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Shintani lifts of nearly holomorphic
modular forms
Yingkun Li and Shaul Zemel
Abstract. In this paper, we compute the Fourier expansion of the Shintani lift of nearly holomorphic
modular forms. As an application, we deduce modularity properties of generating series of cycle
integrals of nearly holomorphic modular forms.

1 Introduction

For a discriminant d ∈ Z, letQd be the set of binary quadratic forms of discriminant d,
which is acted on by the group Γ ∶= SL2(Z) with finitely many orbits. When d < 0,
each λ ∈ Qd gives rise to a CM points zλ in the upper half-planeH. The values of the
j-function

j(z) ∶= 1
q
+ 744 + 196, 884q + ⋅ ⋅ ⋅ , q ∶= e(z) ∶= e2πiz

at such CM points are called singular moduli, and they are algebraic numbers gen-
erating certain abelian extensions, e.g., ring class fields, of the imaginary quadratic
field Q(√d) by the theory of complex multiplication. The paper [Za] proved the
surprising result that the dth trace of the normalized function J(z) ∶= j(z) − 744 is
the ∣d∣th Fourier coefficient of a weakly holomorphic modular form g of weight 3

2 .
When d > 0, each λ = [A, B,C] ∈ Qd gives rise to a geodesic

cλ ∶= {z ∈H ∶ A∣z∣2 + BR(z) + C = 0}
onH. If d is not a perfect square, then the stabilizer Γλ of λ in Γ is infinite and c(λ) ∶=
Γλ/cλ is a closed cycle on the modular curve Y = Γ/H. Instead of values, one can
consider integrals of modular forms along these cycles, and study the properties (e.g.,
modularity) of their generating series.This idea lies in the basis of the construction of
modular forms of half-integral weight in [Sn].

The non-holomorphic Eisenstein series of weight 2, defined as

E∗2 (z) ∶= 1 − 24∑
n≥1

σ1(n)qn − 3
πy

, y ∶= Iz,

offers an elegant example. For a fixed fundamental discriminant Δ < 0, let χΔ be the
genus character from, e.g., Section 1.2 of [GKZ] (with N = 1), which takes λ ∈ Z3 to
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Shintani lifts of nearly holomorphic modular forms 1447

χΔ(λ) ∶= ⎧⎪⎪⎨⎪⎪⎩
( Δ
n ), if λ ∈ Qd with Δ∣d , (n, Δ) = 1, and λ represents n,

0, otherwise.
(1.1)

Then, for any fundamental discriminant D < 0 co-prime to Δ, we have the formula

∑
λ∈Γ/QΔD

χΔ(λ)∫
c(λ)

E∗2 (z)dz = −12H(−Δ)H(−D),(1.2)

where H(n) is the Hurwitz class number considered in [HZ]. This twisted cycle
integral (generalizing the classical integral, in which the character is trivial) is also
the ∣D∣th Fourier coefficient of 12H(−Δ) times the weight 3

2 mock modular form
studied in loc. cit. In fact, this equality holds for any discriminant D < 0 after suitably
regularizing the left-hand side (see Corollary 1.12 of [ANS]1).Themodular completion
of this mock modular form is a harmonic Maass form in the sense of [BF1], whose
image under the differential operator ξ3/2 (see (2.1)), also known as the shadow of the
mock modular form, is a multiple of the Jacobi theta series of weight 1

2 .
Note that for a fundamental discriminant D > 0, the twisted trace of singular

moduli

A(D,−Δ) ∶= 1√
D

∑
λ∈Γ/QΔD , λ≫0

χΔ(λ)∣Γλ ∣ J(zλ)(1.3)

(again generalizing the usual trace, with no character) is theDth Fourier coefficient of
the weakly holomorphic modular form f−Δ = qΔ + O(q) of weight 1

2 from [Za]. This
coefficient is the same with J = j − 744 replaced by j when DΔ is not a square.

While searching for analogues of the result from [Za] mentioned above, Duke,
Imamoğlu, and Tóth studied the generating series of cycle integrals of the j-function
in [DIT], and showed that it is a mock modular form of weight 1

2 whose shadow is the
weight 3

2 form g from [Za]. Furthermore, it is the first member of a family of mock
modular forms with weakly holomorphic shadows of weight 3

2 .
Using Serre duality, it is easy to see that there is a uniquemockmodular form f̃−Δ of

weight 3
2 and level 4 in Kohnen’s plus space with shadow

3
2π f−Δ and Fourier expansion

f̃−Δ(z) = 48∣Δ∣H(−Δ) + O(q3).
From the result in [DIT], it is natural to ask about ways to construction f̃−Δ . This was
first done by Jeon, Kang, and Kim in [JKK1] using Maass–Poincaré series. The sequel
[JKK2] expressed its Fourier coefficients, using the same approach as in [DIT], as cycle
integrals of sesqui-harmonic modular forms of weight zero.

