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Abstract We present a single, connected tile which can tile the plane but only nonperiodically. The
tile is hexagonal with edge markings, which impose simple rules as to how adjacent tiles are allowed to
meet across edges. The first of these rules is a standard matching rule, that certain decorations match
across edges. The second condition is a new type of matching rule, which allows tiles to meet only when
certain decorations in a particular orientation are given the opposite charge. This forces the tiles to
form a hierarchy of triangles, following a central idea of the Socolar–Taylor tilings. However, the new
edge-to-edge orientational matching rule forces this structure in a very different way, which allows for
a surprisingly simple proof of aperiodicity. We show that the hull of all tilings satisfying our rules is
uniquely ergodic and that almost all tilings in the hull belong to a minimal core of tilings generated by
substitution. Identifying tilings which are charge-flips of each other, these tilings are shown to have pure
point dynamical spectrum and a regular model set structure.
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1. Introduction

The fact that periodically arranged structures can be enforced by local rules is familiar

to everyone. In covering the plane with unit squares so that squares must meet edge-to-

edge, a periodic tessellation results. This simple principle of local constraints enforcing
global structure explains how crystalline structures can form. Therefore, it was a

great surprise to crystallographers in the 1980s when Dan Shechtman discovered a

metal alloy whose diffraction pattern implied a great deal of structural order but had
rotational symmetry precluding periodicity [20]. Since the atomic organization must
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still result from local interactions, the question arises of how such aperiodic patterns
can result from only local rules. In the other direction, it is known that hierarchical

aperiodic patterns generated by a substitution rule can be forced from local matching

rules [7, 8, 14].
Already in the 1960s, it was observed by Robert Berger in solving Hao Wang’s Domino

Problem [24] that one may find square tiles with decorated edges that can tile the plane

but only nonperiodically [5, 18]. The first such set that he found had 20,426 tiles, initiating

the hunt to find smaller aperiodic tile sets [9]. The most famous, and arguably the most
beautiful, such tile set is the pair of tiles discovered by Roger Penrose in the 1970s [15].

Isometric copies of these edge-decorated tiles (represented either as a pair of thick and

thin rhombs or as kite and dart tiles) can tile the plane but only aperiodically, and in fact
form highly structured repetitive tilings with striking 10-fold rotational structure, similar

to the rotational symmetry of the diffraction patterns of quasicrystals first observed by

Shechtman.
Naturally, one wonders if two tiles are needed. The ‘monotile problem’ asks: Is there a

single tile of the Euclidean plane for which copies of the tile can be used to tile the plane,

but only nonperiodically? There are several ways to interpret this question. By ‘copies’ of

the tile, one usually means isometric copies of the tile, through rotations, reflections, and
translations, although it is also of great interest to allow only rotations and translations

[9]. There are several demands one could make of such a tile. It is natural, for example, to

ask that the tile not have too wild a shape: it should be the closure of its interior, but one
might also demand that it is a polytope, just a topological disc, or perhaps merely that it

has connected interior. And finally, by ‘tiling the plane’ one usually means that the tiles

cover the plane but that distinct tiles overlap on at most their boundaries (however, we
note here Gummelt’s aperiodic tile that tiles the plane with overlaps [10]). One should

also specify what rules are permitted in how tiles can be placed next to each other –

should these rules be forced by geometry alone, are color matchings permitted, or can

more complicated local rules be specified?
The best current solution to the monotile problem without overlapping tiles is the

Socolar–Taylor tile [21, 22, 23]. This tile forces limit-periodic structures, closely related

to (but distinct from) the
(
1+ ε+ ε2

)
-tilings [16, 17] and half-hex tilings [1], using just

a single tile. However, the matching rules restrict configurations of not only neighboring

tiles but also nontouching next-nearest neighbors. An alternative form of the tile may be

given which has nearest-neighbor locality, but at the cost that the tile has a complicated
shape, with disconnected interior. So the hunt remains for a monotile with simple shape

but also next-nearest-neighbor matching rules.

In this paper we define a new aperiodic tile which, like the first form of the Socolar–

Taylor tile, satisfies the requirement that it is a simple geometric shape, again being a
hexagon. Unlike the Socolar–Taylor tile, the rules for which tiles are allowed to meet are

nearest-neighbor, and in fact only need to be checked on pairs of tiles meeting along an

edge. The drawback is that although these rules are simply stated and entirely local (in
fact, edge-to-edge), they cannot be enforced by shape alone. Rather, whether two tiles

can meet is determined by orientation as well as ‘charge’ (equivalently, decoration of one
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Figure 1. The tile. It consists of one horizontal straight R1-segment and two R1-turning segments,

meeting the edges with the same offsets from the center axes. The left-hand edges are labeled with

negative R2-charges, which are oriented, respectively from top to bottom, clockwise, both clockwise

and counterclockwise, and counterclockwise. The right-hand edges are labeled with positive R2-charges,

oriented, from top to bottom, counterclockwise, both clockwise and counterclockwise, and clockwise.

Figure 2. Patch of a valid tiling, where reflections of the tile of Figure 1 are shaded in gray.

of two colors) along edges. Our tile is given in Figure 1. Two tiles t1 and t2 are permitted

to meet along a shared edge e only if

R1 the decorations of black lines of t1 and t2 are continuous across e and

R2 whenever the two charges at e in t1 and t2 both have a clockwise orientation,
they are opposite in charge.
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Throughout, we shall call a tiling of the plane by isometric copies of the single tile
of Figure 1 valid when tiles meet edge-to-edge and satisfy rules R1 and R2 at each

edge, see Figure 2. Our main theorem is that such tilings exist, and that they are always

nonperiodic:

Theorem 1.1. There exist valid tilings by the tile of Figure 1. Moreover, any valid tiling

T is nonperiodic – that is, if T = T +x for x ∈ R
2, then x= 0.

As we shall show in §4, the R1 rule alone forces R1-triangles to contain a particular
hierarchical nesting of others, just as in the Socolar–Taylor tilings. The way that

arbitrarily large such triangles are forced with the new ruleR2, however, is quite different.

Indeed, first, the matching rules being edge-to-edge allows for tilings with ‘infinite fault
lines’, as well as some other defects, as discussed in §4. Second, the patterns of tile parities
(given by labeling hexagons only with the information of whether the tile of Figure 1 or

its mirror image is used) are very different, and in fact closely follow the structure of the

R1-edges, which are forced to carry the same parities across them.
This observation leads to a remarkably simple proof of aperiodicity, presented in full

detail in §2 and which we briefly outline now. It is easily seen that following one R1-

edge forward to a second one, belonging to an exterior triangle, flips the charges of the
R1-edges (Lemma 2.1). This implies that the second R1-edge is longer (Lemma 2.2);

the alternative would lead to a spiral of edges ending in a period 3 cycle (Figure 4),

resulting in a parity mismatch. Hence there is no upper limit on the lengths of the edges
of R1-triangles (Corollary 2.3), from which nonperiodicity quickly follows.

Although the central objective of the paper is to showcase a tile admitting a novel and

elementary proof of aperiodicity, in the second half of the paper we proceed to further

analyze the collection of valid tilings and its dynamics. Analogously to the Socolar–Taylor
tilings, there are a particular pair of ‘defect’ tilings. The underlying R1-decorations can

be completed with charges to make a valid tiling in eight different ways, of which the

two with 3-fold rotational symmetry are the nonrepetitive defects, each containing one
instance of a particular vertex configuration. For the Socolar–Taylor tile, these defects are

forced by the existence of such a vertex configuration, which does not appear in any other

valid tiling. For our tile, this vertex in fact forces either this defect tiling or, alternatively,
what we call an ‘n-cycle’. There also exist tilings with ‘fault lines’, whose existence is

linked to the fact that our matching rules are entirely edge-to-edge: two half-planes of

valid tilings either side of a bi-infinite straightR1-edge may, up to a charge-flip of one side,

be pasted together along the R1-edge. We give a classification result listing the possible
R1-decorations of valid tilings in Theorem 4.5, which, like the proof of aperiodicity, is

proven very directly from the simple structures of theR1-edges, in particular theR1-edge

graph, introduced in §3.2. There is a simple method of adding R2 charge decorations to
the R1-edge graph to make a valid tiling.

