GROUPS OF POSITIVE OPERATORS
H. A. DYE anp R. S. PHILLIPS

1. Introduction. Semi-groups of bounded positive operators on certain
function spaces enter the theory of stochastic processes of the diffusion type
in an essential way. It is a matter of experience that these semi-groups cannot
be imbedded in groups of positive operators, or, in more special terms, that
the solution of a diffusion equation does not define a one-parameter group of
positive operators on the natural function space. The present work originated
with an effort to explain this circumstance by showing, under appropriate
conditions, that a group of positive operators will solve only a first order
partial differential equation (see §3). Aspects of this problem, however, pointed
the way to a general study of group representations by bounded positive
operators on Cy(X), the space of real-valued continuous functions vanishing
at infinity on a locally compact Hausdorff space X. A typical problem arising
here, for example, was that of determining when a bounded positive group
representation on Co(X) is equivalent to a pure flow (or isometric) representa-
tion. In the main, then, this paper deals with general questions of this type.

The existence of a certain canonical factorization of elements in a group of
positive operators provides the technical basis for our study. Expressly, any
representation ¢ — U, of a group G by bounded positive operators on Cy(X)
splits into a product U, = Lg. »T, of a flow representation ¢—7, of G by iso-
metries of Cy(X) and pointwise multiplications by functions in P (X), the class
of all positive continuous functions on X bounded away from 0 and infinity.
In particular, the group of all positive operators on Co(X) belonging to a given
flow splits into a semi-direct product of that flow by P(X). While this theorem
is not essentially new, its implications have not been studied extensively.

It develops that equivalence properties of the positive representations of
G on Cy(X) hinge on the analysis of certain functional identities. The multipli-
cation factors (-, o) arising in the factorization of U, satisfy the characteristic
identity (-, o) = 0(-0, 7) 6(+, 0), and the representation [U,] will be equiva-
lent to a pure flow (in a natural sense) if and only if 8(-, ¢) has the form
0(-,0) = g(-)/g(-0), for some g in P(X). To provide a natural algebraic
vehicle for this analysis, certain elementary notions from the cohomology
theory of Eilenberg and MacLane (2) are discussed in §4. Algebraic techniques
suggested by this theory, and involving in particular cohomology group
H'(G, P(X)), are employed variously throughout the rest of the paper.
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Our main results in this direction are contained in §§5, 6, and 7. In §5, we
prove that a bounded positive representation belonging to an ergodic flow is
already equivalent to that flow, and show by example that bounded repre-
sentations are not in general equivalent to flows. In §6, we study the auto-
morphism group of the group of all positive operators on Cy(X) belonging to
a given flow. Theorems here concern the semi-direct product structure of the
group of bounded automorphisms, and the characterization of the group of
flow-related automorphisms modulo inner automorphisms. In §7, we show
that the adjoint representation of a given strongly continuous bounded
positive representation of a topological group G on Co(X) will be equivalent to
the adjoint of the flow representation provided only a Borel measurable
factorization of the multiplication factor 6(-, ¢) exists. Equivalence of the
adjoint representations of two positive representations [U,] and [V,] of G
on Co(X) implies that the spectra of U, and V, coincide.

The appendix contains an application of the foregoing theory to semi-groups
of operators. Two one-parameter groups of operators are exhibited with the
property that the sum of their infinitesimal operators has no extension generat-
ing even a semi-group or operators.

2. Factorization of positive operators. Let L(X) [resp., Co(X)] denote
the algebra of all real-valued continuous functions with compact support
[resp., vanishing at infinity] on the locally compact Hausdorff space X. We
take these spaces with the customary norm on continuous functions, namely

[fIl = sup )],

so that L(X) is dense in Co(X). A positive operator on L(X) [resp. Co(X)] is
by definition an everywhere defined linear transformation of L(X) [Co(X)]
into itself which carries non-negative functions into non-negative functions.
Our discussions will center on the class of bounded positive operators which
have bounded positive inverses—a decisive restriction—and in this section,
we derive the basic factorization theorem cited in the introduction.

LEmMMA 2.1. Let U be a bounded regular operator on L(X) [resp. Co(X)],
which together with its inverse is positive. Then there exists a positive continuous
Sfunction p(-) on X, bounded away from 0 and «, and a homeomorphism x —xo
of X such that
2.1) U=L,T,,

where L, denotes pointwise left multiplication by p(-) and T, is the automorphism
(T,f) (x) = f(xo) of L(X)[Co(X)] implemented by a. Components in this factori-
zation are uniquely determined, and one has ||U|| = ||p||.

Proof. Suppose that U is a bounded positive operator on Co(X) having a
bounded positive inverse. We prove first the useful fact that U maps L(X)
onto itself. For this, it suffices to prove that Uf lies in L(X) for each f in the
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positive cone of L(X), namely L*(X). Consider then an f € L*(X) and choose
an k € L*(X) which assumes the value 1 on all of the support of f. We approxi-
mate to Uk by a function g € L*(X) chosen so that

Uk — ¢ll < @IIUTD™, 0 < g < Uh.

We have 0 < U~'g < hand ||U~'g — k|| < %. It follows that U~'g > % on the
support of f, and therefore, the support of Uf lies in the (compact) support of g,
proving our assertion. In view of this fact, it will clearly suffice to prove the
theorem for L(X).

We next show that there exists a one-to-one map of X on itself, x — xo,
such that g(xs) = 0 if and only if Ug(x) = 0 for each g € L(X). Again it is
clear that we can restrict our considerations to L+(X). We further note that
U and its inverse being positive implies that U describes a linear order iso-
morphism in L(X) so that U(fV g) = Uf V Ug. Now for fixed x € X,
we set

I=1[h;h € LYX), Uh(x)=0]

It follows from the above remarks that I is a closed positive cone, closed with
respect to the lattice operation V, and neither empty nor all of L+(X). Let
Z(h) = [y; h(y) = 0). If hy, he € I, then by V ke € I and

Z(hi V he) = Z(h) N Z(hs).

Consequently if F = MN[Z(h); k € I] is disjoint from a given compact set
C, then thereisan & € I with Z(h) M C = ¢ (the null set). Now if g € L*(X)
has C as its support, then 0 < g < ak for a sufficiently large and therefore
0 < Ug(x) € aUk(x) = 0 so that g € I. Since I is a proper subset of L+(X),
it follows from this that F is necessarily non-empty. On the other hand, F
can contain no more than one point. For if y;, yo € F, it is easy to construct
functions ki, k2 € L+¥(X) such that k;(y;) >0, 1 =1,2, and k1 A k2 = 0.
Thus
0 = Ukr A ko) (x) = [Uki(x)] A [Uka(x)].

Consequently either k; or k; lies in I, so that F cannot contain both y; and .
Denote the single point in F by xo. We see that Ug(x) = 0 implies g(xo) = 0,
and xo is the only point for which this assertion holds for all g € L*(X).
On the other hand if f € L*(X) and f vanishes identically in a neighborhood
of xe, then a compact support for f is disjoint from F = {xs} and hence as
above f € I. Now any g € L+(X) with g(xs) = 0 can be approximated in
norm by functions of the type f and hence any such g belongs to I; that is
g(xo) = 0 implies Ug(x) = 0. Finally to show that ¢ maps X onto itself we
have only to derive the corresponding assertions for U~! and note that these
involve ¢~! in place of o.