In [BFI], Bruinier, Funke, and Imamoğlu obtained another proof of the main
result of [DIT] by applying a theta lift, which also gave a geometric interpretation of
the Fourier coefficients with square indices. This idea was used by Alfes-Neumann
and Schwagenscheidt in [ANS] to construct f̃−Δ as the holomorphic part of the
Shintani theta lift of a harmonic Maass form J̃ of weight 2, which expresses the
Fourier coefficients of f̃−Δ as the twisted cycle integrals of J̃. Our first result is another

1The different sign comes from the opposite orientation that they use—compare the formula on page
14 with our equation (2.17).
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1448 Y. Li and S. Zemel

expression of the Fourier coefficients of f̃−Δ in terms of cycle integrals of nearly
holomorphic modular forms.
Theorem 1.1 Let Δ < 0 be a fixed fundamental discriminant. For any discriminant
D < 0, the twisted regularized cycle integral

TrΔ,D (J ⋅ E∗2 ) ∶= ∑
λ∈Γ/QΔD

χΔ(λ)∫ reg

c(λ)
J(z)E∗2 (z)dz,

with the regularization defined as in equation (4.6), is the ∣D∣th Fourier coefficient of f̃−Δ .
To prove Theorem 1.1, we will follow the theta lift approach as in [ANS, BF1, BFI],

and use the theta kernel with the same archimedean Schwartz function as in [Sh].
(this is also the case n = 1 of the theta function from [Ze2]). We shall apply it to nearly
holomorphic modular forms, and compute the resulting Fourier expansions. Recall
that a real-analytic modular form f onH with at most linear exponential growth near
the cusps is called nearly holomorphic if it can be presented as

f (z) = p∑
l=0

f l(z)
y l

with f l ∶H → C holomorphic for 0 ≤ l ≤ p(1.4)

for some p ∈ N, which is called the depth of f if fp is not identically zero. In other
words, it is annihilated by the operator Lp+1

z , where Lz is the lowering operator defined
in (2.1). We denote the space of such modular forms of weight κ with respect to Γ by
M̃ !

κ, and use the superscript ≤ p to mean the subspace of forms with depth at most p.
Since these differential operators commute with the slash operators, the condition of
being nearly holomorphic is purely archimedean, and can be defined for any weight,
Fuchsian group, character, representation, or multiplier system.

Nearly holomorphic modular forms of depth 0 are just weakly holomorphic, and
the Fourier expansions of their Shintani lifts have been computed in [ANS, BFI,
BGK, Sh]. In particular, Shintani lifts of weakly holomorphic forms are holomorphic.
Moreover, the main result of [ANS] shows that the Shintani lift of harmonic weak
Maass forms without a special constant term is harmonic, and with this constant
term, the Laplacian operator takes the lift to a unary theta function. This “sesqui-
harmonicity” is also visible in the zeroth member Z+ of the family of modular forms
from [DIT]. We will show in Corollary 4.4 that when 0 ≤ p < k, the Shintani lift of a
nearly holomorphic modular form is also nearly holomorphic, and establish results
analogous to the harmonic case (with or without constant terms) (see Theorem 1.2
in the Introduction, as well as Theorem 4.3, Proposition 4.5, and Remark 4.6 for
the general statement). One could perhaps try to give another proof of the nearly
holomorphic lift result by using the isomorphism

⊕
0≤ j≤p

M !
2k−2 j → M̃ !,≤p

2k , ( f j)pj=0 ↦ p∑
j=0

R j
2k−2 j f j ,(1.5)

described in, e.g., [MR, Ze3, Ze7], and analyzing the effects of raising operators on
theta kernels. Here, R j

2k−2 j is the iterated raising operator defined in (2.2).
When p ≥ k, the map from equation (1.5) is not surjective, and misses some nearly

holomorphic modular forms from the right-hand side. A particular example is the
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form J ⋅ E∗2 in Theorem 1.1, or just E∗2 itself. The Fourier expansions of their Shintani
lifts do not follow from applying differential operators to known results, and are the
main concern of this paper. In Theorem 4.3, we give the complete Fourier expansion
of their Shintani lift. For the rest of the introduction, though, we will consider a special
case of this result in level 1, which we now present.