In §5 we introduce a substitution rule which generates valid tilings. Using our

classification result, one sees that defects can only ever appear sparsely and that all
valid tilings have some form of supertile decomposition (Proposition 5.4). This allows us

to deduce the existence of uniform patch frequencies, or equivalently, unique ergodicity

of the associated tiling dynamical system. With respect to the unique invariant measure,
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almost all tilings belong to the minimal core of substitution tilings. This minimal hull is a
2-fold cover of another hull of tilings, also generated by substitution, given by identifying

tilings which are charge-flips of each other. We are able to identify the multiplicity of

the fibers of the map to the maximal equicontinuous factor, which demonstrates that
the system is quite distinct from the Socolar–Taylor and Penrose

(
1+ ε+ ε2

)
-tilings. The

substitutional hull (modulo charge-flip) factors almost everywhere 1-to-1 to its maximal

equicontinuous factor and so has pure point dynamical spectrum and the structure of a

regular model set.

2. Aperiodicity

In this section we show that all valid tilings by the tile of Figure 1 are nonperiodic. We

begin by defining the R1-triangles and how one associates charges to their edges.

2.1. R1-triangles

The straight R1-segments of the tiles are offset from the center axis of the tile, so we may

assign them a direction. We choose for them to point to the right when the R1-segment

is horizontal and offset toward the top of the tile – that is, when positioned as in Figure 1.

The turns in the R1-lines (the small sections of decorations about two corners of the tile)
are correspondingly offset, which means that they always turn leftward from the direction

of a straight R1-segment leading into them. A maximal straight section of an R1-line

will be called an R1-edge. Since turns are always to the left, the R1-edges always form
either infinite lines (possibly composed of two edges, broken by a single turn) or triangles

of three edges of the same length. With our convention of directing edges, triangles are

always directed counterclockwise.
One may show more, namely that triangle edges must consist of 2n−1 straight sections,

where n∈N, and that there is a hierarchical and identical formation of R1-triangles inside

every R1-triangle of the same size. These observations will not be necessary for our proof,

although they will be proved in §4 when we investigate the set of all possible valid tilings.

2.2. Charges of triangle edges

The region to the immediate left of a directed R1-edge (even if it is infinite) is considered

the ‘inside’ of the corresponding (possibly infinite) triangle. On a tile carrying anR1-edge,

precisely one clockwise-oriented charge lies on the inside of the triangle, either positive
or negative. We assign this charge also to the straight R1-segment. So, for example,

translates and rotates of the tile of Figure 1 carry a negative charge, and its reflection

carries a positive charge. It is easy to see that two consecutive straight R1-segments must
be assigned the same charge, so we may consistently assign a charge ch(E)∈ {+,−} to an

entire R1-edge E. Given a charge c, we let c∗ be its opposite – that is, +∗ =− and −∗ =+.

Take an R1-triangle edge E1 that, following its orientation forward, ends at a turn.
The tile containing the turn carries a different R1-edge E2. In this case we say that E1

leads to E2 and write E1 � E2. We further specify that E1 �N E2 if E2 is offset near to

E1, and that E1 �F E2 if E2 is offset far from E1. Equivalently, we have that E1 �N E2
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Figure 3. The definition of E1 �N E2 (left) and E1 �F E2 (right). Relevant charges and tiles t1 and t2
are indicated as used in the proof of Lemma 2.1.

(resp., E1 �F E2) if the triangle with edge E1 is contained in (resp., is not contained in)

the triangle with edge E2 (see Figure 3).

Lemma 2.1. In any valid tiling, if E1 �N E2, then ch(E1) = ch(E2), and if E1 �F E2,

then ch(E1) = ch(E2)
∗. In particular, there is no chain E1 �F E2 �F E3 �F E1 of three

edges.

Proof. The proof follows from a simple inspection of Figure 3. Indeed, suppose that

E1 �N E2. Let t1 be the tile containing the final straight R1-segment of E1 before the

turn and t2 the tile containing the turn as well as a straight section of E2. Let e be the
edge shared by the tiles t1 and t2. The charge on e in t1 is also clockwise-oriented and

equal to c∗, and the charge on e in t2 is clockwise-oriented and thus equal to (c∗)∗ = c. By

definition, this charge is equal to ch(E2), as required. The case for E1 �F E2 is analogous;
in this case, ch(E2) is given by the charge of the edge opposite e in t2, which is c∗.
Given E1 �F E2 �F E3 �F E1, by the foregoing we have ch(E1) = ch(E1)

∗∗∗ = ch(E1)
∗

– a contradiction – so there is no such chain of three edges in a valid tiling.

2.3. Finding edges of increasing length

We let L(E) ∈ N∪{∞} be the length of an R1-edge E, the number of tiles containing
the straight segments of E (so not including the turning tiles).

Lemma 2.2. Consider R1-edges E1 �E2 in a valid tiling. Let t denote the tile containing

the terminating turn of E1 and thus also a tile of E2. Consider the collection R of all
tiles containing straight R1-segments of E2 starting from and including t and heading to

the right from E1. Then #R=∞ if L(E1) =∞, and #R> L(E1) otherwise.

Proof. Suppose, to the contrary, that #R<L(E1) =∞ or #R≤L(E1)<∞. We define a

sequence E1,E2,E3, . . . of edges of respective triangles Δ1,Δ2,Δ3, . . . , which we will show

must spiral inward and eventually form a 3-periodic chain, contradicting the previous

https://doi.org/10.1017/S1474748021000517 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000517


An aperiodic tile with edge-to-edge orientational matching rules 1733

E1

E2

E3

E4 = E7

Δ1

Δ2

Δ3

Δ4

Δ5
Δ6

t

Figure 4. Creating a spiral of edges from an edge E1 (red tiles) containing tiles greater than or equal to

the number of tiles of R (blue tiles) in E2, as in the proof of Lemma 2.2.

lemma (see Figure 4). The edges E1 and E2 are already as given, and having constructed

Ei, we define Ei+1 by following Ei rightward from Ei−1 to its terminating turn, which is
the tile containing Ei+1. Let Ri be the collection of tiles containing straight R1-segments

of each Ei, starting from the tile with the terminating turn of Ei−1 up to the terminating

turn of Ei.
We observe that E1 �F E2. Indeed, otherwise, the edge E3 following E2 would be part of

the same R1-triangle; in particular, it would have length the same as that of E2, causing

it to intersect E1 (see the red dotted line in Figure 4). Hence E2 has orientation making

E2 � E3. To prevent E3 from intersecting E1, it is necessary that #R3 ≤#R2 ≤ L(E2).
So E2 � E3 and #R3 ≤ L(E2)<∞. These properties of E2 and E3 are analogous to our

initial assumptions on E1 and E2, so the argument repeats, showing that Ei �F Ei+1 for

all i ∈ N and that #Ri is monotonically decreasing in i.
For i ∈ N, the edge Ei+3 is parallel to Ei. All triangles Δj are in the exteriors of each

other by the foregoing, so we see that #Ri =#Ri+3 is possible only if Ei =Ei+3. Indeed,

Ri+3 must belong to the triangular region bounded between Δi, Δi+1, and Δi+2, which
has strictly fewer than #Ri tiles in each row parallel to Ei, except for the row containing

Ei itself. Since #Ri cannot strictly decrease indefinitely, we must have Ei = Ei+3 for

sufficiently large i. But this contradicts Lemma 2.1, since we have found a chain Ei �F

Ei+1 �F Ei+2 �F Ei.

Corollary 2.3. In any valid tiling, there is no finite upper bound on the length of R1-
edges.
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Proof. Supposing otherwise, we may find a finite triangle of largest size, say with edge E.
Then E �E′ for some edge E′, but Lemma 2.2 implies that L(E)<L(E′), a contradiction.
So either there is an infinite R1-line or all triangles are finite but of unbounded size, as

required.

Theorem 2.4. Any valid tiling T is nonperiodic.

Proof. By Corollary 2.3, a valid tiling T contains either an infinite R1-line or triangles

of arbitrarily large size. In the latter case, T is nonperiodic, since any given translation

will not be able to transfer sufficiently large triangles to others.
So we just need to show that any tiling T with an infinite R1-line is nonperiodic.

Assume that T contains an infinite line L with no turn. Orient the tiling so that L points

to the right and consider the set A = {Δi:i ∈ Z} of triangles Δi that share turning tiles

with L (see Figure 5). Suppose that there is some Δ ∈ A of largest size. Supposing it is
finite, follow its edge E which heads upward and to the right from L, leading to an edge

E′ belonging to triangle Δ′. The section of tiles from t along E′ toward L has more tiles

than L(E) by Lemma 2.2, so in fact Δ′ must reach a tile of L and hence Δ′ ∈ A too.
But evidently Δ′ is larger than Δ, contradicting our assumption that Δ is the largest.