For each x € X choose a g, € L(X) so that g,(xe) = 1; set p(x) = Ug,(x).
Then for any f € L(X), f — f(xo) g, vanishes at xo and therefore

Uf(x) = f(xo) Uga(x) = p(x) f(xo).
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This is the desired representation of U. It follows from this representation
that p(x) is non-negative and bounded on X and, since

Uf(x) = [pxoe D] flxa™),
we see that p(x) is also bounded away from 0. To prove that x — xo is a
homeomorphism let a neighborhood N(x,s) be given and choose f € L*+(X)
so that N(xy0) is a support for f and f(xes) > 0. Since Uf € L(X), the set

N(xo) = [x, p(x) f(xo) > 0]

defines a neighborhood of x, with the property that [N(xo)]e C N(xo0).
The mapping o is therefore continuous and a similar argument applied to
U—!establishes the continuity of ¢~!. It is now easy to prove that p is continuous
on X. In fact if N(x0) is chosen to have a compact closure, then there exists
an f € Lt(X) with f(x) = 1 for all x € N(x¢s). In this case p(x), which
is identical with Uf(x) in N(x¢) = N(xes)o~!, is seen to be continuous at
at xo. Finally we note that the uniqueness of the factorization (2.1) follows
trivially from the fact that L,T, = I (identity operator) entails p = 1,
o = e (the identity homeomorphism), and so all parts of the Lemma are
proved.

When X is compact the Lemma implies the following result, due to Kadison

(6):

CorOLLARY. If X s compact, then any linear order isomorphism of L(X)
which conserves the identity 1s implemented by a homeomorphism of X.

With this, we pass to a characterization of groups of positive operators.
Some notation is needed. Given a group G and a topological space X, we
say that G acts on X if a representation of G in the group of homeomorphisms
of X is given. A flow of G in Co(X) (X locally compact) is a representation
¢ — T, of G by a group of isometries of Co(X). Given a flow G in C¢(X), one
can find an action ¢ — x¢ of G on X such that (T,f)(x) = f(xo) for all f in
Co(X) (cf. (1) and (10)).

TaEOREM 2.1. Let ¢ — U, be a representation of a group G by bounded
positive operators on Co(X). These operators U, have a factorization
(22) Ua = Lﬂ(-, a)Tv
where, for each o, 0(-, o) 1s a positive continuous function on X, bounded away

from 0 and infinity, and ¢ — T, is a flow representation of G on Co(X) imple-
mented by an action x — xo of G on X. These functions 0(x, o) satisfy

(2.3) 0(x, o7) = 0(x0o, 7) 0(x, 0) and 6(x, e) = 1.
If G is a topological group, and if the representation ¢ — U, is strongly continuous,
then

(2.4) the mapping (x, o) — xo is continuous on X X G to X, and
(2.5) the function 0(x, o) is continuous on X X G.
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Conversely, given an action x — xo of G on X and a function 6(x, o) subject to
all the above conditions, then o — U, = Lo o1, defines a strongly continuous
representation of G on L(X).

Proof. The representation identity (U,)~! = U,-1 assures that each U,
has a bounded positive inverse, and therefore, the existence of the factorization
(2.2) follows from the Lemma. Now,

LO(-, rr)Tu‘r = Urr = UaUr = Lo(-, V)TvLO(-, f)Tr = Lo(-, a)0(-a, f)Tchr-
By the uniqueness of factorization, therefore, T,, = T,T. and
0('1 U'T) = 0("71 T) 0(7 G’),

proving the first part of (2.3). That 6(-,e) = 1 follows trivially from this
identity.

We turn to the topological properties. First, given a compact C in X and
an open VD C, we argue, there exists a neighborhood N of the identity e
in G so that CN C V. In fact, choose an % in L(X) which is 1 on C and 0
outside V, and then apply strong continuity to choose N so that

6(-,0) (o) — ()| <1,

for all ¢ in N. Trivially, this entails CN C V.
With this, we can see that (2.4) holds: given x,, ¢9, and a neighborhood
V of x400, choose a neighborhood U of x, with compact closure which satisfies
(U7) o C V. Now, by the preceding paragraph, choose a neighborhood N
of e so that (U™) aoNC V. This proves (2.4).
For (2.5), note first that it suffices to prove joint continuity at each pair x,
e (e the identity); in fact, given this, suppose lim x, = x, and lim ¢g =e. Then

lim 0(xa, 0’00’5) = lim B(x,,ao, ag)-lim 0(x.,, (70) = 0(360, 0’0),

so joint continuity will be established in general. To prove joint continuity
at x, e, consider any compact set C in X. Choose D compact with C in its
interior, choose a symmetric neighborhood N of e in G so that CN C D,
and finally, let f be a function in L(X) which is 1 on D. Since f(xs) = 1 on
C X N, we then have, for x in C and ¢ in N,

6(x, o) — 1] = [[B(x, o) — 1] f(xo)| < |0(x, ) f(xo) — f(x)| + |f(xo) —f(x)].
Shrinking N if necessary, we can arrange that the first term on the right be
arbitrarily small for all x € C by appealing to the strong continuity of U,;
the second term vanishes on C by our choice of f. Thus (2.5) is established.

The converse follows readily from the fact that, for any f in L(X), we can
choose a neighborhood N of ¢ so that |f(-0) — f(-)| <, for all ¢ in N, to-
gether with the fact that the numbers 6(x, ¢) will be uniformly close to 1,
for x in the support of f and ¢ in some neighborhood of e. It may be noted
here that the converse will hold with Cy(X) replacing L(X) if it is known
that the functions (-, ¢) are uniformly bounded for ¢ in some neighborhood
of the identity; this will be the case, for example, if G is locally compact.
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3. The infinitesimal operator of a group representation. When G
is the additive group of real numbers with the usual topology, then one can
define an infinitestimal operator for a strongly continuous representation
[U;; — ©» <t < o] of G by bounded positive operators on Co(X) as
(3.1) Jim Y1 = IfE Af,

70 n
where the domain of 4, in symbols D(4), consists of all f € Co(X) for which

this limit exists. It can be shown (see (5, chap. IX)) that 4 is a closed linear
operator with dense domain and that for f € D(4)

3.2) %U,f=AU,f, — o <t< =,

Thus if A happens to be a differential operator, then (¢, x) = U, f(x) satisfies
the differential equation

(3.3) %u(t, %) = [Au(t, )]().

We shall now determine the precise form of the infinitesimal operator for
the above group representation under the assumption that 4 is a differential
operator. This requires a certain amount of specialization. In the first place
the concept of a differential operator does not make sense unless X is a
differentiable manifold. In general this is not in itself sufficient and we therefore
make the following additional assumption, which has the effect of imposing
a degree of local regularity on 4.

AssuMPTION D. Al functions of class C with compact supports belong to
D(4).

THEOREM 3.1. Let [U,; — © <t < ] be a strongly continuous group of
linear bounded positive operators on Co(X) to itself where X is an n-dimensional
manifold of class C. If the domain of the infinitesimal operator satisfies
Assumption D, then there exists a continuous scalar B(x) and a continuous
contravariant vector field &(x) such that

(34) [Af](x) = a(x)- V f(x) + B(x) f(x), fe D) NCo,

where N/ 1s the gradient operator.

