for different pre-shock
thermodynamic states. Secondly, the pre-shock thermodynamic state is fixed and the
pre-shock Mach number is varied.

Figure 2 shows the variation of the post-shock Mach number with the shock angle
for a fixed pre-shock Mach number MA = 2 and different pre-shock thermodynamic
states selected along the same isentrope sA< sτ , where sτ denotes the isentrope tangent
to the locus JA=0. Under the assumption that the pre-shock Mach number MA is fixed,
the locus JA = 0 shown in figure 2 coincides with the Γ -isoline Γ = 1− 1/M2

A, see
(2.18). The thermodynamic region between the JA = 0 locus and the saturated vapour
curve embeds all the possible pre-shock states exhibiting JA > 0. Note that, according
to (2.20), the function MH(β; A) corresponding to pre-shock thermodynamic states
having JA > 0 will exhibit positive initial slope, thus indicating that the flow Mach
number increases across weak oblique shock waves. Four pre-shock thermodynamic
states are now considered, as representative of the possible qualitative evolution of
the post-shock Mach number along the shock curve. The triplets corresponding to the
marked configurations are given by Ai = (P(sA, vi), vi,MA), i= 1, . . . , 4.

State A1 is considered first, which is located on the left-hand side (higher densities)
of the region JA > 0. As shown in figure 2, along the shock curve originating from
state A1, the post-shock Mach number monotonically decreases with increasing shock
angle. Exemplary non-monotonic Mach number variations are those corresponding to
pre-shock states A2 and A3 in figure 2. State A2 is taken as representative of the
Mach number evolution for pre-shock states featuring JA > 0. Thus, for increasing
shock angles starting from βac, the post-shock Mach number initially increases. As
the magnitude of the tangential velocity decreases (i.e. with increasing shock angle),
MH(β;A2) reaches a local maximum and subsequently decreases towards the subsonic
values characterizing strong oblique shocks. For shock curves qualitatively similar to
the present case A2, there exists a shock angle value β̃ = β̃(A), β̃ 6= βac, such that
MH(β̃;A)=MA. Note, however, that the computed shock curve exhibits a fairly large
interval of shock angles for which the conditions of spontaneous acoustic emission are
satisfied, and thus the shock front is neutrally stable.
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FIGURE 2. (Colour online) Shock curves for MDM in the post-shock Mach number–shock
angle plane. The pre-shock Mach number is fixed to MA = 2. The pre-shock
thermodynamic states are selected along the same isentrope sA= s(1.2743Pc, vc)< sτ , with
sτ denoting the isentrope tangent to the locus JA= 0 (corresponding to the Γ -isoline Γ =
1− 1/M2

A). Marked configurations: v1= vc, v2= 5vc, v3= 8vc, v3= 11vc. The red portions
of the shock curves correspond to neutral stability of the shock front against transverse
perturbations (acoustic emission). Also shown is the ideal-gas limit (dash-dotted curve)
and the locus of the stationary points of MH(β; A) for pre-shock thermodynamic states
along the isentrope considered (dashed curve). VLE: liquid-vapour equilibrium (saturation)
curve.

If the pre-shock state exhibits JA < 0, yet the thermodynamic state is selected in
close proximity to the region JA > 0, as for case A3 in figure 2, the post-shock Mach
number features an interesting non-monotonic profile comprising two stationary points,
with the local minimum (maximum) occurring at MB <MA (MB >MA). Configurations
qualitatively similar to A3 thus exhibit two different shock angles β̃1= β̃1(A) and β̃2=

β̃2(A), other than the acoustic angle, such that MH(β̃1; A)=MH(β̃2; A)=MA; these
angles delimit the β interval of Mach number increasing oblique shocks. It must be
noticed, however, that a significantly larger portion of the shock curve of case A3 (in
particular, of the portion corresponding to non-ideal oblique shocks) is predicted to
satisfy the conditions for acoustic emission.