So either Δ is infinite in size or there is no largest size of triangle in A. In either case, T

cannot be periodic.
Suppose instead that L has a turn. Let E1 be the infinite-length edge of L directed

toward the turn and E2 be the edge after the turn. We have E1 � E3 for another edge

E3, which is also infinite in length by Lemma 2.2. We thus have three infinite R1-edges,

Δ = Δi

Δi+1

Δi+2

t

E

L

Δi+3

Δ′ = Δi+4

E ′

Figure 5. Proof of aperiodicity in case of the existence of an infinite R1-line L.
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and it is easy to see that any nontrivial translation would cause one to intersect another,
nonparallel one, so T is nonperiodic.

3. Existence

3.1. Standard R1-tilings

We now prove that tilings satisfying R1 and R2 exist. We begin by giving a class of

tilings with ‘standard’ R1 decorations of hierarchically positioned R1-triangles, which

we later show can also be equipped with R2 decorations making valid tilings.

Definition 3.1. The size s(Δ) of an R1-triangle is defined to be L(E)+1, where E is

an R1-edge of Δ. A loop of three R1-turns is also considered to be an R1-triangle, with

size 1.

Definition 3.2. For each n ∈ N0, we define a standard patch Pn of hexagonal tiles with
(partial) R1-decorations. We begin with an R1-triangle Δ of size 2n (see the left-hand

patch of Figure 6). Another triangle Δ′ of size 2n−1 is placed inside of Δ in the only way

possible – that is, with edges leading to the centers of edges of Δ (see the second patch
of Figure 6). This leaves four triangular regions bounded between the edges of Δ and

Δ′. We repeat the procedure by placing four triangles of size 2n−2, one in each region

with edges meeting the edges bounding the region (see the third patch of Figure 6). We

continue until triangles of size 1 are placed (see the fourth patch of Figure 6). The tiles
carrying the R1-triangle Δ and its interior, with R1-decorations as constructed here,

define the patch Pn.

Remark 3.3. The previous definition uniquely defines Pn, up to translation and rotation.

Notice that all interior tiles of the patch Pn are given full R1-decorations, but the tiles
meeting the boundary are only partially decorated.

Although not needed for the arguments of this section, this hierarchical pattern of

triangles is forced by the rule R1, as we shall see in Proposition 4.1. We now consider a
natural collection of tilings associated to these standard patches:

Definition 3.4. An R1-tiling is a tiling of hexagons decorated with R1-decorations

(but not R2-decorations) which satisfies R1. Such a tiling is called a standard R1-tiling

Pn

Figure 6. Construction of a standard patch Pn, here P3. Starting with a triangle of size 2n, triangles of

size 2i are added for decreasing i until ones of size 1 are placed, defining Pn.
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if every finite patch is contained in a translate or rotate of a standard patch Pn. The
collection of all standard R1-tilings is denoted by Ωa.

In the foregoing definition, one could allow Pn to be extended to full R1-decorations

on boundary tiles (so that the given subpatch may share boundary tiles). However, this

does not affect which R1-tilings are standard. Indeed, a copy of Pn is embedded in Pm

for any m≥ n and in the interior of Pm if m≥ n+2. Such embeddings also make it clear
that standard R1-tilings exist, by choosing a nested union of such patches covering the

entire plane.

Remark 3.5.

(1) We denote the collection of standard R1-tilings by Ωa because these tilings are

easily seen to be mutually local derivable (MLD; see [2]) to the arrowed hex tilings
[1]. Alternatively, these tilings are precisely those whose R1-decorations come from

the Socolar–Taylor tilings [21].

(2) These tilings can be constructed by substitution rules, either from the arrowed half-
hex substitution via pseudo-inflations (see [1]) or from an associated stone inflation

on triangle tilings as described in §5.

3.2. R1-edge graphs

Here we shall see that all R1-tilings satisfying certain restrictions on the structure of the

R1-edges (which includes any tiling in Ωa) may always be assigned charges so as to also
satisfy R2. The following lemma will be useful for this purpose, as well as later when we

examine the hierarchical structure of valid tilings:

Lemma 3.6. Suppose that a tiling T satisfies R1 and has charges assigned consistently

across R1-edges. Then T is valid if and only if the following charge transfer property

holds:

(1) If E1 �N E2, then ch(E1) = ch(E2).

(2) If E1 �F E2, then ch(E1) = ch(E2)
∗.

Proof. By Lemma 2.1, a valid tiling satisfies the charge transfer property. So suppose,

conversely, that T satisfies R1 and has charges applied consistently across edges, and

that the charge transfer property holds. We must show that R2 is also satisfied. Tiles
can meet in one of three ways at an edge – meeting either two, one, or zero straight

R1-segments:

(1) If an edge meets two straight line segments (left of Figure 7), then R2 is satisfied
at this edge, since charges on R1-edges are consistent.

(2) If a straight line meets a turn over an edge, the turning tile is at either the terminus

or the origin of the R1-line. In the former case (middle of Figure 7), there are

no requirements for consistency of R2. The latter case is depicted in Figure 3; by
Lemma 2.1, consistency is guaranteed by the charge transfer property.

(3) If two turns meet at the edge, R2 does not impose any restrictions, as seen on the

right of Figure 7.
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Figure 7. Consistency of charges splits into three cases in the proof of Lemma 3.6: when two straight

R1-segments meet (left), when a straight segment meets a turn (middle), and when two turns meet

(right). The two remaining cases of a straight segment meeting a turn are as in Figure 3.

Figure 8. The R1-edge graph. Extensions of an edge E1 to E2 with E1 �N E2 are given by dashed blue

lines, and those with E1 �F E2 are dotted red lines.

It follows that T satisfies R2 and hence is valid, as required.

Given a tiling satisfying R1, we construct an infinite directed graph G, called the R1-
edge graph, from the R1-edges by removing the turns, retaining orientations on R1-edges,

and extending E1 forward to meet E2 whenever E1 � E2 (see Figure 8). We note that
each path component of this graph has exactly the tree structure defined by the growth

condition of the tilings in [13]. Indeed, every valid tiling in [13] defines a valid tiling under

the rules here using the R1-edge graph. However, the rules defined in [13] are not local

in the sense of matching rules, and do not lead to a compact hull of tilings as they do in
this paper (see §4).

Lemma 3.7. An R1-tiling whose R1-edge graph G has no loops and � connected
components may be assigned charges in precisely 2� different ways so as to give a valid

tiling.

Proof. For each component of G, choose any R1-edge and assign it one of the two possible

charges. The charge transfer property forces the charges of the remaining edges of this

component. Moreover, since this component is a tree, we cannot encounter inconsistencies
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in doing this. It follows that we may consistently apply charges R1-edges in two ways to
this component so as to satisfy the charge transfer property. Repeating for each component

gives a consistent tiling by Lemma 3.6.

The R1-edge graph G of any tiling T ∈ Ωa has no loops. To see this, note that in any

standard patch Pn, for any two (necessarily finite) edges E1 and E2 with E1 �E2 we have

that L(E1) < L(E2); this can be shown by induction, since Pn is formed by embedding

into the outer triangle of Pn a copy of Pn−1 and three copies of its interior tiles. So the
limiting tilings of Ωa also have this property. Hence, since a directed path in G can only

take one from edges to longer edges, there can be no loops, and by the foregoing may be

consistently assigned charges to make valid tilings.
Combining this existence result with Theorem 2.4 proves Theorem 1.1, the main result

of the paper.

4. The hull of tilings

In this section we explain the structure of the R1-triangles in valid tilings, which will

allow us to classify the set of all valid tilings. We denote the set of all valid tilings by Ω.
This set carries a natural topology (see [19] for an introduction to the topological study

of aperiodic tilings). The space Ω is sometimes called the (continuous) hull. Belonging to

the hull is a local (in fact, edge-to-edge) condition, and as a consequence Ω is a compact
space.

The rule R1 alone limits the possible sizes of the R1-triangles and the structure of

R1-triangles inside of them. For n ∈ N we define a(n) = 2i, where i ∈ N0 is chosen as
large as possible with 2i dividing n. Recall that for an R1-triangle Δ we denote its size

by s(Δ) = L(E)+1, where L(E) is the length of any of its R1-edges.