Proof. Since this is a local problem, we may suppose that X is represented
in a neighborhood N(x,) of a given xy € X by the euclidean coordinates
(x1, x2, ..., x"). It follows from Assumption D that D(A4) contains a function
fo(x) which is identically one in some neighborhood, say Ni(x,), of x,. Hence
making use of the representation (2.2) and the property (2.4), we see that
there exists an Nj(x¢) and a §; > 0 such that

7 [Usfo — fol(®) = 7700, 1) folxn) — fo(x)] = n7'[0(x, n) — 1]
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for all x € Ny(xo) and |ng| < &;. Since fo € D(A4), the incremental ratio
7~ U,fo — fo] converges in norm as 7 — 0 and therefore

05,0l = (x)

exists uniformly in V. (x,). It follows that 8(x) is continuous in x; it is obvious
that 8(x) does not depend on the local coordinate system.

The domain of A4 also contains functions f;(x) = x* — x,* (1 = 1,2,...,n)
in some neighborhood N;(x,). Again by (2.4) there exists an N,(x,) and a
82 > 0 such that

n M Unfe = fil(x) = 071 {0(x, m) fulwen) = fu(x)] -
= 7' 0(x, ) — 1][(xn)" — xo'] + 77" [(xm)* — x7]
for all x € N4(x0) and |n| < 8. As before the limit exists uniformly in x as
n — 0 and since the first term in the right member converges to a limit we see
that

d 1 4
Y (xt) "] 1m0 = a'(x)

exists. The limit being uniform with respect to x in N4(x,), it follows that
at(x) is continuous in N4 (xo).
Finally suppose f € D(4) M C®. Then writing

7 {Usf — f1(x) = 971 [0(x, n) — 1] f(xn) + 07" (f(xn) — f(x)]

and passing to the limit as n — 0, we obtain

A1) = B6)F6) + 3 o) 200

for all x € Njy(xg) M Ni(x). We see from this expression that the o(x) are
the components of a contravariant vector field in the above local coordinate
system. This completes the proof.

We note in particular that the infinitesimal operator of [U,] cannot be a
second order differential operator. As a consequence the solution to a diffusion
equation can never define a strongly continuous group of linear bounded
positive operators on Cy(X).

4. Introducing the cohomology group H'(G, P). Consider two repre-
sentations [U,V] and [U,®] of a group G on L(X) by bounded positive
operators. Write P(X) (or simply P) for the class of all positive continuous.
functions on X which are bounded away from 0 and infinity. We call these
representations [U,P] P-equivalent if, for some p in P,

(4.1) L,UYL,™ = U,®,

Suppose (4.1) holds, and let 69(-, ¢) and T,® denote the corresponding
multiplication and flow factors of the U,®, in the sense of (2.2). The unique-
ness of factorization shows that these constituents are related by
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4.2) T, = T,®,
and
(4.3) 00 (-, 0)[p()/p(-0)] = 69(-, 9).

In particular, if 6V = 1, so in other words U, is a pure flow, and if we write
simply U, for U,®, then (4.3) becomes

(4.4) 0(-,0) = p(-)/p(-0).

In other words, a necessary and sufficient condition that a representation
of G on L(X) by bounded positive operators be P-equivalent to a pure flow
is that its multiplication factor (-, o) have the form (4.4), for some function
p in P. (In this connection, one should remark that the notion of P-equivalence
is not so restrictive as might first appear; see Corollary 6.1 below.)

We see then that significant properties of positive representations of G
on L(X) are connected with functional identities (for example (2.3) and (4.4))
involving their multiplication factors. On the other hand, as the informed
reader will note, these identities are cohomology statements in the sense of
the Eilenberg-MacLane cohomology theory (2, p. 55). While our work here
has a very limited contact with this theory (in that we study only H!(G, P),
the first cohomology group of G with coefficients in P), it is none the less
advantageous to adopt a few of these notions for our purposes. These we
review in the following.

Definition 4.1. Let G be a group, X a-locally compact Hausdorff space,
and P the multiplicative abelian group of all positive continuous functions
on X which are bounded away from 0 and infinity. Assume that G acts on X.
When G is a topological group, we say this action is continuous if the mapping
(x, 0) — x0 is jointly continuous. By a cochain (more precisely, a 1-cochain)
we mean any function 0(-,¢) on G to P(X). If G is topological and acts
continuously, we call a cochain continuous if it is jointly continuous on X X G.
A cocycle is a cochain satisfying the identity (2.3), viz.

0(x, or) = 0(x0, 7) 0(x, 7).

The multiplicative abelian group of cocycles is denoted Z!(G,P). A
coboundary is a cochain 6(-, o) having the form 6(x, o) = p(x)/p(x0a), for some
p in P. BY(G, P) will denote their group (clearly, a subgroup of Z'(G, P)).
By the (first) cohomology group H'(G, P) (of G with values in P) we mean
the quotient group Z'(G, P)/B!(G, P).

Returning to the study of positive representations of G on L(X), let us
say that a positive representation [U,] of G on L(X) belongs to the given flow
[T,] of G on L(X) if there exists a cocycle 6(-, ) in Z'(G, P) so that U, =
L., nTs. By (4.3), any representation of G on L(X) P-equivalent to [U,]
also belongs to the flow [T,] and has for its multiplication factor a cocycle
cohomologous with 6(-, ¢). These remarks in conjunction with Theorem 2.1
give
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LeEMMA 4.1. There is a natural 1:1 correspondence between P-equivalence
classes of representations of G on L(X) by bounded positive operators belonging
to a given flow and elements of the cohomology group H'(G, P) taken relative
to the same flow. Under the correspondence, representations equivalent to the flow
correspond to the identity in H (G, P).

The base space Co(X) could have been used rather than L(X) in the above
discussion. For G topological [resp. locally compact], an obvious variant of
the discussion applies to strongly continuous representations on L(X) [resp.
Co(X)] and continuous cocycles. Finally we note for G merely topological,
that the cobounding continuous cocycles are necessarily bounded and hence
are in 1:1 correspondence with the strongly continuous representations on
Co(X) which are P-equivalent to the flow.

Example 4.1. Suppose that G is compact, and that a continuous action of
G on X is given. Then any continuous cocycle 8(-, ¢) in Z'(G, P) is trivial
(viz. a coboundary). In particular, therefore, any strongly continuous repre-
sentation of a compact group on L(X) by bounded positive operators is equi-
valent to a flow.

In fact, given the continuous cocycle 8(-, ¢), define

p(x) = fGB(x, o) do,

where do is an element of Haar measure of G. Trivially, p lies in P(X).
Further,

p(x7) = [¢8(xr, 0) do = [6(x, 7)]! [eb(x, 70) do = [0(x, 7)]"! p(x).

This proves that 6 is a coboundary, and the other assertions follow automati-
cally.

5. On bounded representations. By a bounded positive representation
of G on L(X) (or Co(X)) we mean a representation by uniformly bounded
positive operators. If [U,] is such a representation, and if 8(-, ¢) is its cocycle,
then the relation || U,|| = ||0(-, ¢)|| (from Lemma 2.1) shows that 8(-, ¢) < M,
for all ¢ and some constant M. This and the identity 8(-, ¢)~! = 0(-0, ¢7})
show in turn that
(5.1) M1<0(-,0) < M, for all o.

We shall call a cocycle 8(-, ¢) bounded if it satisfies a relation (5.1). Our
argument shows therefore that a positive representation of G on L(X) is
bounded if and only if its cocycle is bounded.

