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Determinant of the Laplacian on Tori of
Constant Positive Curvature with one
Conical Point

Victor Kalvin and Alexey Kokotov

Abstract. We ûnd an explicit expression for the zeta-regularized determinant of (the Friedrichs
extensions of) the Laplacians on a compact Riemann surface of genus one with conformal metric of
curvature 1 having a single conical singularity of angle 4π.

1 Introduction

Let X be a compact Riemann surface of genus one and let P ∈ X. According to [1,
Cor. 3.5.1], there exists atmost one conformalmetric on X of constant curvature 1 with
a (single) conical point of angle 4π at P. _e following simple construction shows that
such a metric, m(X , P), in fact always exists (and, due to [1], is unique).
Consider the spherical triangle T = {(x1 , x2 , x3) ∈ S2 ⊂ R3 ∶ x1 ≥ 0, x2 ≥ 0, x3 ≥ 0}

with all three angles equal to π/2. Gluing two copies of T along their boundaries, we
get the Riemann sphere CP1 with metric m of curvature 1 and three conical points
P1 , P2 , P3 of conical angle π. Consider the two-fold covering

µ ∶ X(Q) Ð→ CP1

ramiûed over P1, P2, P3 and some point Q ∈ CP1 ∖ {P1 , P2 , P3}. Li�ing the metric m
fromCP1 to the compact Riemann surface X(Q) of genus one via µ, one gets themet-
ric µ∗m on X(Q) that has curvature 1 and the unique conical point of angle 4π at the
preimage µ−1(Q) of Q. Clearly, any compact surface of genus one is (biholomorphi-
cally equivalent to) X(Q) for some Q ∈ CP1 ∖{P1 , P2 , P3}. Now let X be an arbitrary
compact Riemann surface of genus one and let P be any point of X. Take Q ∈ CP1

such that X = X(Q) and consider the automorphism α ∶ X → X (the translation) of
X sending P to µ−1(Q). _en

m(X , P) = α∗( µ∗(m)) = (µ ○ α)∗(m).

Introduce the scalar (Friedrichs) self-adjoint Laplacian ∆(X , P) ∶= ∆m(X ,P) on X
corresponding to themetricm(X , P). For any P andQ from X the operators ∆(X , P)
and ∆(X ,Q) are isospectral and, therefore, the ζ-regularized (modiûed, i.e., with zero
modes excluded) determinant det ∆(X , P) is independent of P ∈ X and, therefore, is
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a function on moduli spaceM1 of Riemann surfaces of genus one. _e main result of
the present work is the following explicit formula for this function:

(1.1) det ∆(X , P) = C1∣Iσ ∣∣η(σ)∣4F(t) = C2 det ∆(0)(X)F(t),

where σ is the b-period of the Riemann surface X, C1 and C2 are absolute constants,
η is the Dedekind eta-function, ∆(0) is the Lapalacian on X corresponding to the �at
conformalmetric of unit volume, the surface X is represented as the two-fold covering
of the Riemann sphere CP1 ramiûed over the points 0, 1,∞ and t ∈ C ∖ {0, 1}, and

F(t) = ∣t∣ 1
24 ∣t − 1∣ 1

24

(∣
√

t − 1∣ + ∣
√

t + 1∣) 1
4
.

As is well known, the moduli spaceM1 coincides with the quotient space

(C ∖ {0, 1})/G ,

whereG is a ûnite group of order 6, generated by transformations t → 1
t and t → 1− t.

A direct check shows that F(t) = F( 1
t ) and F(t) = F(1 − t), and, therefore, the right

hand side of (1.1) is in fact a function on M1.

Remark 1.1 Using the classical relation (see, e.g., [2, f-la (3.35)] )

t = −( Θ[10](0 ∣ σ)
Θ[01 ](0 ∣ σ))

4
,

one can rewrite the right-hand side as a function of σ only.

_e well known Ray–Singer relation det ∆(0) = C∣Iσ ∣∣η(σ)∣4 (see [10–12]) used in
(1.1) implies that (1.1) can be considered as a version of Polyakov’s formula (relating
determinants of the Laplacians corresponding to two smooth metrics in the same
conformal class) for the case of two conformally equivalent metrics on a torus: one
of them is smooth and �at, another is of curvature one and has exactly one singular
point.