By increasing the pre-shock specific volume along the reference isentrope, the two
stationary points found in A3-like configurations occur at MB < MA and ultimately
become coincident. Therefore, any further increase in vA is such that the post-shock
Mach number monotonically decreases with increasing shock angle. Note, however,
that MH(β; A) profiles originating from pre-shock thermodynamic states relatively
close to the region JA> 0 can still exhibit a somewhat anomalous, non-ideal curvature
(due to the sound speed decrease) as shown in the exemplary case A4 of figure 2.
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FIGURE 3. (Colour online) Shock curves for MDM in the post-shock Mach number–shock
angle plane. The pre-shock thermodynamic state is fixed and corresponds to case 3 of
figure 2, namely sA = s(1.2743Pc, vc), vA = 8vc. Each curve corresponds to a different
pre-shock Mach number. Marked configurations: M31 = 1.2, M32 = 1.9, M33 = 3. The red
portions of the shock curves correspond to neutral stability of the shock front against
transverse perturbations (acoustic emission). Also shown is the locus of the stationary
points of MH(β; A) for pre-shock thermodynamic states along the isentrope considered
(dashed curve).

Next, a complementary parametric study is presented, which is carried out by
fixing the pre-shock thermodynamic state and considering different pre-shock Mach
numbers. Figure 3 shows exemplary variations of the post-shock Mach number
with the shock angle obtained from the same pre-shock thermodynamic state,
which corresponds to case 3 of figure 2, and different values of the pre-shock
Mach number. The triplets corresponding to the marked configurations are given by
Ai= (P(sA, v3), v3,M3i), i= 1, . . . , 3. As in the previous study, selected configurations
are detailed, as representative of the shock curve dependence on the pre-shock Mach
number. For sufficiently low values of the pre-shock Mach number, MH(β; A) is
monotonically decreasing (case A31). By increasing the pre-shock Mach number,
MH(β; A) eventually develops an inflection point; any further increase leads to a
non-monotonic configuration. As in the previous parametric study, two different
configurations can possibly occur. For pre-shock Mach numbers slightly larger than
the limiting value for the formation of an inflection point, the profile of post-shock
Mach number is qualitatively similar to that of case A32, which exhibits both a local
minimum and a local maximum. If the pre-shock Mach number is sufficiently large,
instead, the initial slope of MH(β; A) is necessarily positive (cf. (2.18) and (2.20),
with ΓA < 1), and the shock curve becomes qualitatively similar to case A33. Again,
acoustic emission is predicted to occur over large portions of the shock curves.
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3.2. Computing the existence domain
Based upon the results of the previous section, the flow conditions resulting in the
non-ideal Mach number increases across oblique shocks are collectively considered
to single out each possible pre-shock state, in terms of pre-shock thermodynamic
quantities and Mach number, for which MH(β;A)>MA for some values of the shock
angle. The result is the definition of the domain of existence of non-ideal oblique
shocks in the parameter space of pre-shock thermodynamic states and Mach number.
For pre-shock states in this domain, there exists at least one value of the shock angle
leading to MH(β;A) >MA.

A convenient procedure for the computation of the existence domain of non-ideal
oblique shocks is presented here. In order to reduce the complexity associated with the
dependence of the shock properties on each of the pre-shock variables, we consider
a fixed pre-shock Mach number, thus isolating the contribution of the pre-shock
thermodynamic state. For a given pre-shock Mach number MA, the proposed method
consists in determining, for each value of the pre-shock entropy, the limit values
of the pre-shock pressure or density that bound the range where the shock curve
possibly exhibits MH(β; A) > MA for some values of the shock angle. These limit
thermodynamic states define a locus delimiting the region in which the pre-shock
thermodynamic state must be selected (together with the given MA) in order to
observe a non-ideal oblique shock. As the pre-shock Mach number is varied, this
procedure determines a one-parameter family of thermodynamic regions embedding
all the pre-shock states from which non-ideal oblique shock can possibly occur.

The proposed approach is first illustrated for MDM and one value of MA and then
it is applied in the next section to the fluids listed in table 1 for several values of MA,
confirming the general validity and applicability of the concept outlined here.

In § 2.3, the shock curves considered were entirely enclosed in the single-phase
vapour region. Here we consider also the cases in which the shock curves enter
the two-phase region, limiting the discussion to their single-phase vapour portion.
The shock angle leading to post-shock saturated conditions will be denoted by
βsat= βsat(A). Crossing the liquid–vapour equilibrium curve (VLE or saturation curve)
possibly occurs if a portion of the saturated vapour boundary is retrograde, which
means that certain isentropes (and in turn, some shock adiabats) cross the phase
boundary from the single towards the two-phase region, in the direction of increasing
density. Siloxane fluid MDM is one such case of fluid with retrograde behaviour.
Note, in this respect, that substances featuring Γ < 1 regions in the vapour phase
typically have heat capacities large enough that a portion of the saturated vapour
boundary is retrograde (see Thompson, Carofano & Kim 1986).