We shall deal in this section with the problem of determining when bounded
positive representations are equivalent to pure flow representations. This
comes in other words to determining conditions (on X, or on the flow) under
which bounded cocycles are coboundaries. The following lemma (with M = the
class of all positive functions on X bounded from 0 and infinity) shows that
bounded cocycles do indeed cobound when X is discrete.
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LeEmMA 5.1. Let (-, o) be a bounded cocycle in Z'(G, P). Let M be a class of
positive functions on X, bounded away from 0 and infinity, which contains the
functions (-, o) and contains, along with f, the function 0(-, o) f(-o). Then,
if (-) = GLB, 6(-, o) exists relative to M, we have 0(-, ) = h(-)/h(-0).

Proof. We are assuming here that % lies in M, that k(x) < 6(x, o), for all
x and o, and that any other f in M with this property must satisfy f < &.
Fix on 7 in G. Then for all x and o,

hixr) < 0(xr, o) = 0(x, 70)/0(x, 1),

or 0(x, 7) h(x 7) < 0(x, 7o). Our assumptions about M and % imply now that
0(x, 7) h(x7) < h(x). Substituting x7 for x and 7! for r, and making use of the
relation 8(xr, 71) = [8(x, 7)]7!, gives the opposite inequality. Therefore,
0(x, ) h(x7r) = h(x), as asserted.

When X is a Stone space—that is, a locally compact Hausdorff space for
which C(X) is a conditionally complete lattice— (see (11)), then we apply
the Lemma with M = P(X) to obtain

CoOROLLARY 5.1. If X is a Stone space, then each strongly continuous bounded
positive representation of a topological group G on L(X) (or Co(X)) is P-equiva-
lent to a flow representation of G on L(X) (resp. Co(X)).

We call a given action (x, ¢) — xo of a group G on X ergodic if each orbit
%G = [xc|o € G] is dense in X. As we now show under general conditions,
this restriction on the flow suffices to eliminate non-trivial bounded cocycles.

THEOREM 5.1. Let G be a group which acts ergodically on the Hausdorff
space X. Then each bounded cocycle in Z'(G, P) is a coboundary.

Proof. Fix on a bounded cocycle 6,(-, ¢) in Z1(G, P). In order to simplify
notation in the proof, we shall deal with 8(x, ¢) = log 6;(x, o) rather than
with 84, so our conditions on @ are

(5.2) —M < 6(x,0) < M and 6(x, o7) = 0(xo, 7) + 0(x, o),

for all x, o, 7. Our task is to exhibit a bounded continuous function 4(-) on X
satisfying

(5.3) 0(x, o) = h(xa) — h(x),

for then p(x) = exp(—h(x)) will give p(x)/p(xe) = 6:(x, ¢) and p € P.

To begin with we assume that X is a single orbit, X = x,G, and establish
the Theorem in this special case.

By Lemma 5.1, there exists a bounded (but not a priori continuous) function
k() on X so that (5.3) holds. Since (5.3) will also hold when A(-) is replaced
by k(-) 4+ ¢ (c constant), we can assume that 4 (x,) = 0. Therefore,

(5.4) if x = x¢0, then h(x) = 0(xy, 7).

(Note from this that xoc = xer will entail 6(xo, 6) = 0(xo, 7).) We shall prove
that this function % is necessarily continuous.

https://doi.org/10.4153/CJM-1956-055-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1956-055-1

472 H. A. DYE AND R. S. PHILLIPS

Grant that we have proved continuity of 4 at x,, namely,
(5.5) lim xo = xo entails lim k(x,) = 0.

We show that % is then everywhere continuous. For suppose lim x, = y = x¢0.
By (5.5), lim A(x. 6~!) = 0, so we have from (5.3) that

lim h(x,) = lim. k(xe 0=1) — lim 0(xa, 67 1)
= —0(y, V) = — 6(xo0, aV) = 6(x0, 0) = h(y).
We now prove (5.5). As the basis of an indirect proof, we can assume

(replacing &, 8 by —h, —0 if necessary) that
lim sup k(y) > ¢ > 0.

V-0

Each neighborhood of x, will then contain a point ¥ = x,0 for which 6(x,, o)

> e. Choose any ¢ = ¢, for which 0(xy, 01) > e. Assume elements oy, ..., o,
of G have been chosen so that
(56) 0(960,0’,,.0’0}(71-1)6—[%—'-.+§:—_T]

Choose a neighborhood N of x, so that y in N gives

€
O(y,an...al)}0(360,0,,...01)—?,

and then choose ¢,1 so that x¢0,,1 lies in NV and 6(xy, 0,+1) > e. We then have

€

0(xo, Optl oo 0’1) = 0(xo<7,,+1, On s oo 0'1) + O(xo, Un+1) > ne — [% + “ e + ?] ,

S0 g, is defined for all » and (5.6) can be realized. This inequality shows that
5.7 0(x0, 0 ...01) > (n — 2)¢, for all n.

But this contradicts the boundedness of 9. Therefore the Theorem is proved
in the single orbit case.

We turn next to the general case. Choose any orbit II = xG and any
point x in X. By what we have proved, there is a bounded function %, defined
and continuous on II, and satisfying

(5.8) 0(y, ) = h(yo) — k(y) (yin II, ¢ in G).
Accordingly, for any subset S of X,
(5.9) VarSﬂII h() < VarSﬂH k(o) + VarS 6(-, o).
By the continuity of % on II, given ¢ > 0, there exists a neighborhood U of x,
so that

VarUmH h(-) < e

Since xG is dense, by assumption, we can choose ¢ in G so that x¢ € U, and
in turn, we can choose a neighborhood V of x so that Ve C U. Shrinking V
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if necessary, we can assume that Vary 0(-, ¢) < ¢, because 0(-, o) is con-
tinuous on X. With S = V, (5.9) then yields

(5.10) Varan h(:) <e
Therefore, if x. is a sequence in II with lim x, = x, then lim A(x.) will exist
and depend only on x. This shows that () extends to a function () on the
closure X of II which in particular satisfies

(5.11) VarV () <e

Since x is arbitrary, it follows that h is continuous on all X. In particular,
continuity shows that (5.8) holds for this % and all ¥ in X. This proves Theorem
5.1.

A fortiori, if G is a topological group acting continuously and ergodically
on X, then any bounded cocycle is automatically continuous. We summarize
the implications of this Theorem as they apply to bounded positive repre-
sentations.

COROLLARY 5.2. Let ¢ — U, be a strongly continuous bounded positive
representation of the topological group G on Co(X). Assume that no non-trivial
closed ideals of Co(X) are invariant under this representation. Then [U,] is
P-equivalent to a strongly continuous flow representation ¢ — T, of G on Co(X).

Proof. Let [T,] be the flow associated with [U,] (as in Theorem 2.1).
We know that ¢ — T, is strongly continuous. That the action of G on X
implemented by T, is ergodic follows from the well-known characterization of
closed ideals in Co(X) (viz. as the class of all functions in Cy(X) vanishing on
an arbitrary closed set). The bounded cocycle associated with [U,] is therefore
a coboundary, by the Theorem, and the conclusion follows from the remark
following Lemma 4.1.

Example 5.1. We conclude this discussion by showing that bounded co-
cycles do not in general cobound.