2 Metrics on the Base and on the Covering

Here we ûnd an explicit expression for the metric m on the Riemann sphere CP1 of
curvature 1 and with three conical singularities at P1 = 0, P2 = 1, and P3 = ∞.

_e stereographic projection (from the south pole) maps the spherical triangle T
onto quarter of the unit disk {z ∈ C ; ∣z∣ ≤ 1, 0 ≤ Arg z ≤ π/2}. _e conformal map

(2.1) z z→ w = ( 1 + z2

1 − z2 )
2

sends this quarter of the disk to the upper half-plane H; the corner points i , 0, 1 go to
the points 0, 1, and∞ on the real line. _e push forward of the standard roundmetric

4∣dz∣2
(1 + ∣z∣2)2
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on the sphere by this map gives rise to the metric

(2.2) m = ∣dw∣2
∣w∣∣w − 1∣(∣

√
w + 1∣ + ∣

√
w − 1∣)2

on H; clearly, the latter metric can be extended (via the same formula) to CP1. _e
resulting curvature one metric on CP1 (also denoted by m) has three conical singu-
larities of angle π: at w = 0, w = 1, and w = ∞.
Consider a two-fold covering of the Riemann sphere by a compact Riemann sur-

face X(t) of genus 1:

(2.3) µ ∶ X(t) → CP1

ramiûed over four points: 0, 1,∞, and t ∈ C∖{0, 1}. Clearly, the pull backmetric µ∗m
on X(t) is a curvature onemetric with exactly one conical singularity. _e singularity
is a conical point of angle 4π located at the point µ−1(t).

3 Variation of Spectral Zeta-function with Respect to t

_e analysis from [5] in particular implies that one can introduce the standard Ray–
Singer ζ-regularized determinant

(3.1) det ∆µ∗m ∶= exp{−ζ′∆µ∗m(0)}

of the (Friedrichs) self-adjoint Laplacian ∆µ∗m in L2(X(t), µ∗m), where ζ′∆µ∗m is the
spectral zeta-function. In this section we establish a formula for the variation of
ζ′∆µ∗m(0) with respect to the parameter t (the fourth ramiûcation point of the cov-
ering (2.3)). _e derivation of this formula coincides almost verbatim with the proof
of [5, Proposition 6.1]; therefore, we give only few details.
For the sake of brevity we identify the point t of the base CP1 with its (unique)

preimage µ−1(t) on X(t).
LetY(λ; ⋅ ) be the (unique) special solution of theHelmholz equation (here λ is the

spectral parameter) (∆m − λ)Y = 0 on X ∖{t} with asymptotic Y(λ)(x) = 1
x +O(x)

as x → 0, where x(P) =
√

µ(P) − t is the distinguished holomorphic local parame-
ter in a vicinity of the ramiûcation point t ∈ X(t) of the covering (2.3). Introduce
the complex-valued function λ ↦ b(λ) as the coeõcient near x in the asymptotic
expansion

Y(x , x; λ) = 1
x + c(λ) + a(λ)x + b(λ)x + O(∣x∣2−є) as x → 0.

_e following variational formula is proved in [5, Proposition 6.1]:

(3.2) ∂t( − ζ′∆µ∗m(0)) = 1
2(b(0) − b(−∞)) .

_e value b(0) is found in [5, Lemma 4.2]: one has the relation

(3.3) b(0) = − 1
6 SSch(x)∣ x=0 ,

where SSch is the Schiòer projective connection on the Riemann surface X(t).
Since λ = −∞ is a local regime, in order to ûnd b(−∞), the solution Y can be

replaced by a local solution with the same asymptotic as x → 0. A local solution Ŷ
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with asymptotic

Ŷ(u, u; λ) = 1
u + ĉ(λ) + â(λ)u + b̂(λ)u + O(∣u∣2−є) as u → 0

in the local parameter u2 = z − s was constructed in [5, Lemma 4.1] by separation of
variables; here z andw = µ(P) (resp. s and t) are related by (2.1) (resp. by (2.1) with z =
s and w = t) and b̂(−∞) = 1