Proposition 4.1. Suppose a tiling T satisfying R1 is given. For any R1-triangles Δ

in T, we have s(Δ) = 2n for some n ∈ N∪{0}. Moreover, suppose that E1 and E2 are
R1-edges leading to or from a tile t and, without loss of generality, are positioned so that

E1 is horizontal and E2 extends up and to the right from t (see Figure 9). Suppose that

there are at least k tiles from the right of (and not including) t along E1, and similarly
k tiles from t up and to the right along E2. Consider the R1-triangles Δ1,Δ2, . . . , which

share a tile with E1, naturally ordered by where they meet E1 from left to right. Then

s(Δn) = a(n) for all n= 1, . . . ,k.

Proof. Beginning at the left, for any k we have s(Δ1) = 1, since the two turns of Δ1 in
E1 and E2 are already connected without straight edges. Suppose now that the previous

result on the sizes s(Δi) holds for all k <N , and that for allR1-triangles Δ with s(Δ)<N

we have s(Δ) = 2n for some n ∈ N∪{0}.
We claim that if there is a triangle of size N, then N is a power of 2. Indeed, let n∈N be

such that 2n−1 <N ≤ 2n. Take two edges E1 and E2 of Δ and note that they are positioned

as in the statement of the proposition, so by induction we have that s(Δ2n−1) = 2n−1.
We see that Δ2n−1 will only fit inside of Δ if s(Δ)≥ 2n, hence s(Δ) = 2n, as required.

Next we show that for E1 and E2 as in the statement of the proposition, s(ΔN ) = a(N).

Take n ∈N such that 2n−1 <N ≤ 2n. Let us write t0 = t, and ti the ith tile from t along
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t t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16

Δ8

Δ4

Δ2 Δ6

Δ12

s

E2

E1

Figure 9. Proof of Proposition 4.1, for k= 16 (the 16 tiles up and to the right of t are not all indicated).

The R1-edges to the right and upper right of t are allowed to be offset in two possible ways, so these

lines are marked in gray. Notice that the sizes of the triangles are, respectively, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2,

1, 4, 1, 2, 1 and finally s(Δ16) = 16. Induction using the right edge of Δ8 and the edge between t8 and

t16 forces the blue triangles, which force the line meeting t16.

E1 – that is, the tile shared with Δi. If N < 2n, then by induction on the edge E1 and
the right-hand edge of Δ2n−1 we see that s(ΔN ) = a

(
N −2n−1

)
= a(N), as required.

Indeed, the tile tN is a distance N − 2n−1 < 2n−1 from t2n−1 , and s(Δ2n−1) = 2n−1, so

the right-hand side of Δ2n−1 is long enough to force ΔN .
Finally, suppose that N =2n; we wish to show that s(ΔN ) = 2n. Consider the collection

R of tiles heading in a straight line from tN up and to the left, terminating at E2 (those

in view in Figure 9 are shaded in gray, with N = 16). Notice that the middle tile s ∈ R
contains the top right turn of Δ2n−1 , so the straight R1-segment of this s is parallel to the

row of tiles R.1 Similarly, the triangle Δ(2n−1+2n−2) (given by Δ12 in Figure 9) has its top

right corner in a tile of R lying halfway between tN and s, so the straight R1-segment of

this tile is also parallel to R. We may repeat this to see that each tile in R between s and
tN has a straight-line segment running parallel to the direction of R, so these segments

must be contiguous and form part of an R1-edge running at least between s and tN .

This R1-line is already composed of 2n−1 straight sections, and so by the first part of
the proof, restricting the sizes of triangles, it must in fact be of length at least 2n − 1

(alternatively, we could repeat the previous argument on the triangular region between

E2 and the top edge of Δ2n−1). It cannot be longer, or else it would pass through E1 or
E2, so we conclude that s(ΔN ) = 2n = a(N), as required.

1Notice that if R2 is also satisfied, we may conclude already that the R1-edge E passing
through s has length at least L(E)> 2n−1, by Lemma 2.2, and so extends all the way to tN .
Since there are no triangles of size between 2n−1 and 2n, by induction, we may thus already
conclude that s(ΔN ) =N . However, as is shown, R2 is not needed here.
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Notice that for k=2n we have s
(
Δk/2

)
= k/2. So for anyR1-triangle (or more generally,

a triangular region bounded by R1-edges), Proposition 4.1 shows that R1 alone forces
an R1-triangle of half the size positioned with corners at the midpoint of the bounding

edges. So the hierarchical pattern of triangles given in constructing the standard patterns

in §3 is forced by R1.
Given a tiling T ∈Ω, let R1(T ) be the associated R1-tiling given by forgetting the R2-

decorations. Similarly, we let R1(Ω) = {R1(T ):T ∈ Ω}. We now determine which tilings

can belong to R1(Ω), which can be split into the following classes:

(1) There is no infinite R1-line and

(a) every R1-triangle is contained in infinitely many others or

(b) every R1-triangle is contained in only finitely many others.

(2) There is at least one infinite R1-line and
(a) there is an infinite R1-line containing no turn or

(b) every infinite R1-line contains a turn.

Recall from Definition 3.4 that Ωa is the collection of tilings whose finite patches are

contained in translates of the standard patches Pn given in §3.

Lemma 4.2. If T ∈R1(Ω) is in class 1a, then T ∈ Ωa.

Proof. Since every triangle is contained in a larger one, we may construct an infinite

nested sequence of triangles Δ1,Δ2, . . . whose interiors cover the entire plane. By
Proposition 4.1, the interiors of these triangles are forced to have standard R1-

decorations, so T ∈ Ωa, as required.

Lemma 4.3. If T ∈R1(Ω) is in class 1b, then T ∈ Ωa.

Proof. Consider an ‘outer R1-triangle’ Δ of T – that is, one which is not contained in
any other triangle. Take an edge E1 of Δ and follow the sequence of edges E1 � E2 �
E3 � · · · . Since the triangle containing Ek is exterior to that containing Ek+1, we have

that Ek �F Ek+1 for all k. Analogously to the proof of Lemma 2.2, we thus construct

a spiral of edges whose triangles are all exterior to each other. Lemma 2.2 implies that
the edges become longer, infinitely spiraling outward. Since all triangles are exterior to

each other, we see that arbitrarily large patches about the initial edge E1 are contained

in the triangular regions bounded by Ek and Ek+1. But the pattern of R1-triangles in
such regions are forced to be standard ones also found between edges of R1-triangles,

by Proposition 4.1. So arbitrarily large patches about E1 are patches of tilings of Ωa, so

T ∈ Ωa, as required.

In summary, those generic tilings T ∈R1(Ω) without an infinite R1-line are also in Ωa.

By Lemma 3.7 and the remarks following it, we may choose compatible R2-decorations

for such tilings to give valid tilings. The edge graph is typically, but not always, connected
(see Lemma 6.4).

Lemma 4.4. Suppose that T ∈ R1(Ω) is in class 2a. Let L be the unique infinite R1-
line without turn. Then T is a union of two partial tilings T1 and T2, where T1 covers
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a half-plane one side of L and T2 the other, and where each Ti is a subset of tiles from
some T ′

i ∈ Ωa.

Proof. Consider the pattern of R1-triangles one side of L, and take any triangle Δ in it

with turn on a tile carrying L. The right-hand edge of Δ=Δ1 leads to the left-hand edge

of another triangle Δ2, which also shares a turn with L by Lemma 2.2. Repeating this, we

construct a sequence of triangles (Δi)i∈N which meet tiles of L. Note that by Lemma 2.2
and Proposition 4.1, we have s(Δi+1)≥ 2s(Δi), and then the triangles Δi force standard

R1-decorations in increasingly large regions in the half-plane. More precisely, the union

of the inside of Δi, the triangular region between its left edge and L, and the other
triangular region between its right-edge and L is forced to be a standard decoration seen

in some Pn. For these forced standard patches, either they cover the whole half-space or

s(Δi+1) = 2s(Δi) for sufficiently large i. In the latter case, an analogous argument to that
in the final paragraph of the proof of Proposition 4.1 implies the existence of an infinite

R1-triangle meeting L to the left of Δ. Again by Proposition 4.1, this forces a standard

R1-decoration on this half-plane.

For a tiling T as before with T /∈ Ωa, we call T a tiling with an infinite fault line. For
tilings T ∈Ωa, a triangle meeting L has the same size as the triangle opposite it across L.

But since our matching rules are edge-to-edge, one may freely shift the tiles of one half-

plane relative to the other half. Again, by Lemma 3.7, any such tiling can be equipped
with compatible R2-decorations and so is an element of R1(Ω).

Finally, suppose that we are in Case 2b. Consider the infinite R1-edges with turn Li.