With reference to the parametric studies carried out in § 3.1, three different types
of MH(β;A) profiles were identified. These include the ideal-gas-like (Mach number
decreasing) case and two non-ideal cases (possibly Mach number increasing); the latter
were distinguished depending on the positive/negative slope in the weak shock limit.
For the ideal configuration, it can be noticed that, if the shock adiabat is entirely
enclosed within the thermodynamic region Γ > 1− 1/M2

A, the function MH(β; A) is
monotonically decreasing. This follows from the fact that MB <MA for weak shocks,
with JA < 0, and from ΓB > 1 − M2

A, which therefore gives JB < 0 along the shock
curve. Substituting this into relation (2.17) yields the monotonicity of the post-shock
Mach number with the shock angle (K > 0, G > 0 and (2.15) holds from earlier
assumption). Examples of shock adiabats that satisfy the aforementioned condition are
those originating from pre-shock states exhibiting sA > sτ or from pre-shock states
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FIGURE 4. (Colour online) Illustration of the limit shock curves in the MB–β diagram.
Solid squares: post-shock saturated conditions; red line: acoustic emission is predicted to
occur. The shock angle β̃ 6= βac indicates that the Mach number is preserved across the
shock, namely MH(β̃;A)=MA. (a) The limit curve exhibits dMH(β;A)/dβ|β=β̃ =0; (b) on
the limit curve, the post-shock thermodynamic state associated with β= β̃ lies on saturated
phase boundary; (c) transition from uniform to neutral stability occurs at β = β̃ on the
limit curve.

sA < sτ that are either on the left-hand side of the JA > 0 region (case A1 in figure 2)
or entering the two-phase region at a point where Γ > 1− /M2

A.
On the other hand, shock curve originating from pre-shock states featuring JA > 0

necessarily lead to MH(β; A) profiles embedding a non-ideal portion MB > MA. This
range is of the type β ∈ [βac, β̃], see case A2 in figure 2, or of the type β ∈ [βac, βsat]

if the shock curve enters the two-phase region within the Mach number increasing
portion, that is MH(βsat;A) >MA.

Finally, it was shown that pre-shock states satisfying sA < sτ and JA < 0, yet in the
close proximity of the low-density zero of JA along the selected isentrope, possibly
lead to MH(β; A) functions of the non-ideal type. In this case, the interval of shock
angles corresponding to MB >MA is of the form β ∈ [β̃1, β̃2], see case A3 in figure 2,
or of the form β ∈ [β̃1, βsat] if MH(βsat;A) >MA.

Following the above considerations, the upper and lower pre-shock density limit for
non-ideal post-shock Mach number profiles, along any given isentrope sA < sτ , can be
determined as follows:

(i) the upper pre-shock density limit is either the high-density zero of JA along the
selected isentrope or the saturation curve, if the selected isentrope enters the two-
phase region and JA > 0 at the saturated vapour boundary;

(ii) with reference to figure 4, the lower pre-shock density limit corresponds to the
pre-shock state leading either to the shock curve depicted in figure 4(a), which is
characterized by dMH(β, A)/dβ = 0 at β = β̃ (MB =MA), or to the shock curve
in figure 4(b), where the post-shock state corresponding to MB =MA occurs on
the saturation curve, namely β̃ = βsat on the limit curve;

(iii) the conditions for acoustic emission may be satisfied within the complete
non-ideal region MB >MA of a shock curve, thus resulting in a narrower domain
of pre-shock states for non-ideal oblique shocks that are uniformly stable against
multidimensional perturbations. In the related limit shock curve, the transition
from uniform to neutral stability occurs at β = β̃ (MB = MA), as shown in
figure 4(c).
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FIGURE 5. (Colour online) Pre-shock state domain (shaded area) for non-ideal oblique
shock waves in MDM with fixed pre-shock Mach number MA= 2. The domain is bounded
by the pre-shock limit locus (PSLL, blue line) and by the vapour–liquid equilibrium (VLE)
line. Points AJ

V,1 and AJ
V,2 indicate the high- and low-density intersection, respectively,

of the JA = 0 locus with the VLE line. The isentrope passing through AJ
τ is tangent

to the JA = 0 locus. The shock curve centred on AV
dM,0 simultaneously features

dMH(β; A)/dβ|β=β̃ = 0 and β̃ = βsat. From pre-shock states in the dark-shaded region
(enlarged area), uniformly stable non-ideal oblique shocks cannot occur. This region is
bounded by the PSLL and the D’yakov–Kontorovich limit locus (DKLL).