2
s

1+∣s∣2 . One can easily ûnd the coeõcients A(t) and B(t)
of the Taylor series u = A(t)x + B(t)x3 + O(x5). As a local solution replacing Y , we
can take A(t)Ŷ . _is immediately implies that b(−∞) = A2(t)b̂(−∞) − B(t)/A(t).
A straightforward calculation veriûes that

(3.4) b(−∞) = ∂t log ( ∣t∣∣t − 1∣(∣
√

t + 1∣ + ∣
√

t − 1∣)2) 1/4 .

Observe that the right-hand side in (3.4) is actually the value of ∂w log ρ(w ,w)−1/4 at
w = t, where ρ(w ,w) is the conformal factor of the metric (2.2); this is also a direct
consequence of [4, Lemma 4].

Substituting (3.3) and (3.4) into (3.2), we obtain the desired formula for the varia-
tion of ζ′∆µ∗m(0) with respect to the parameter t.

4 Explicit Formula for the Determinant

Equations (3.2), (3.3), and (3.4) imply that the determinant (3.1) can be represented
as a product

(4.1) det ∆µ∗m = C∣Iσ ∣∣τ(t)∣2∣ 1
∣t∣∣t − 1∣(∣

√
t + 1∣ + ∣

√
t − 1∣)2

∣
1/8
,

where τ(t) is the value of the Bergman tau-function (see [7–9]) on the Hurwitz space
H1,2(2) of two-fold genus one coverings of the Riemann sphere, having∞ as a ram-
iûcation point at the covering, ramiûed over 1, 0,∞, and t. More speciûcally, τ is a
solution of the equation

∂t log τ = − 1
12 SB(x)∣x=0 ,

where SB is the Bergmanprojective connection on the coveringRiemann surface X(t)
of genus one and x is the distinguished holomorphic parameter in a vicinity of the
ramiûcation point t of X(t). We remind the reader that the Bergman and the Schiòer
projective connections are related via the equation

SSch(x) = SB(x) − 6π(Iσ)−1v2(x)
where v is the normalized holomorphic diòerential on X(t) and that the Rauch vari-
ational formula (see, e.g., [7]) implies the relation

∂t logIσ = π
2 (Iσ)

−1v2(x)∣x=0 .
_e needed explicit expression for τ can be found e.g., in [9, f-la (18)] (it is a very

special case of the explicit formula for the Bergman tau-function on general coverings
of arbitrary genus anddegree found in [8] aswell as of amuch earlier formula ofKitaev
and Korotkin for hyperelliptic coverings [6]). Namely, [9, f-la (18)] implies that

(4.2) τ = η2(σ)[ v(∞)3

v(P1)v(P2)v(Q)]
1
12 ,
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where P1 and P2 are the points of the X(t) lying over 0 and 1,Q is a point of X(t) lying
over t and∞ denotes the point of the covering curve X(t) lying over the point at in-
ûnity of the baseCP1; v is an arbitrary nonzero holomorphic diòerential on X(t); and,
say, v(P1) is the value of this diòerential in the distinguished holomorphic parameter
at P1. (One has to take into account that τ = τ−2

I , where τI is from [9].) Taking

v = dw√
w(w − 1)(w − t)

,

and using the following expressions for the distinguished local parameters at P1, P2,
Q, and∞

x =
√
w; x =

√
w − 1; x =

√
w − t; x = 1√

w
one arrives at the relations (where ∼ means = up to insigniûcant constants like ±2,
etc.)

v(P1) ∼
1√
t
; v(P2) ∼

1√
t − 1

; v(Q) ∼ 1√
t(t − 1)

; v(∞) ∼ 1.

_ese relations together with (4.2) and (4.1) imply (1.1).