For X take the two-point compactification [— «, 4+ =] of the reals, and
for G the additive group of real numbers with the usual topology. Define the
action (continuous) of G on X by setting xt = x + ¢ for x finite and xt = x
for x infinite. Next, define

2 forx = — o,
p(x) = {2 + sin |x|? for x finite,
2 forx = + o,

and set 6(x,t) = p(x)/p(xt). A straightforward computation shows that
6(x, t) is a bounded (continuous) cocycle in Z'(G, P). However, p(-) does not
belong to P(X) since it is not continuous on the closed interval [— o, «].
Now, it is easy to see that any positive function ¢ defined on (— o, »)
with the property 0(x, {) = ¢(x)/q(xt) must be a positive constant multiple
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of p; no such multiple can have a continuous extension on [— o, ©]. It
follows that 6(-, {) cannot be a coboundary.

6. Automorphisms of groups of positive operators. Let F be a group of
homeomorphisms of the locally compact Hausdorff space X. In abuse of
notation, we shall also write F for the group of isometries [7T,] of L(X) imple-
mented by the ¢ in F. Denote by M the group of all multiplication operators
[Ly; p € P] on L(X). Finally, denote by & the group of all regular positive
operators with positive inverses on L(X) whose canonical factorization
L,T, has T, € F. We may describe & as the group of all positive operators
on L(X) belonging to the given flow F. Group-theoretically, ® is the semi-
direct product FM of the subgroup F and the (normal abelian) subgroup M.
This section concerns a study of automorphisms of the group &, and our results
here will serve to clarify the significance of some of the algebraic formalisms
we have adopted.

LeEMMA 6.1. M is a normal maximal abelian subgroup of ®, and any other
normal abelian subgroup of © already lies in M.

Proof. If we write p° for the function p?(x) = p(xo), then the relation
T,L,T, " = Ly

shows that M is normal. Suppose that U = L,T, is any element of & com-
muting with all elements of 3. We have

Lq(LrTa) = LvTqu = qu”Tvy

or gp = ¢°p, or ¢ = ¢°, for all ¢ in P. This clearly entails ¢ = ¢ (the identity),
and it follows that U = L, lies in M, proving that M is maximal abelian.

Suppose that U = L,T, is an element of some normal abelian subgroup
N of &. For each p in P, N will then contain

Lp(LaTv)Lrl = L(M/p”>Tvv
and this element of IV will in turn commute with U. The commutation relation
(L(ﬂa/p”) Tv) (Lqu) = (Lthr) (L(pa/p”) Tv)
gives
pag’/p" = q’’/p”, and hence pp” = (p°)°

for all p. Again, it is easy to conclude that ¢ = ¢, so that U lies in M. This
proves the Lemma.

We call an automorphism ¢ of & bounded if, for some constant K and all
Uin ©,
KU < e (D] < K[| U]l
The inverse of a bounded automorphism is automatically bounded, and we
may speak therefore of the group Aut,;(®) of bounded automorphisms of .
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LEMMA 6.2 Assume X compact. Then each bounded automorphism ¢ of &
carries M onto itself, and on M has the form
(6.1) o(Ly) = Ly,
where 1 1s @ homeomorphism of X.

Proof. The characterization of Lemma 6.1 shows that any automorphism
of ® will carry M onto itself. We shall deduce (6.1) from the corollary to
Lemma 2.1 which asserts that any linear order isomorphism ¥ of L(X) which

conserves the identity (X compact) is implemented by a homeomorphism of
X. For this, define

(6.2) ¥ (f) = log ¢(exp f), f € LX).
Then ¥—1(f) = log ¢~1(exp f), and it is clear that ¥ is an additive isomorphism
of L(X) on itself. We next show that ¥ preserves order. For any x in X, ¢
in P(X), and » > 1, we have

le(@ @)]" = ¢(¢") () < Kllg"]| = K]|gl",
and therefore
(6.3) 0 (g) (x) < lgll-
In particular, if f > 0, then ¢ = exp —f < 1 and ¢(¢) < 1. Thus

olexpf) = o(¢7") = [e(@]I7' > 1

and hence ¥ (f) = log ¢(¢~) > 0. By the same token, ¥—! must preserve order,
and it follows that ¥ is an order isomorphism and therefore linear. Substitution
of a positive scalar ¢ for ¢ in (6.3) and the corresponding statement for ¢!
shows that ¢(c) = ¢. From this it follows that ¥ (1) = 1 so that ¥ conserves
the identity. This yields (6.1).

LEMMA 6.3. Let ¢ be any automorphism of & with the property that its restric-
tion to M has the form

o(Ly) = Ly,

for some homeomorphism v of X. Then 1 lies in the normalizer N (F) of the flow
F, and for all L, T, in ©,

(6.4) o(LyT5) = T-(Loc., »nLpTs) Tr_11
for some cocycle 6(-, o) in Z'(F, P).
Proof. Define ¢'(U) = T o(U)T .. ¢’ maps ® isomorphically on another
group of positive operators on L(X), and ¢’ (L,) = L,, for all p in P. Therefore
Lpﬁo,(TV) = (LpTv) = ¢,(Tv)(Tv_lLﬂTv)v

showing that the positive operator ¢'(7T,)7T,~! commutes with all L,. Lemma
6.1 applied to the group of all positive operators on L(X) then shows that
¢ (T,)T,! lies in M, for each ¢ € F. We write

‘p’(Td) = Ld(-, v)Tv-
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A simple calculation shows that 8 lies in Z!(F, P). Moreover,

‘P(Ta) = Lo(., L rer-1.

This operator lies in @, and therefore 7Fr~1C F. The same argument for
6—1, 7! in place of ¢, 7 gives inclusion in the other direction, and we find that
F = rF171, or by definition, 7 lies in N(F). This proves the lemma.

We can now obtain some significant information about the structure of the
automorphism group of &. One may note the formal similarity of the theorem

to follow to a theorem of I. Singer on the automorphism group of a finite
factor (9, Th. 3.3).

THEOREM 6.1. Suppose X compact. Then the group Auty,(®) is isomorphic
to a semi-direct product N(F) Zy, of groups isomorphic respectively to the nor-
malizer of the flow F in the group of all homeomorphisms of X and the group of
all bounded cocycles in Z'(F, P). Here 1 € N(F) implements the automorphism
O, of Zy, given by 6,(0(-,0)) = 0(-7, 77'071).

Proof. We associate with each 7 in N(F) the automorphism «, of ® defined
by
a,(T,L,) = T(T,L,)T--.
It is trivial that «, 5 e when 7 # ¢, and that

Qryirg = QrQpy.

It follows that 7 — a, maps N (F) isomorphically into Aut,,(®). Next, associate
with the bounded cocycle 6 in Z!(F, P) the bounded automorphism a4 of ©,

ao(T.L,) = Lo, ToL,.

Again, it follows readily that § — a4 is an isomorphism of Z,, into Aut,(®).
Moreover,

O‘TO‘WT“(T:!LZJ) = LG('r.r—lor)TvLm
so that the image of Z,,; is normal in Aut ,,(®). Lemmas 6.2 and 6.3 show that
each bounded automorphism ¢ of & has a factorization ¢ = a.as, and it is
readily seen that this factorization is unique. This proves the Theorem.

Following a similar pattern, we now give an interpretation of the cohomology
group H'(F, P). For this, we call an automorphism ¢ of & flow related if ¢ coin-
cides on M with some automorphism a, (¢ in F), in the sense that ¢(L,) = Lye.