By varying the reference isentrope, the existence domain of non-ideal oblique
shocks as computed from the proposed procedure is shown in figure 5 for MA = 2.
The newly defined thermodynamic region is bounded by three different curves, which
together define the so-called pre-shock limit locus (PSLL). Firstly, the portion of
PSLL between point AJ

V,1, the high-density zero of J along the VLE line, and point
AJ
τ , for which the isentrope is tangent to the J = 0 locus, is indeed coincident with

the J = 0 locus. The branch included between AJ
τ and AV

dM,0 represents the locus
of the limit pre-shock states resulting in shock curves featuring dMH(β, A)/dβ = 0
when MB = MA (figure 4a). At point AV

dM,0, the shock curve simultaneously exhibits
dMH(β,A)/dβ=0 at β= β̃ (MB=MA) and β̃=βsat. The portion of the PSLL between
point AV

dM,0 and AJ
V,2, the low-density zero of J along the VLE line, is obtained by

collecting the limit pre-shock states for which β̃ = βsat, that is, post-shock saturated
conditions occur when MB=MA (figure 4b). Furthermore, the locus denoted as DKLL
(D’yakov–Kontorovich limit locus) bounds a relatively small region (on its right-hand
side) of pre-shock states leading to shock curves in which acoustic emission occurs
over the entire β-range associated with MH(β; A) >MA. For pre-shock states in the
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right-hand side region of the DKLL, there does not exist uniformly stable non-ideal
oblique shocks.

In the next section, the procedure outlined above is applied to the different fluids
listed in table 1 to show its validity. Among the fluids considered, MDM, MM, octane,
cyclopentane, toluene, benzene and R245fa all exhibit retrograde vapour boundaries;
sulphur hexafluoride only exhibits a non-retrograde vapour boundary. The procedure
for the computation of the existence domain of non-ideal oblique shocks in fluids
having non-retrograde vapour boundaries is almost identical to that described above.
When the saturated vapour boundary is non-retrograde, the shock curves centred
on pre-shock states in the vapour phase cannot cross the two-phase region, thus
remaining single phase. This implies that transitional shock curves of the type shown
in figure 4(b) cannot occur. Therefore, with reference to the procedure outlined in
the previous paragraph, the lower pre-shock density limit, along any given isentrope
crossing the JA > 0 locus, is either the saturation curve or the pre-shock state leading
to the transition depicted in figure 4(a).

3.3. Results for selected substances
The procedure described in the previous section for MDM and one particular value
of MA is applied here to the fluids listed in table 1 and the influence of MA is also
evaluated. The Pre-shock limit loci and the D’yakov–Kontorovich limit loci in the
selected fluids are reported, for different pre-shock Mach numbers, in figure 6(a–h).
All the substances considered are endowed with a Γ < 1 thermodynamic region.
Moreover, for each of these fluids, K > 0, G > 0 and condition (2.15) is satisfied
in the single-phase vapour region to which the present discussion is restricted. The
selected siloxanes (cases a–b), hydrocarbons (cases b–f) and R234fa (case h) exhibit
a retrograde portion of the saturated vapour boundary; accordingly, the corresponding
pre-shock limit curves are qualitatively similar to those obtained in the previous
section for MDM with MA = 2. On the other hand, sulphur hexafluoride (case g)
exhibits a fairly simpler configuration as a result of its saturated vapour boundary
being non-retrograde. In this case, according to the nomenclature used in figure 5,
the portion of PSLL on the right-hand side of point AJ

τ (comprising pre-shock states
for shock curves featuring dMH(β,A)/dβ = 0 when MB =MA) extends to a point on
the VLE line.

It must be noticed that, among the configurations depicted in figure 6(a–g), only
MDM, MM and octane exhibit limit curves for acoustic emission (DKLL), possibly
owing to the lower values of Γmin and the larger extension of the region Γ < 1 with
respect to the other fluids considered here.