Remark 4.1 _e result of this paper can be generalized to hyperelliptic surfaces
of genus g ≥ 2. Indeed, choose 2g − 1 distinct points Q1 ,Q2 , . . . ,Q2g−1 in CP1 ∖
{P1 , P2 , P3} and consider the two-fold covering

µg ∶ X(Q1 ,Q2 , . . . ,Q2g−1) → CP1

ramiûed over Q1 , . . . ,Q2g−1 and P1 , P2 , P3. _e pullback µ∗gm of the metricm in (2.2)
by µg is a metric of constant curvature 1 with conical points of angle 4π at 2g − 1
Weierstrass points of the hyperelliptic curve X(Q1 ,Q2 , . . . ,Q2g−1) (three remaining
Weierstrass points are nonsingular points of the metric). Using the same methods as
in the genus 1 case, one can derive an explicit expression for the determinant of the
Laplacian in the metric µ∗gm as a function on moduli space of hyperelliptic curves of
genus g. For instance, in genus two one gets the following explicit expression

det ∆µ∗2 m = CF2/5Φ(t1 , t2 , t3),
where

F = (detIB)5/2∏
β

∣Θ[β](0∣B)∣

is the Petersson norm ∥∆2∥ of the Siegel cusp form ∆2 = ∏β Θ[β](0∣B) (β runs
through the set of 10 even characteristics) and

Φ(t1 , t2 , t3) =
∣t1 t2 t3(t1 − 1)(t2 − 1)(t3 − 1)∣− 1

40 ∣t1 − t2∣
1
10 ∣t1 − t3∣

1
10 ∣t2 − t3∣

1
10

∏3
k=1(∣

√
tk + 1∣ + ∣√tk − 1∣) 1

4
,

where the points Q1 ,Q2 ,Q3 , P1 , P2 , P3 are identiûed with the points t1 , t2 , t3 , 0, 1,∞
of CP1. It is straightforward to check that the right-hand side of (4.1) is a function
on the moduli spaceM2 of compact Riemann surfaces of genus 2 (it suõces to check
that Φ(t1 , t2 , t3) = Φ(t1−1 , t2−1 , t3−1) = Φ(1 − t1 , 1 − t2 , 1 − t3)).
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Remark 4.2 [In response to referee comments]_e necessary and suõcient condi-
tion on a triple of positive numbers θ1, θ2, θ3 for the existence of a conformal curva-
ture one metric on the Riemann sphere CP1, with three conic singularities of angles
2πθ1, 2πθ2, 2πθ3 at the points 0, 1, and∞, respectively, was obtained in [3, 13]. Let
m = ρ(w ,w)∣dw∣2 stand for the corresponding metric on CP1. _en the pull back
metric µ∗m on X(t) (here µ is the same as in (2.3)) is a curvature one metric with
conical singularity of angle 4π located at the point µ−1(t) and three conical singulari-
ties of angles 4πθ1, 4πθ2, 4πθ3 at the points µ−1(0), µ−1(1), and µ−1(∞), respectively.
It turns out that the formula (3.2) (for the spectral zeta function of the Friedrichs self-
adjoint extension of Laplacian ∆µ∗m) is still valid, where b(0) is the same as before
and b(−∞) = ∂w log ρ(w ,w)−1/4∣w=t . For details, we refer the reader to [4]. As a
generalization of (1.1), we thus obtain

(4.3)
det ∆µ∗m = C1Iσ ∣∣η(σ)∣4 12

√
∣t2 − t∣ 8

√
ρ(t, t)

= C2 det ∆(0)(X) 12
√

∣t2 − t∣ 8
√

ρ(t, t),

where C1 and C2 are absolute constants and t can be expressed as a function of σ ; see
Remark 1.1. Having at hand an explicit expression for the conformal factor ρ(w ,w)
(in the case θ1 = θ2 = θ3 = 1/2 we use (2.2)), one immediately gets the corre-
sponding explicit formula for det ∆µ∗m . Let us also note that (4.3) remains valid if
m = ρ(w ,w)∣dw∣2 is any conical metric on CP1 and t stays outside of the conical
singularities of m.

Acknowledgments We thank the anonymous referee for valuable constructive com-
ments. _e research of the second author was supported by NSERC. _e second au-
thor thanks Max Planck Institute for Mathematics in Bonn for hospitality and excel-
lent working conditions.