THEOREM 6.2. There exists a natural isomorphism between H'(F, P) and
the group Aut,(®)/Inaut(®) of flow related automorphisms of & modulo inner
automorphisms.

Proof. 1t follows from Lemma 6.3 that each flow related automorphism
¢ has a unique factorization ¢ = a,ap, (+ € F,0 € Z! = Z'(F, P)), so in the
notation of Theorem 6.1, we have

(6.5) Aut,(®) = F 2L
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Suppose 6 is an element of B! = B(F,P), 6(-,0) = p(-)/p(-0). Then
a,09(T,L,) = T.L,(T,L,)L,~'T,,

so that ¢ is inner. The argument here clearly reverses, and we see that

(6.6) Inaut (@) = F BL
Suppose 7 € F, 6 € Z'. Then

6.7) otr-100,00-1 = a, for some B € B
In fact,

(ar-1ap0r09-1) (TeLg) = L1, rar-1y 8¢, T oLy,

and
B(-,0) =0(-71, rar1)/0(-, o) =0(-,or)0(-7Y, 7)/0(-, o)
=0(-,or™V)/0(-, 7)) 0(-,0) = 0(-q,71)/6(-, 7).

If we set p(-) = [6(-, 71)]71, then it is clear that 3(-, ¢) = p(-)/p(-¢) € B,
proving (6.7).

As a characteristic subgroup, Inaut(®) is normal in Aut, (®). Observe
now that the automorphisms

A 0gyy OrQig,

lie in the same coset mod Inaut(®) if and only if 8, is cohomologous with 8,.
In fact, using (6.7), we have

1
Q9= 107y~ 10 08, = Olyy— 107, QgQLG, — 1000, (B € BY),

and this automorphism is inner if and only if
g, -1, € Bl,

or equivalently, if and only if 8; is in the same coset of Z! mod B! as 6,. It
follows that the mapping which carries the coset of the automorphism a,as
on the coset of 6 is an isomorphism onto.

We conclude our study of automorphisms of & by a brief consideration of
automorphisms implemented by bounded operators on L(X). Since any such
operator can be extended to be regular on Co(X) we may, without loss of
generality, choose the latter as our base space.

LeEmMMA 6.4. Let W be a bounded regular operator on Co(X) with the property
that U — WUW-! defines an automorphism of &. Then there exists a bounded
positive operator V on Co(X) with a bounded positive inverse such that
WUW-' = VUV for all U in .

Proof. Let B(X) be the Stone-Cech compactification of X and denote by
@’ the unique extension of & to a group of positive operators on C(8(X)).
In the obvious way, W-W~! defines a bounded automorphism of &’. By
Lemma 6.2, therefore, there exists a homeomorphism = of g(X) such that
WL,W-1 = L, forall p in P(8(X)). For hin L(X) and x in 8(X), we will have

W(ph) (x) = p(xr) W(h) (x).
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Linearity shows that this must hold for all p in C(8(X)). We now show that
7(X) C X. Suppose on the contrary that r maps some x in X into 7(x) € 8(X)
—X. Choose % in L(X) so that (Wh)(x) # 0, and then choose p in C(8(X))
so that p(x) = 1 on the support of 2 (which lies in X since it is a compact
subset of X) and so that p(xr) = 0. This gives W (h)(x) = W(ph)(x) = 0,
which is impossible. This argument applies as well to W~!, r—1, and we see
therefore that 7(X) = X. Hence if we set W’ = T,-1W, then W’ is a regular
bounded operator on Cy(X) which satisfies the relation

(6.8) W'L,= LW, for all bounded f in C(X).

We shall complete the proof by showing that any bounded regular operator
W' satisfying (6.8) has the form L,, for some g € C(X) with |g|] in P(X).
The operator V = T,L,, will then be positive and will implement the same
automorphism of & as W-W~1. We now let [0.] denote the collection of all
open sets of X with compact closures, and for each a« we choose a function
ho in L(X) which is 1 on O,. Set go = W'he. If h in L(X) vanishes off 0,, then
(6.8) gives
(6.9) W' (k) = W (hah) = hBW' (he) = hga.

Therefore, if x € 0, M 0, £(x) = 1, and if % vanishes off 0. M 04, then

2(x) = h(x) ga(x) = (W'h)(x) = h(x) gs(x) = gs(x).
So go = gg on 0, M 0g. Define a function g on X by setting g(x) = ga(x)
if x € 0.. This function g is then well defined and continuous, and (6.9) shows
that W'k = gh, for any & in L(X). It follows from this that ||g|]| = |[|[W']| < =

and that g does not vanish. If we apply this argument to W1, to obtain a
bounded % such that W= = kh for all 2 in L(X), then

h =W (W' (h)) = hkg,

so kg=1, and ||g~!|| is finite. Therefore |g| lies in P, and the Lemma is proved.

This lemma has application to the representation theory. Our work in
§84 and 5 was based on the notion of P-equivalence of representations. On the
other hand, in the conventional sense, two representations [U,] and [V,]
of a group G on Co(X) are equivalent if there exists a bounded regular operator
W on Co(X) so that WU, W~! = V, for all ¢ € G. If we require in addition
that this operator W determine an automorphism of the group of all positive
operators on Cy(X), in the sense of the preceding lemma, then we can just as
well assume to begin with that T is a positive operator. Knowing the form of
positive operators with positive inverses, however, we infer from this

COROLLARY 6.1. Let 0 — U, be a bounded positive representation of the group
G on Co(X), and suppose there exists a bounded regular operator W on Co(X)
such that ¢ — WU, W' is a flow representation of G, and such that U — WUW—!
defines an automorphism of the group of all positive operators on Co(X). Then
[U,] is already P-equivalent to a flow representation.
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7. The adjoint representation. Suppose that ¢ — U, is a strongly
continuous representation of a topological group G on Cy(X). Denote by
Co(X)* the adjoint space of Co(X), that is, the space of bounded linear func-
tionals A on Co(X) with the norm ||\|| = supys=1 [A(f)|- It is well known
that elements of Co(X)* can be represented as integrals on Cy(X) relative to
signed Borel measures on X of finite total variation (4, chap. X). Associated
with the representation [U,] is an anti-representation ¢ — U*, of G on Co(X)*
defined by (U*\)(f) = AM(Uyf). This anti-representation is in itself not a
natural object to study, since it will in general fail to be strongly continuous.
However, study of the forward diffusion equation in semi-group theory has
suggested a natural refinement of these notions (see (3 and 7)).

Definition 7.1. By the adjoint representation [U°, D (U°)] to a given strongly
continuous representation ¢ — U, of G on Co(X), we mean the pair consisting
of the representation ¢ — U° of G on Co(X)* defined by

(UM () = MU,
together with a subspace D(U?%) of Co(X)¥, called the domain of the adjoint
representation, and consisting of all A in Co(X)* for which the mapping
o — U%\ is strongly continuous.

Two adjoint representations [U%, D(U%)] and [V, D(V?,)] of G will be
called equivalent if D(U%) = D(V?%), and if there exists a bounded regular
operator W on Co(X)* such that WU W = V9, for all ¢ € G. In the case
WI[D(U%)] = D(U",).