By Lemma 2.2, the edge of each Li heading toward the turn leads to another infinite
edge. Then the only possibility is that there are three infinite R1-edges L1, L2, and L3

arranged in a cyclic fashion as in Figure 10. Let Ei be the edge of Li leading to the turn

and E′
i be the other edge of Li. There are two cases: either Ei �F Ei+1 or Ei �F E′

i+1 for

all i (considered modulo 3, and with the Li ordered appropriately). The first case (left of
Figure 10) is ruled out by Lemma 2.1. The second possibility (right of Figure 10), however,

E1
E2

E3

E ′
1

E ′
2

E ′
3

E1

E ′
2

E2

E ′
3E3

E ′
1

Figure 10. In case 2b, the three infinite lines with turns are forced to arrange themselves as a cycle.

The left-hand picture shows a configuration which cannot occur. The right-hand picture, in this case an

infinite 1-cycle, can occur.
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is possible. By Proposition 4.1, the pattern of R1-triangles is completely determined by
the number of tiles of E′

i starting from the tile after that containing the turn of Li up

to and including the tile containing the turning tile of Ei−1, and there are 2n+1 such

tiles for some n ∈ N∪{0}. We call such a tiling an infinite n-cycle. Up to translation, for
each n ∈ N there are precisely two such R1-tilings (which are related by a rotation) by

Proposition 4.1. We have thus proved the following:

Theorem 4.5. If T ∈R1(Ω), then one of the following is true:

(1) T ∈ Ωa.

(2) T is a tiling with infinite fault line.

(3) T is an infinite n-cycle tiling.

In each case, there are 2� tilings T ′ ∈ Ω with R1(T ′) = T , where � is the number of path

components of the R1-edge graph of T.

Generically, � = 1, but there are also cases where � = 2 or 3 in Theorem 4.5(1) (see

Lemma 6.4). In case 2, �= 1, 2, or 3, depending on whether there are, respectively, 0, 1,

or 2 infinite triangles meeting the fault line. In case 3, �= 3.

5. Generating valid tilings by substitution

In this section we build a primitive and recognizable substitution rule which generates

valid tilings. This will allow us to analyze frequencies of patches and deduce the unique

ergodicity of the hull of all valid tilings. Measure-theoretically, almost all valid tilings will

belong to the minimal component of substitution tilings.

5.1. MLD triangle tilings

For a ‘stone inflation’ [2], inflates of tiles are precisely tiled by copies of the originals.

Since one may not tile the hexagon with smaller hexagons, we cannot define a stone

inflation for our original tiles, although one may define a ‘substitution with overlaps’ (like
the Penrose kite-and-dart or rhomb substitution [15]) or a ‘pseudo-inflation’ [1, 2].

We choose instead to pass to the dual triangle tiling, which will allow us to define a

stone inflation that generates tilings that are MLD to valid tilings. Hence our prototile

set will consist of decorated equilateral triangles. Each triangle has edges labeled with

• an arrow at each edge’s center, pointing in one of two possible directions
perpendicular to the edge, and

• a charge, either + or −.

So each triangle edge has one of four possible labelings. The direction is assigned by the

direction of offset toward the R1-line which crosses the corresponding hex-tile edge (see

Figure 11). If this arrow is pointed toward a straight section of an R1-edge, we assign it
the same charge as this edge. Otherwise, the arrow is pointed toward the start of a left

turn, for which we may determine a charge analogously to the charge transfer property

of Lemma 3.6. That is, if the turn t is part of a hex-tile with straight R1-segment s
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Figure 11. The MLD equivalence on small patches of a valid tiling and a tiling admitted by ϕ, with

charges removed for clarity.

of charge c, then we also label our triangle edge with charge c if s is offset near to t.

Otherwise, if s is offset far from t, we assign our triangle edge charge c∗.
It is easily seen that a valid tiling by the tile of Figure 1 determines, by a locally defined

rule, a triangle tiling and vice versa, so two such are MLD. Unless stated otherwise, we

assume in this section that all tilings have been converted to triangle tilings, and call

such tilings valid if their corresponding hex tilings are.

5.2. The substitution

Given a decoration of R1-triangles from a valid tiling, there is a natural way of associating

to it another whose level n ≥ 1 triangles correspond to those of level (n− 1) from the

original. Simply double the size of each triangle, preserving the charges of their edges,

and add new level 0 triangles in the gaps. By Lemma 3.6, this gives the R1-decorations
of another valid tiling. The procedure defines our stone inflation on triangle tiles: each

triangle is inflated by a factor of 2 and split into four triangles of the original size,

the labels on the outside edges are preserved, and the central triangle has all edges
directed inward (which corresponds to adding a level 0 triangle). The charges of the

internal edges are the unique ones which satisfy the charge transfer property of Lemma

3.6 upon further substitutions, or equivalently, how charges are assigned in the MLD
relation already described. In the triangle tilings, a straight section of edges labeled with

the same directions corresponds to an R1-edge, whereas a vertex of a triangle between

two inward-pointing edges corresponds to an R1-turn.
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Figure 12. The tiling substitution ϕ. Positively charged edges are indicated with black arrows and

negatively charged edges with white arrows.

This defines a tiling substitution ϕ of finite local complexity [2] on the set of all edge-

labeled triangles (see Figure 12). As usual, we may extend ϕ to act on (possibly infinite)
patches. Recall that ϕ is called primitive if there exists some N ∈ N such that ϕN (t)

contains a copy of each tile for any prototile t. A primitive substitution rule is defined by

the six prototiles in Figure 12, along with their rotates and charge-flips. Since each tile

is asymmetric, this gives a prototile set P of 6×6×2 = 72 tiles.
A tiling is said to be admitted by the substitution ϕ if every finite patch is contained in

a translate of an n-supertile, which is a patch ϕn(p) for some n ∈ N and p ∈ P. We also

refer to a 1-supertile as simply a supertile. We denote by Ωϕ the set of all tilings admitted
by ϕ.

For tilings T and T ′ with T = ϕn(T ′), we call T ′ a level-n supertiling of T, and a tile

t ∈ T ′ a level-n supertile. By primitivity, tilings admitted by ϕ exist and have admitted
supertilings of all levels. When the supertiling is always uniquely defined by T (and then

necessarily MLD to it), we call ϕ recognizable.

Lemma 5.1. The substitution ϕ on the prototile set P is primitive and recognizable.

Proof. Primitivity may be checked by hand, or more quickly by a computer.2 Let T be
an admitted tiling, with associated supertiling T ′ (which we scale here by a factor of

2). Notice that under substitution, only the central triangle of a supertile has all edges

directed inward. So the tiles of T ′ are located periodically, with centers at precisely the
locations of the all-inward-directed triangles of T (which correspond to R1-triangles of

2We thank Franz Gähler for assisting us with this.
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size 0). There is also no choice for the labelings on the exteriors of supertiles; they must

agree with the edges they overlap in T, since labels of exterior edges are kept constant

under substitution. So the supertiling T ′ is locally determined and uniquely defined,
meaning that ϕ is recognizable.

Lemma 5.2. A tiling admitted by ϕ is valid – that is Ωϕ ⊂ Ω.

Proof. By the definition of the substitution rule, an n-supertile ϕn(p), for p ∈ P, has
charges assigned consistently to R1-edges (since edges of length 2n are doubled in length

under substitution and given the same charge). The charge transfer property of §3.2 also

holds, by the way that internal edges are assigned charges in the definition of ϕ. Since
a tiling admitted by ϕ can be covered by such patches, the corresponding hex tiling is

valid, by Lemma 3.6.

5.3. Supertile decompositions of valid tilings

Not all valid tilings in Ω are admitted by ϕ. For example, tilings containing n-cycles

or fault lines are not. However, we shall see that every valid tiling has some form of
decomposition into supertiles of all levels. This will allow us to deduce that all valid

tilings have uniform patch frequencies, even if they are not admitted by ϕ.

Recall that in defining the tiling substitution ϕ, we kept only 72 of the 2×
(
43
)
= 128

possible decorated triangles for our prototile set. We omit precisely the tiles of Figure

13, along with their rotates and charge-flips. The first two are preserved under rotation

by 2π/6, so together account for eight tiles. The third class is asymmetric and may
have right-hand direction and charge assigned freely, so these account for the remaining

2×4×6 = 48 tiles. We define P ′ to be the union of prototiles P and the eight tiles in the

first and second classes of Figure 13. Then ϕ also defines a (nonprimitive) substitution

on P ′.