The influence of the pre-shock Mach number on the shape and extension of the
pre-shock state region for non-ideal oblique shock waves, which can be appreciated
from figure 6(a–g), can be commented as follows. Firstly, there exist a minimum
threshold of the pre-shock Mach number MA,min = (1 − Γmin)

−1/2, below which
non-ideal oblique shocks cannot occur. This amounts to requiring that Γ < 1− 1/M2

A
somewhere in the single-phase vapour region. The condition Γ < 1 − 1/M2

A is
necessary for the existence of non-ideal oblique shocks having pre-shock Mach
number MA. Indeed, assuming G > 0, K > 0 and that (2.15) holds, JB > 0 must be
satisfied somewhere along the shock curve in order that the post-shock Mach number
is non-decreasing, see equation (2.17). Unless JB > 0 holds in the acoustic limit
(namely JA > 0 and MB > MA for weak oblique shocks), JB > 0 must be satisfied
when MB < MA. Both cases clearly imply that Γ < 1 − 1/M2

A somewhere in the
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FIGURE 6. For caption see next page.

thermodynamic state space. With increasing values of the pre-shock Mach number,
the size of the pre-shock state domain for non-ideal oblique shocks increases (as the
size of the JA > 0 region does), whereas its shape remains qualitatively unchanged.
In this respect, the size of Γ isolines (and thus of J = 0 loci for fixed MA, which
roughly coincides with the newly defined thermodynamic domain) of most pure fluids
increases with Γ (see, e.g. Colonna, Guardone & Nannan 2007, for siloxanes). More
in general, the qualitative trend of the fundamental derivative in the single-phase
vapour region of all fluids having regions Γ < 1 agrees with the predictions of the
simple van der Waals model (see, e.g. Thompson & Lambrakis 1973), which in turn
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FIGURE 6 (cntd). (Colour online) PSLL (blue line) and DKLL (red line) for different
pre-shock Mach numbers, in each of the substances listed in table 1.

are consistent with the results obtained in the present section. The latter claim leads
us expect that the present findings are arguably valid for most single-phase fluids
exhibiting Γ < 1 in the vapour region.

4. Conclusions
Non-ideal oblique shock waves, featuring an increase of the value of the flow Mach

number across the discontinuity, were investigated in the context of single-phase
vapour flows of fluids exhibiting positive nonlinearity. The increase of the Mach
number results from the decrease of the speed of sound across the shock wave,
which is predicted to be possible only in the non-ideal gas dynamic regime of fluids
characterized by moderate-to-high molecular complexity.

By examining oblique shocks in the MB–β plane, the different scenarios for the
observation of Mach number increasing configurations were identified, pointing out
the roles of the pre-shock thermodynamic quantities and Mach number. Considerations
of multidimensional shock stability, in terms of D’yakov–Kontorovich conditions for
acoustic emission or neutral stability to transverse perturbations of the shock front,
were also given.

In the parameter space associated with the pre-shock state variables (thermodynamic
quantities and Mach number), the flow conditions leading to the occurrence of
non-ideal oblique shocks were singled out. As a result, a family of thermodynamic
regions, parametrized by the pre-shock Mach number MA, was introduced. For a
given value of MA, the newly defined regions embed all the pre-shock thermodynamic
states from which non-ideal oblique shocks can possibly occur. The computational
procedure for determining the admissibility domain of non-ideal oblique shocks was
first illustrated using siloxane MDM and subsequently applied to other fluids, yielding
consistent results. For each of the fluids considered, state-of-the-art thermodynamic
models were used.

The present analysis is valid under the hypotheses that, in the single-phase vapour
region, (i) the specific volume monotonically decreases with shock strength along
the compression branch of the Hugoniot locus, (ii) the Grüneisen coefficient is
positive and (iii) the speed of sound increases with the entropy at constant volume.
These conditions are arguably not limiting, insofar as they are verified for most

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

32
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.328


284 D. Vimercati, G. Gori and A. Guardone

vapours of practical interest. Under the above assumptions, it was shown that a
necessary condition for the occurrence of non-ideal oblique shock waves is that a
thermodynamic region featuring fundamental derivative Γ < 1 exists. In particular, for
any given pre-shock Mach number MA, it is required that Γ < 1− 1/M2

A somewhere
in the thermodynamic state space. Therefore, the present findings arguably apply to
most vapours exhibiting Γ < 1 and are expected to be relevant for various non-ideal
compressible-fluid applications including Organic Rankine Cycle power systems,
high-enthalpy flows in wind tunnels and space propulsion.
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