To bring this notion of domain into clearer focus, we note that each operator
U° maps D(U?%) into itself so that the restriction of U° to D(U?%) defines a
strongly continuous representation of G. As to the extent of D(U?,), we now
discuss the situation for G locally compact in the following

REMARK 7.1. Suppose that G is a locally compact group and that ¢ — U,
is a strongly continuous bounded representation of G on C¢(X). Given A
in Co(X)* and % in L(G), define
(7.1) N(f) = [ k(o) MUY do, fin Co(X),
where the integral is taken relative to left invariant haar measure on G. Then

(1) A lies in D(U°,) so that ¢ — U%\" is strongly continuous,

(2) the set of all such A\* (5 and \ varying) is strongly dense in D (U?,), and

(83) D(U"), the strong closure of the set in (2), is W*-dense in Co(X)*.

Proof of (1):

IN'(Ursf = NI < S1hGT0) = k(@) | INUerf) | do < K|fI] | [R( ) =R()| s,
for some constant K. Since r — h(r~!-) is continuous on G to L;(G), it follows
that A* lies in D(U?Y,).

Proof of (2): Suppose N € D(U?%). Then given e > 0, there exists a neigh-
borhood N of the identity e in G such that
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INU-of = )] < €llfll,
for all f € Cy(X), ¢ € N. Choose a non-negative i in L(G) vanishing off N
and so that fh(a) do = 1. Then

(7.2) N = [h(e) NUs-1f) do| < [1(o) -N(f = Ur-f) | do < €][f]|
and therefore ||A — M| < e

Proof of (3): Suppose next that X is an arbitrary element of Co(X)*. Then
given ¢ > 0 there exists a neighborhood N of ¢ in G, depending on f, such
that [N(Us-1f — f)| < efor all ¢ € N. Choosing & as above, the first inequality
in (7.2) shows that [A(f) — A*(f)| < € and therefore that [\*; & € L(G)] is
WH*-dense in Co(X)*. Finally we note that D(UY) is strongly closed since the
U, are uniformly bounded.

The above argument can readily be extended to the case where [U,] is
merely strongly continuous, if one makes greater use of the local compactness
of G.

Consider now a strongly continuous bounded positive representation
[U, = Lo, »nTs] of the topological group G on Co(X). We recall (Theorem
2.1) that the flow representation [7,] is also strongly continuous. We wish
to determine conditions under which the adjoint representations [U%, D(U°,)]
and [T, D(T%)] (the ‘‘adjoint flow representation’) are equivalent. For
this purpose, we shall say that the cocycle 6(-, ¢) of [U,] has a measurable
factorization if
(7.3) 0(-,0) = p(-)/p(-0),
for p a positive function on X, bounded away from 0 and infinity, and measur-
able, in the sense that its contraction to each Borel set is measurable. (Here,
the Borel sets consist of the o-ring generated by compact sets.) If p is such a
function and if A € Co(X)* is represented by the signed Borel measure A (E),
then we see that the functional

() = [ p(x) f(x) M(dx)
again lies in Co(X)* and
1y (E) = [z p (%) N(dx)

for all Borel sets E. Heuristically one can write u,(f) = A(pf). We can therefore
define a bounded linear operator W on Cy(X)* by

(7.4) (N () = m(f).
With this definition, we then have
(7.5) (WITO W) N = UM,

for all A in Co(X)*. In order to prove this we note that
(T’ N (f) = MTo-of) = [flxa™) Ndx) = [f(x) Ndxo),
so that (T°\)(E) = M(Es). Hence
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[(WT W)Y NI = [(W'T%) () M) = W[ .p(x) Mdx))]()
= [f@ Lo )] wotr (%) M(dx)]}
= [1@) [p(2)]7 p(20) Ndz0)
= [f(xa™) 0(x, o™ Mdx) = N(U~f) = (U N (),
as asserted. :
To establish the equivalence of [U%, D(U%)] and [T, D(T°)] under the

assumption (7.3), it remains to show that D(U%) = D(T?,). This will follow
from

LEMMA 7.1. Assume \ lies in D(T°,). Let p be a bounded non-negative func-
tion on X, measurable relative to each Borel set. Then the linear functional
u(f) = N(pf) also lies in D(T%,).

Proof. Asis well known, A can be expressed as the difference of two bounded
positive functionals, A = Ay — X2. The bounded positive functional (A\; 4+ Az)
induces a regular Borel measure m on X with

m(X) = LUB[m(C); C compact] < .

Take any & > 0. Choose a compact set K; so that m(X) — m(K;) < 4.
By Lusin’s theorem, we can find a compact K C K;so thatm(K,) — m(K) < 8
and the restriction p|K of p to K is continuous. Next, we can extend p|K
to a non-negative element % of L(X) with preservation of the bound M of p.
This gives

b (f) — Mp(f)l A+ A (f(p = D) < 28 M][f]]-
It follows therefore that u, is a uniform limit of functionals uz, p in L(X).
Because D(T°,) is strongly closed, it will therefore suffice to prove the lemma
under the initial assumption that p € L(X). In this case pf € L(X) and
wp(f) = M(pf) is strictly correct. For any 7 in G and f in Co(X), -

(7.6) lia(Tomf = )| < NTr1(f2) = o1l + O+ N)(Tr-f)p = Ty ().
Since N € D(T?,), there exists a neighborhood N; of e in G so that the first
term is <3e, for all f of norm <1. Choose a symmetric neighborhood N of e,
NC Ny, so that ||p( 7) — p()I <8 7€ N. The second term in (7.6)
becomes ' ' '

JUGr () — plar)| mldx) < af FCer=D] m(ds) < alll] (Inl] + [l
for all 7 in N. We can assume  chosen to make this bound <} 3¢, again for all
f-of norm <1: Therefore, for 7.in V. and HfH <1,.(7.6) has the bound ¢, and
the Lemma is proved , -

It follows from this that the operator W of (7 4) w111 carry D(T %) into
itself. Since the same must be true of W1, we have

(7.1 T WID(T)] = D(T).
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According to the relation (7.5), U%\ and T°, W\ will be strongly continuous
together so that D(T%) = W[D(U%)]. Consequently D(U°%) = D(T%),
and we have established

TrHEOREM 7.1. Let 0 = U, = Lo, n T, be a strongly continuous bounded
positive representation of the topological group G on Co(X), [T.] being the
associated flow representation. If the cocycle 6(-, o) has a measurable factorization,
then the corresponding adjoint representations [U%, D(U%)] and [T°, D(T°)]
are equivalent.

As an indication of the existence of measurable factorizations, we prove the
following two lemmas. Here, as elsewhere, a real-valued function on the
locally compact Hausdorff space X is called measurable if its contraction to
each Borel set is measurable in the customary sense.

LeEMMA 7.2. If G is a separable topological group acting continuously on X,
then each bounded cocycle in Z'(G, P) has a measurable factorizaiion.

Proof. Let {o,} be a countable dense subset of G and set h(x) = GLB,
6(x, 0,) (pointwise). Denoting by M the class of all measurable functions on
- X which are bounded away from 0 and infinity, we see that the function &
lies in M. On the other hand, if for fixed x we apply Theorem 5.1 to the single
orbit T = xG, we perceive that 6(x, ¢) is continuous in ¢ and hence k(x) =
GLB, 6(x, o). Employing Lemma 5.1, with M defined as above, we obtain
0(x, 0) = h(x)/h(xa).

LemMma 73. If G is a a-compact locally compact topological group acting
continuously on X, then each continuous cocycle in Z'(G, P) has a measurable
factorization.