Lemma 5.3. A triangular region P of a valid tiling bounded between three R1-edges is
given by ϕn(t) for t ∈ P ′.

Proof. The three outer edges of P are consistently directed and charged. Let t be
the triangular tile with corresponding labels of its edges. Then t cannot belong to the

third class of tile in Figure 13. Indeed, in that case the left edge necessarily has to

Figure 13. Tiles omitted from the prototile set P are given by these three classes, where we take all

charge-flips and rotates. The third class may have its right-hand edge labeled freely.
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continue downward from P ; it cannot turn toward the bottom edge, since that is directed
downward. This then violates the charge transfer property with the bottom edge.

By Proposition 4.1, the interior of P has R1-decorations determined by the size of

P, which must have edge lengths a power of 2. So the R1-decorations of P agree with
ϕn(t). By construction, the outer edges of P have charges agreeing with ϕn(t). Charges

of interior R1-edges of P are determined by the charge transfer property of Lemma 3.6.

By the construction of ϕ, the charge transfer property holds on ϕn(t) too, so the two

patches agree.

The next proposition exhibits the extent to which valid tilings may be equipped with

supertile decompositions. There is an interesting singular case, which has an analogous
occurrence in the Socolar–Taylor tilings. Notice that a rotated copy of Pn may be found

at the center of Pn+1 (see Figure 6). So there is an R1-tiling, with global 3-fold rotational

symmetry, given as the union P1∪r(P2)∪P3∪r(P4)∪·· · , where r represents rotation by

2π/6 and each patch has common center over the origin. A rigid motion of this is called a
P∞ tiling ; in [11] it is called an iCW-L tiling, short for infinite concurrent w-line tiling.

Proposition 5.4. Let T be a valid tiling. Then we have the following:

(1) If the R1-decorations of T are a rigid motion of P∞, then T has a unique and
locally defined level-n supertiling for each n ∈ N with prototiles in P, or possibly

also one occurrence at each level of the tile in the first class of Figure 13.

(2) If T is an n-cycle, then the infinite R1-edges bound seven regions, one of which is

a translate of ϕn(t), where t ∈ P or the second class of Figure 13, and the other six
of which have unique supertile decompositions with prototile set P.

(3) If T has an infinite R1-line without turn L, then the infinite patches between infinite

R1-edges appear in certain tilings admitted by ϕ with prototile set P.

(4) Otherwise, T is admitted by ϕ with prototile set P.

Proof. Case (1): There areR1-triangles Δ1,Δ2, . . . with identical centers and s(Δn)= 2n

for all n ∈ N. By Lemma 5.3, the patch of tiles in each Δn is given by ϕn(t), where t is

an all-inward-directed triangle with outer charges given by the charges of the edges of
Δn. The existence of unique and locally defined level-n supertilings then follows in the

same way as the proof of Lemma 5.1. Notice that once the charges for Δ1 are chosen, the

charges for the remaining triangles are determined, since each edge of Δn+1 is connected

to precisely one edge of Δn in the R1-edge graph (more precisely, we rotate the charges
2π/6 counterclockwise between each triangle). In particular, if any Δk is chosen with

all edges having the same charge, then all other Δn have only this charge too. A tile

corresponding to a single-charge level 1 triangle does not appear as the substitute of a
tile from P, and only occurs once (at the center, rotated, of a substitute of itself), so it

occurs precisely once at each level of supertiling.

Case (2): By Lemma 5.3, the finite region bounded between the infinite R1-edges is
given by ϕn(t), where t is a triangle with all edges directed outward. The six infinite

regions bounded between infinite R1-edges are infinite unions of triangular regions of

size 2n, for n ∈ N, bounded between R1-edges and with R1-decorations determined by
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Proposition 4.1, which by Lemma 5.3 can be expressed as an infinite nested union of
n-supertiles ϕn(t) with a common corner at the intersection of R1-edges. In fact, the

edges of ϕn(t) overlapping with the infinite R1-edges must have the same corresponding

charges, and the remaining edge has charge determined by the transfer property, so is a
tile in P.

Case (3): Take a half-plane on one side of L. If there are no other infinite R1-edges in

this region, it can be covered by supertiles ϕn(t) for t∈P which share an outer edge with

L, by Proposition 4.1 and Lemma 5.3. Again, each t ∈ P by the charge transfer property.
Otherwise, there is an infinite R1-line with a turn in this half-plane, which is therefore

decomposed into three regions with supertile decompositions analogous to the six infinite

regions of the previous case. Repeating for the other half-plane, we see that there is a
unique covering of T by n-supertiles for each n ∈ N.

Case (4): If none of the other cases apply, Proposition 4.1 implies that there is an

infinite nested sequence Δ1,Δ2, . . . of triangular regions Δn bounded between R1-edges
with sides of length 2n and whose union covers R

2 (if it did not, then this would lead

to an infinite R1-edge). By Lemma 5.3 these triangles are given by ϕn(tn) for tn ∈ P ′.
However, Δn appears off-center in Δn+1 infinitely often, since T is not a P∞ tiling. Since

the second class of tile of Figure 13 cannot appear in a substituted tile, and the first class
appears only at the center of a substitute of itself, each tn ∈P, so T is admitted by ϕ.

Remark 5.5. The foregoing shows that valid tilings have unique supertile decomposi-

tions of all levels, except for possibly the P∞ tilings (which are either admitted by ϕ or
admitted by extending to a nonprimitive prototile set) and n-cycle tilings (which have

supertile decompositions of all levels in six infinite regions, covering the whole plane

except for a central level-n supertile). This proof shows that the bad tiles, given as the

first two classes of Figure 13, may occur as follows:

(1) The first class (an R1-triangle with only one charge of edge) can only be part of

a P∞ tiling or n-cycle. For the P∞ tiling, either the tiling is admitted or there is
precisely one such bad tile at each level, which appears at the center of the next one.

This is similar to the situation for the Socolar–Taylor tiling, where the existence of

a level 1 R1-triangle forming a vertex of a single color forces a P∞ tiling and the

remaining decorations. Just as for the Socolar–Taylor tile, there are eight possible
ways of decorating a P∞ tiling to get a valid tiling, with six of them admitted

by the substitution and the remaining two ‘defect’ tilings having 3-fold rotational

symmetry.

(2) The second class of bad tiles of Figure 13 may occur in only one role: as a level-

n triangle of an n-cycle tiling when this tiling has 3-fold symmetry. In this case,

precisely one bad tile occurs at the center of the next up to level n.

6. Ergodic and dynamical properties

We now analyze some fundamental properties of the dynamical system associated to the

hull of valid tilings and how they relate to the Socolar–Taylor and Penrose
(
1+ ε+ ε2

)
-

tilings.
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6.1. Unique ergodicity

The supertile decompositions will allow us to show that all patches in valid tilings appear

with well-defined frequencies, from which we may deduce unique ergodicity of the tiling

dynamical system. Again, we work with the triangular versions of our tilings.

Unique ergodicity of a tiling dynamical system given by the orbit closure of a tiling is
equivalent to the tiling having uniform patch frequencies [2]. The hull of valid tilings is

not the orbit closure of a single tiling. Indeed, Ω contains n-cycle and fault-line tilings

(see Theorem 4.5), which contain ‘defective’ finite patches that do not appear in orbit
closures of the others. However, we can still prove that the collection of valid tilings has

uniform patch frequencies in the following sense:

Definition 6.1. We say that a collection X of tilings has uniform patch frequencies if

for each finite patch P, there exists some δP ≥ 0, its density, such that for all ε > 0 there
exists R> 0 such that

∣
∣
∣
∣
#(P,T,R)

VR
− δP

∣
∣
∣
∣< ε

for any T ∈ X, where #(P,T,R) is the number of occurrences of P inside the ball of

radius R centered at the origin of T and VR = πR2 is the area of an R-ball.

We scale our tilings so that the density of all tiles is equal to 1. Then the densities of
all possible patches of the same shape sum to 1 and we refer to these densities as patch

frequencies. Some authors demand that frequencies be strictly positive in the definition

of uniform patch frequencies, which implies that there is a unique invariant measure and

that the open sets have strictly positive measure (that is, the system is strictly ergodic). In
our case, there will exist patches with frequency 0 in the ‘defect’ tilings (i.e., the n-cycles,

those with fault lines, or the P∞ tilings with 3-fold symmetry).

The hull of tilings coming from a primitive, recognizable substitution rule always
has uniform patch frequencies. Using this in conjunction with the result on supertile

decompositions of valid tilings from Proposition 5.4 allows us to deduce uniform patch

frequencies of all valid tilings:

Proposition 6.2. The collection Ω of valid tilings has uniform patch frequencies.