References

[1] C.-L. Chai, C.-S. Lin, C.-L. Wang,Mean ûeld equation, hyperelliptic curves and modular forms: I.
Camb. J. Math. 3(2015), no. 1–2, 127–274. http://dx.doi.org/10.4310/CJM.2015.v3.n1.a3

[2] C. H. Clemens, A scrapbook of complex curve theory. Second ed., Graduate Studies in
Mathematics, 55, American Mathematical Society, Providence, RI, 2003.

[3] A. Eremenko,Metrics of positive curvature with conic singularities on the sphere. Proc. Amer.
Math. Soc. 132(2004), no. 11, 3349–3355. http://dx.doi.org/10.1090/S0002-9939-04-07439-8

[4] V. Kalvin, On determinants of Laplacians on compact Riemann surfaces equipped with pullbacks
of conical metrics by meromorphic functions. J. Geom. Anal., to appear.
http://dx.doi.org/10.1007/s12220-018-0018-2

[5] V. Kalvin and A. Kokotov,Metrics of constant positive curvature, Hurwitz spaces and det ∆. Int.
Math. Res. Not. IMRN, to appear. http://dx.doi.org/10.1093/imrn/rnx224

[6] V. Kitaev and D. Korotkin, On solutions of the Schlesinger equations in terms of theta-functions.
Int. Math. Res. Not. IMRN 1998 no. 17, 877–905. http://dx.doi.org/10.1155/S1073792898000543

[7] A. Kokotov and D. Korotkin, Tau-functions on Hurwitz spaces. Math. Phys. Anal. Geom.
7(2004), no. 1, 47–96. http://dx.doi.org/10.1023/B:MPAG.0000022835.68838.56

[8] , Isomonodromic tau-function of Hurwitz Frobenius manifolds. Int. Math. Res. Not.
IMRN 2006, Art. ID 18746. http://dx.doi.org/10.1155/IMRN/2006/18746

[9] A. Kokotov and I. Strachan, On the isomonodromic tau-function for the Hurwitz spaces of
branched coverings of genus zero and one. Math. Res. Lett. 12(2005), no. 5–6, 857–875.
http://dx.doi.org/10.4310/MRL.2005.v12.n6.a7

346

https://doi.org/10.4153/CMB-2018-036-9 Published online by Cambridge University Press

http://dx.doi.org/10.4310/CJM.2015.v3.n1.a3
http://dx.doi.org/10.1090/S0002-9939-04-07439-8
http://dx.doi.org/10.1007/s12220-018-0018-2
http://dx.doi.org/10.1093/imrn/rnx224
http://dx.doi.org/10.1155/S1073792898000543
http://dx.doi.org/10.1023/B:MPAG.0000022835.68838.56
http://dx.doi.org/10.1155/IMRN/2006/18746
http://dx.doi.org/10.4310/MRL.2005.v12.n6.a7
https://doi.org/10.4153/CMB-2018-036-9


Determinant of the Laplacian

[10] J. Polchinski, Evaluation of the one loop string path integral. Comm. Math. Phys. 104(1986), no. 1,
37–47.

[11] D. B. Ray and I. M. Singer, Analytic torsion for complex manifolds. Ann. of Math. 98(1973),
154–177. http://dx.doi.org/10.2307/1970909

[12] P. Sarnak, Some applications of modular forms. Cambridge Tracts in Mathematics, 99,
Cambridge University Press, 1990. http://dx.doi.org/10.1017/CBO9780511895593

[13] M. Umehara and K. Yamada,Metrics of constant curvature 1 with three conical singularities on
2-sphere. Illinois J. Math. 44(2000), no. 1, 72–94.

Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve Blvd. West, Mon-
treal, Quebec, H3G 1M8
Email : vkalvin@gmail.com alexey.kokotov@concordia.ca

347

https://doi.org/10.4153/CMB-2018-036-9 Published online by Cambridge University Press

http://dx.doi.org/10.2307/1970909
http://dx.doi.org/10.1017/CBO9780511895593
mailto:vkalvin@gmail.com
mailto:alexey.kokotov@concordia.ca
https://doi.org/10.4153/CMB-2018-036-9