This result is an immediate consequence of Lemma 5.1 (with M defined
as in the proof of Lemma 7.2) and the following

LEMMA 7.4. Suppose that G and X are topological spaces, G o-compact
locally compact and X merely locally compact. Let f(x, o) be any real-valued
continuous function on X X G with f(x, ) > 0. Then the (pointwise) GLB,
f(x, o) is a measurable function on X.

Proof. Fix a compact subset C in G. We shall prove that 5(x) = GLB,ec
f(x, o) is measurable. This will, in effect, establish the Lemma; for G is a
union of an increasing sequence {C,} of compact sets, and if b, denotes the b
corresponding to C,, then GLB, b,(x) is measurable and equal to GLB, f(x, 7).

To prove that b is measurable, let F be any compact subset in X. For
each x in F, choose a neighborhood N(x) of x so that |f(x, o) — f(y,0)] < 1/2n
for all ¥y in N(x) and ¢ in C. Further, given x, choose o, in C so that
f(x, 0z) < f(x, o) for all ¢ in C. Now a finite number N(x,), ..., N(x,) of
the N(x)’s cover F. Finally set

ho(x) = inf[f(x,05); 1 =1,...,7]
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For all x in X, we clearly have b(x) < k,(x). Take a pair (x,s) in F X C,
say x lies in N(x;). Then

(@) < [, 00) < [0 020) + 5 < [0 0) + 5 < fl0) + .

Thus x in F entails %,(x) < b(x) + 1/#. We now define hp(x) = GLB, h,(x).
This function kyp is clearly measurable, satisfies b(x) < hr(x) for all x, and
b(x) = hr(x) for all x in F. Finally we note that any Borel set can be covered
by the union of an increasing sequence of compact sets, say {F,}. But
GLB, hp,(x) is measurable and equal to b(x) on this union, that is, on the given
Borel set. It follows that & is measurable in the generalized sense. This con-
cludes the proof.

We see from the foregoing material that the equivalence of the adjoints of
two strongly continuous positive representations is easier to establish than
the equivalence of the original representations. On the other hand if the
adjoints of two linear bounded operators, say U and V, are equivalent (in
the sense that there exists a linear bounded regular operator W on Co(X)*
such that V* = WU*W-1), then the spectra of U and V coincide (see, for
instance, (7, Theorem 1.5)). In particular, if [U,] is a strongly continuous
bounded positive representation of a separable G or of a ¢-compact locally
compact G, then it follows from this fact together with Theorem 7.1 and
Lemmas 7.2 and 7.3 that the spectrum of U, coincides with that of the associ-
ated flow operator T, for each ¢ € G.

Actually, spectral problems are best dealt with in the setting of a complex
linear space rather than a real linear space. For a complex linear C¢(X), the
notion of positivity remains the same as before and, in fact, everything we
have established applies with obvious modifications.

8. Appendix. We close this paper with an application which is of interest
in the theory of semi-groups of operators. We shall exhibit two one-parameter
strongly continuous groups of operators on the complex linear space Co(X)
having infinitesimal operators 4; and A., respectively, with D = D(4,) N
D(A,) dense in Cy(X), such that no extension of A; + A, (defined on D)
generates a strongly continuous semi-group of operators.

Set X = (— o, »), let G be the additive group of real numbers with the
usual topology, and define ¢ = x + ¢ and

(8.1) 0(x,t) = exp[ J:HB(T) dr] .

If B(x) is continuous in x and if

sup[ J:H- lﬁ (r) dr

for each ¢, then it is easy to see that 0(x, ¢) is a continuous cocycle in Z'(G, P).

;—m<x<m]<m
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Moreover such a 6(x, t) will cobound if and only if it is bounded, that is, if

and only if

8.2) sup; j;zﬂ(r) dr| < o;

a suitable P-factor being

(8.3) px) = exp[— J:B(T) dr].

We note that p(x) is continuously differentiable and bounded away from 0
and infinity.

Let [T;] denote the flow representation: 7T,f(x) = f(x + £). A straight-
forward computation shows that the infinitesimal operator of [T',] is given
by
(8.4) Af(x) = f'(x)

with
(8.5) D(4o) = [f; f(x) continuously differentiable, f and f' € Co(X)].
Suppose next that 8(x) satisfies the condition (8.2). Then the corresponding

representation: U, Vf(x) = 0(x,t) f(x 4 £), is equivalent with the flow
[T,]; in fact,

(8.6) u®Ww =L, T,L,7}, t € G,

where L,f(x) = p(x) f(x). It follows from this that the infinitesimal operator
of [U, V] is given by

8.7) Aif(x) = [LpdoL,7fl(x) = f'(x) + B(x) f(x)
and .
(8.8) D(4.) = L,[D(40)].

We now choose

3

niln*(x —n)] for n < x < n 4+ n*,
Bx) =

Oforx<2and n+n’<x<n+1, n=23...,

where j(x) = exp{—[x(1 — x)]"!} for 0 < x < 1. Then B(x) is continuously
differentiable (but not bounded) and

0< — log px) < J‘;B(‘r) dr = [ foj(f) df]gn—2 < o,

so that p lies in P and the above remarks are applicable.
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Finally we choose [U,®] to be the backward flow representation, that is
U,® = T_,. The infinitesimal operator for [U,®], namely 4., is now given
by
(8.9) A, = —A4, and D(4.) = D(4y).

It is clear from (8.5) and (8.8) that D = D(4:) M D(A4,) contains the class
D, of all continuously differentiable functions with compact carrier. Thus D
is dense in Co(X). For f € D we have

(8.10) (A1 + 4) fl(x) = B(x) f(x).

Suppose now that 4; with domain D(43) is an extension of 4, + 4, (with
domain D). We wish to show that 4; cannot generate a strongly continuous
semi-group of linear bounded operators possessing even the mildest of regu-
larity conditions at ¢ = 0.! If the contrary were true, then there would be a
constant « such that the resolvent R(\; 4;) would exist and be bounded in
norm for R(A) > w. In this case the semi-group [U,®; ¢t > 0] generated
by A3 could be computed from the inversion formula (cf. 5, p. 239)

v+ it
(8.11) URf = 1im—1—f &P R(\; As) fan, t>0,

7o 20 Jy—ir

for vy > wand each f € D[(43)?]; the integral can be taken either as an abstract
Cauchy integral or the usual Cauchy integral for each x. For f € D, we see by
(8.10) that Asf = (A1 + A.) f € Dy so that such an f lies in D[(43;)?]. Let
C(f) denote the support for f € Dy and define v(f) = sup[B(x); x € C(f)].
Then if f € Dy and RA) > v > v(f), it is clear that

glx) =N — )] f(x) € Dy
and hence that
R(\;As)f =R\ A (N — 43) g = g

Applying (8.11) we obtain

® D T ALY _ -1 1)
U = tim gk [ M = 8@ ) a = ¢4 5e)

o 2T

for all ¢ > 0. Finally since D, is dense in Co(X) and U,® is assumed to be a
bounded operator, we must have U,®f(x) = exp[t 8(x)] f(x) for all f € Co(X)
and each ¢ > 0. However this is impossible since an obvious consequence of
this relation would be log ||U,®|| = ¢sup, 8(x) = o« for each ¢t > 0.

IMore precisely, we shall prove that 4; does not generate a semi-group of class (A) (8).
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