Proof. Take a patch P and valid tiling T, which we normalize to have tiles of unit area.

Then P appears with frequency δP in any tiling of Ωϕ (where δP = 0 if it does not appear
in any tiling of Ωϕ). We claim that P appears with frequency δP in T too.

In Proposition 5.4(4) the tiling is already in Ωϕ, so this is immediate. Cases (2) and

(3) are also clear by the following argument. Take a large k ∈ N and remove from T
a neighborhood N of the boundaries of k -supertiles, as well as the central triangle of

an n-cycle in case (2), so that occurrences of P in R
2 \N appear only in interiors of

k -supertiles (which we know appear as patches in Ωϕ). For a large k and R > 0, only a
negligible proportion of any R-ball intersects N, and on R

2 \N occurrences of P have the

same frequency as in tilings of Ωϕ. So we see that P occurs in T with this same frequency

in T too.
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Suppose then that T is in case (1) of Proposition 5.4, and let ε1,ε2 > 0 be arbitrary.

Choose a large integer k ∈N. Let s be the smallest number of occurrences of P inside any

k -supertile ϕk(t), for t ∈ P. Similarly, let S be the largest number of occurrences of P in
any level-k supertile, where we include potential occurrences of P which may intersect

the boundary. By uniform patch frequencies in Ωϕ, we may choose k large enough so that

2k(δP − ε1)≤ s≤ S ≤ 2k(δP + ε1).

Next take some large R > 0. Let n be the smallest number of k -supertiles (which may

also exclude the single ‘bad’ k -supertile which does not appear in Ωϕ, as in Remark 5.5)
that are contained in any R-ball, and N be the largest number of k -supertiles which can

intersect any R-ball. By making R large enough relative to 2k, we can ensure that

VR

2k
(1− ε2)≤ n≤N ≤ VR

2k
(1+ ε2).

By counting occurrences of P in interiors of k -supertiles or ones which may occur along
boundaries of supertiles, we see that

n ·s≤#(P,T,R)≤N ·S+2k,

where on the right-hand side we use the (crude) upper bound of 2k possible occurrences

of P inside the single ‘bad’ k -supertile. Hence

(1− ε2)(δP − ε1)≤
#(P,T,R)

VR
≤ (1+ ε2)(δP + ε1)+

2k

VR
.

So by making ε1 and ε2 sufficiently small, and R sufficiently large relative to k, we see

that
∣
∣
∣
∣
#(P,T,R)

VR
− δP

∣
∣
∣
∣

can be made as small as desired.

An application of the ergodic theorem yields the following:

Corollary 6.3. The dynamical system
(
Ω,R2

)
is uniquely ergodic, and with respect to

the unique invariant measure, almost every tiling of Ω is in Ωϕ.

Proof. One may consider a transversal to the tiling flow on the continuous hull, which

here is a Z
2-shift. This is given, for example, by considering tilings where the origin lies

at the center of a tile. This canonical transversal X is a totally disconnected space whose

clopen sets have measure determined by patch frequencies, which exist by the foregoing.

Unique ergodicity of the continuous hull follows from that of its transversal.
Let Xr ⊂ X denote the set of valid tilings with r -patch at the origin belonging, up

to translation, to any substitution tiling (i.e., such a patch appears in a k -supertile for

some k ∈ N). Then each Xr has measure 1, as the frequencies of nonadmitted patches
have frequency 0 (and so, as before, by the ergodic theorem have measure 0 in Ω). Since

Xϕ =
⋂

r>0Xr, continuity from above of the measure implies that Xϕ has full measure

in X. The same then follows for the continuous hull.
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6.2. Topological factors and spectral properties

Since almost every valid tiling is in the minimal core Ωϕ, for the spectral properties of our

tilings it is equivalent to study this more well-behaved space instead, which we do for the

remainder of the paper. We observe that there is an order 2 homeomorphism, equivariant

with respect to the action of translation, on Ωϕ (and Ω) given by charge-flip. It follows
that

(
Ωϕ,R

2
)
is not an almost-everywhere 1-to-1 extension of its maximal equicontinuous

factor, and so cannot have pure point dynamical spectrum [4] (or diffraction spectrum

[6, 12]). We also consider the quotient space by charge-flip, which we denote by Ω±
ϕ .

Its elements can be naturally viewed as tilings: we remove charge labelings at edges

and replace them with labels for each triangle vertex which indicate whether or not the

charge flips between the vertex’s adjacent edges. It is easily seen that such tilings can be
produced by a substitution rule, given by that of Figure 12 but with charge-flip pairs of

tiles identified. This is a substitution of 36 tiles, six up to rotation equivalence.

The hull of all Socolar–Taylor tilings also has a minimal core generated by substitution,

called the Taylor tilings in [1], which we denote by ΩST. We recall also from [1] the hulls
of half-hex tilings ΩHH, arrowed half-hex tilings Ωa, and Penrose

(
1+ ε+ ε2

)
-tilings Ωε.

Finally, we let S
2
2 be the 2-dimensional maximal equicontinuous factor (MEF) of these

dynamical systems, which is given by the 2-dimensional dyadic solenoid.
Recall that the arrowed half-hex tilings of Ωa are MLD to standard R1-tilings, hex

tilings with R1-decorations as appearing in the Socolar–Taylor tilings [1]. These tilings

can be generated by the substitution rule of Figure 12, where charge decorations are
removed. The half-hex tilings may be considered as such tilings where edges are not

offset, but the locations and directions of R1-turns are known. Since the offset of an

R1-edge is determined on any R1-triangle with a turn (as this determines the inside of

a triangle), the map is 1-to-1 on tilings without a bi-infinite (straight) R1-edge. On the
other hand, it is 2-to-1 on tilings with a bi-infinite R1-edge, since this may be offset in

one of two directions to obtain a tiling of Ωa.

Elements of S
2
2 may be regarded as sequences T0,T1,T2, . . . of periodic tilings of

equilateral triangles of side length 2n, where the standard subdivision of triangles of

side length 2n into four of side length 2n−1 takes Tn to Tn−1. The topology on S
2
2 regards

two such sequences as close if their nth terms are small translates of each other, for
large n. The factor map from Ωa to S

2
2 simply records the sequence of unlabeled level-n

supertilings (where we use the triangular tile versions of these tilings). Triangles t of Tn

which appear at the centers of the next level always correspond to R1-triangles, with

turns directing counterclockwise about t, so the map from Ωa to S
2
2 is 1-to-1 everywhere

except over points having an infinite-level vertex (that is, a point which is a vertex of

every Tn). These points correspond to CHT tilings [21], where the map is 3-to-1.

By Lemma 3.6, there are 2� different ways of adding charges to a compatible R1-tiling
to obtain a valid tiling in Ω, where � is the number of connected components of the R1-

edge graph. We determine this number � in the following, and hence the multiplicity of

the fibers of the factor maps to Ωa and the MEF:

Lemma 6.4. Set T ∈ Ω with � connected components of the R1-edge graph (so �= 1, 2,

or 3).
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Figure 14. The α, β, and γ moves, in this respective order, used to create tilings with �=2 components of

R1-edge graph. The white dots on the original tile indicate edges in the same R1-edge-graph component

X, and the black dot indicates the other component Y. The three edges of the triangles at the next level

are in the component indicated with larger dots.

(1) If �= 3, then T is a CHT tiling (possibly sheared along the bi-infinite R1-edge to

make a fault line), a P∞ tiling, or an n-cycle. If T ∈ Ωϕ, then T is a CHT or P∞
tiling. There are eight assignments of charges to the CHT tiling and six for the P∞
tiling which give elements of Ωϕ.

(2) If � = 2 and T has one bi-infinite R1-edge, then T /∈ Ωϕ. If � = 2 and has no bi-

infinite R1-edge, then T ∈Ωϕ and there is a sequence Δ0 ⊂Δ1 ⊂Δ2 ⊂ ·· · covering
R

2, where each Δk is a k-supertile which, for sufficiently large k, is included into

Δk+1 in one of the placements α, β, or γ depicted in Figure 14.

(3) If � = 1, then either R1(T ) has an infinite fault line or T ∈ Ωϕ. Almost every

element of Ω has �= 1.

Proof. It follows from Theorem 4.5 that �= 1, 2, or 3. Suppose that �= 3. If T is a P∞
tiling or an n-cycle, then it is easily seen that �= 3. Otherwise, by Proposition 5.4, it has

supertile decompositions. If T is covered by a nested union of supertiles, then it must

be admitted by ϕ. Otherwise, there must be a bi-infinite R1-edge with two infinite R1-
triangles each side, making it a CHT tiling, or a shear of it along the infinite R1-edge. If

T ∈Ωϕ, then it follows that T is a P∞ tiling or a CHT tiling. In the former case, there is

a nested union Δ0 ⊂Δ1 ⊂Δ2 ⊂ ·· · where each Δk is a k -supertile (with inward-directed
edges) appearing at the center of Δk+1. There are six ways of labeling Δ0 with charges

to obtain a prototile of P, namely those which do not use the same charge on all edges,

and this charge determines that of all of the other Δk. For the CHT tiling, all eight valid

assignments of charges give a tiling of Ωϕ. This follows from a brief check that all eight
possible charge assignments to two R1-triangles meeting opposite across an R1-edge can

be generated by the substitution.

So now suppose that � = 2. If T has a bi-infinite R1-edge E, the R1-edge graph on
one half-plane side of E must be in the same component as E, whereas the other side

must have an infinite R1-triangle. This can happen in Ω but not in Ωϕ. Suppose then

that T does not have a bi-infinite R1-edge. Since T is not an n-cycle (which has �= 3),
there must be the stated sequence Δ0 ⊂ Δ1 ⊂ Δ2 ⊂ ·· · of k -supertiles, by Proposition

5.4; indeed, if any such sequence covered only part of the plane, then there would be an

infinite R1-line. All of the supertiles are substitutes of tiles from P, or else the tiling
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would be a P∞ tiling. It follows that T is admitted by ϕ. Since �= 2, for sufficiently large
k, two of the edges of Δk belong to the same component X of the R1-edge graph, and

the other edge belongs to the other component Y. This limits the placement of Δk into

Δk+1 to one of α, β, or γ in Figure 14.
Finally, suppose that � = 1. By Proposition 5.4, T either is admitted by ϕ or has an

infinite R1-line, splitting into half-planes that are patches of certain tilings from Ωϕ.

If R1(T ) has a fault line, then T /∈ Ωϕ. If there is no fault line in the R1-decorations,

then since �= 1, the charges of one half-plane determine those on the other and T itself
must be admitted by ϕ. Finally, we claim that almost every element of Ωϕ (and hence Ω,

by Corollary 6.3) has � = 1. Indeed, k -supertiles of all levels are positioned periodically,

with two given sides being connected in the R1-edge graph at the next level whenever
they appear in one of four possible locations in the (k+1)-supertile containing them.

So generically, any two given edges are eventually connected in some sufficiently large

supertile.

We can give a precise description of which tilings have �= 2 connected components of

R1-edge graph. A triangle (positioned with horizontal bottom edge) may have edges

directed inward or outward, to which we associate a tuple (l,r,b) ∈ {i,o}3, with the
first, second, and third coordinates corresponding to the left, right, and bottom edges,

respectively, and o denoting ‘outward’ and i denoting ‘inward’. Because of the placement

of triangles, we may only apply an α or β move to an (o,x,y) triangle (where x, y ∈ {0,i}
may be chosen arbitrarily), and a γ move may only be applied to an (i,i,i) triangle (in

particular, we cannot have an (i,x,y) triangle unless x= y= i). Applying an α move to an

(o,x,y) triangle results in a (z,x,y) triangle, whereas β results in a (y,z,x) triangle, both for

z arbitrary (where, for the latter, note that we rotate the resulting configuration, making
X the bottom edge, since in the new triangle the edges Y are in the same component

and take on the roles of the X -labeled edges from the step before). A γ move can lead to

any triangle type.
Thus, any path around the graph of Figure 15 builds an R1-tiling with X and Y

in different path components. Moreover, so long as the path does not end in repeated

applications of α (which would mean that T is a CHT tiling, if T ∈ Ωϕ) or of γ (which
would result in a P∞ tiling), it is easily seen that the sequence of supertiles covers the

plane. Moreover, in this case, since two edges of a triangle are reconnected at either an

α or a β move, we see that the resulting tiling has precisely two connected components.

Conversely, a valid tiling with two components (without bi-infinite R1-line) is covered by
supertiles whose placements eventually follow an infinite path in the graph of Figure 15

and does not have an infinite tail of only α or only γ.

Having determined the multiplicities of fibers to Ωa (and the MEF), we now compare
the situation to the Penrose

(
1+ ε+ ε2

)
- and Socolar–Taylor tilings, which, despite not

being MLD (the Čech cohomologies of ΩST and Ωε differ [1]), somewhat amazingly map

to the MEF with fibers of identical multiplicity [1, 11]. We summarise with Figure 16.
In Figure 16, ‘gen’ is shorthand for ‘generic’ and ‘sing’ for ‘singular’. The a-lines of

a point in the solenoid (or associated tiling) are defined in [11]; they correspond to the

locations of the (nonoffset) R1-edges, which are arranged periodically, and more sparsely
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(0,0,i)

α

(0,i,i)

α

(0,0,0)

α

β

(i,i,i)

γ

γ

γ
β

α

γ

(0,i,0)

α

β

β

β

γ

Figure 15. Graph of nodes of the different triangle types, connected by all possible α, β, and γ moves

(see Figure 14). An infinite path in this graph which does not end in an infinite tail of α or infinite tail

of γ defines a tiling with �= 2 components of R1-edge graph.

Size of fibre of ∗ → Ωa

Type of S2
2 point ΩST and Ωε Ω±

ϕ Size of fibre of
Ωa → S

2
2

CHT (w and a-
sing)

2 4 6

P∞ (iCW-L) 6 3 1
a-gen, w-gen 1 1 or 2 1
a-sing, w-gen 1 1 2
a-gen, w-sing 2 1 or 2 1

Figure 16. Comparing fiber multiplicities with the Penrose
(
1+ ε+ ε2

)
- and Socolar–Taylor tilings.

at increasing levels of the hierarchy. Tilings where every a-line has a finite level are called
a-generic; otherwise they are a-singular (that is, a tiling is a-singular if it has an infinite

R1-line). The w-lines are defined somewhat similarly. They form another triangular grid

at each level, each line cutting through lines of reflective symmetry of the triangles of

a-lines, and are related to the carry of information of flags (or colors) in the R2-rule of
the Socolar–Taylor tilings. We refer the reader to [11] for more details on these notions.

The values in the first column of Figure 16 are given in [11] and [1].

For the second column of values, the first two rows are the content of Lemma 6.4(1).
For the third row it is not hard to see (analogous to the proof that almost all tilings

have � = 1 components of an R1-edge graph in the proof of Lemma 6.4(3)) that almost

all tilings have no infinite a- or w-lines (these are also called generic in [11]). So almost
every tiling is generic and has � = 1, although we may also construct a- and w- generic

tilings with �= 2, which will happen for most infinite paths in the graph of Figure 15 (the

path β∞ gives just one example). The fourth row (a-sing, w-gen) corresponds to tilings
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with an infinite R1-line which are not CHT, which have � = 1 by Lemma 6.4. Finally,
we may find tilings without infinite R1-edges but an infinite w-line with either � = 1 or

�= 2. Following the path αγ6αγ6αγ6 · · · of the graph in Figure 15 constructs an example

with �= 2. Examples with �= 1 are simple to construct, by successively placing supertiles
with common lines of reflection and not following a path in the graph of Figure 15.

Since Ω±
ϕ factors almost everywhere 1-to-1 to its MEF, it has pure point dynamical and

diffraction spectrum (see, for example [6, 12]), and a regular model set structure by [3,

Theorem 6]. This factor map has a different multiplicity of fibers from ΩST and Ωε and
so cannot be topologically conjugate to either of them. We summarize these main results

together with results from [1, 11]:

Corollary 6.5. We have the following diagram of maps of R2-dynamical systems:

Ωε

Ω ΩST Ωa ΩHH S
2
2.

Ωϕ Ωϕ
±f

Each map is a factor map, except for the inclusion Ωϕ ↪→ Ω, which has image of full

measure. All factor maps are almost everywhere 1-to-1, except for the map f, which is a
2-to-1 covering map. In particular,

(
Ω,R2

)
and

(
Ωϕ,R

2
)
do not have pure point dynamical

spectrum, but
(
Ω±

ϕ ,R
2
)
does. Moreover, none of these systems are topologically conjugate.

The tiling spaces Ωε, ΩST, Ωa, and Ω±
ϕ each have the structure of regular model sets.
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