Given λ = [A, B,C] ∈ Qd , denote λ(z) ∶= Az2 + Bz + C. Suppose that f ∈ M̃ !,≤p
2k

expands as

f (z) = p∑
l=0

∑
n∈Z

c(n, l)qn y−l .(1.6)

Given d ∈ Z that is not a square, we define, for k even, the trace

Trd( f ) ∶= ∑
λ∈Γ/Qd

⎧⎪⎪⎨⎪⎪⎩
2
∣Γλ ∣ f (zλ), k = 0, d < 0,

∫c(λ) f (z)λ(z)k−1dz, d > 0,
√

d /∈ Z(1.7)

(we shall not use the negative d case when k > 0). If d = r2 > 0 with r ∈ N, then we
have Γ/Qd = {±[0, r, j]∣0 ≤ j < r − 1} and we define the trace as

Trd( f ) ∶= 2 lim
T→∞

r−1∑
j=0

∫ T

( j,r)2
r2 T−1

f ( − j
r + iy)(riy)k−1 idy + (2ir)k

× ∑
0≤l≤p
n≤0, r∣n

c(n, l)ϕn(k − l , T ; 2π),

where the function ϕn is defined in equation (4.4). Finally, for d = 0 and even k > 0,
we set

Tr0( f ) ∶= c(0, 0)ζ(1 − k) = −c(0, 0)Bk

k
,(1.8)

where ζ(s) is the Riemann zeta function and Bk is the kth Bernoulli number.
We can now state the Fourier expansion of the Shintani lift of f ∈ M̃ !,≤p

2k for even
k > 0. For odd k ∈ N, one can obtain a similar result with twisted cycle integrals as in
equation (1.2).

Theorem 1.2 Let f ∈ M̃ !,≤p
2k have the expansion from equation (1.6), and suppose

that 0 < k ∈ N is even and c(0, k) = 0. The following expansion defines a real-analytic
modular form of weight k + 1

2 and level 4 in Kohnen’s plus space:

∑
d∈N

d≡0,1(mod 4)

⌊p/2⌋∑
b=0

Trd(L2b
z f )(16πy)bb! qd

+√
2π ∑

0>d∈Z
d≡0,1(mod 4)

p∑
l=k

h l(2√2π∣d∣y)
(2√2π∣d∣y)l ⋅ Trd(R l−k

2k−2lL
l
z f )

2l−k(l − k)! ⋅ qd

∣d∣ 1−k2
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+ p∑
l=k−1
l odd

( l−1
2 )!(−2) l−1

2 B l+1−k(−1) k
2 c(0, l)

(8πy)l/2(2π)k−l− 1
2 (l + 1 − k)!

−√
8π ∑

0<r∈N
k≤l≤p
n<0, r∣n

J l(2r√2πy)
(2r√2πy)l ⋅ (2πn)l−k(−1) k

2
⋅ l !c(n, l)(l − k)! rkqr2 ,

where the special functions h l and J l are defined in equations (3.17) and (3.31),
respectively. When p < k, it is nearly holomorphic, of depth ⌊ p

2 ⌋. Otherwise, its image
under the differential operator ξk+1/2−2⌊p/2⌋L⌊p/2⌋ is nearly holomorphic of weight
2⌊ p

2 ⌋ − k + 3
2 and depth 2⌊ p

2 ⌋ − k + 1.

Remark 1.3 Theorem 1.2 holds also for k = 0, once one adds to the expansion 2√y
times the constant

∫
Y

f (z)dμ(z) ∶= lim
T→∞∫

YT

f (z)dμ(z).
Remark 1.4 In the setting ofTheorem 1.2, the generating series∑d Trd( f )qd defines,
when p < k, a quasi-modular form of weight k + 1

2 and depth ⌊ p
2 ⌋. Note that the

constant term c(0, k − 1) appearing in the third sum in Theorem 1.2 vanishes when
p = k − 1, since it is amultiple of the constant termof theweight 2weakly holomorphic
form Lk−1 f at the unique cusp of themodular curve of level 1. For p ≥ k, this series can
be completed to a such amodular form using these special functions (see Remark 4.7).

The key ingredient to the calculation of the Fourier expansion in [ANS, BF2, BFI,
BFIL] is the construction of a rapidly decaying antiderivatives of the Schwartz function
used to construct the theta kernel. Such singular Schwartz functions are important also
in evaluating singular theta lifts and constructing Green currents for special divisors
on orthogonal and unitary Shimura varieties (see, e.g., [FH]).

In our case, we need not only the first antiderivative, but also the higher-order
antiderivatives. For the first antiderivative, we can build it from the error function
(see equation (3.4)). Surprisingly, the higher-order derivatives hν , defined in equa-
tion (3.17), turn out to be combinations of the Gaussian and the error function
with polynomial coefficients Pν and Qν . These polynomials, which are defined in
equation (3.6), are closely related to the Hermite polynomials, and are of independent
interest.

The paper is organized as follows. After recalling some basic notions in Section 2,
we devote Section 3 to study the properties of the polynomials Pν and Qν and of
related special functions, including their Fourier transforms, asymptotic behaviors,
and certain lattice sum evaluations.Then, in Section 4, we complete the computations
of the orbital integrals and the proof of the main theorem (Theorem 4.3), as well as its
implications for Theorems 1.1 and 1.2.

2 Isotropic lattices and modular forms

This section introduces the notions and notation that are required for the rest of the
paper. We follow the setup of [ANS, BF1, BFI, BFIL] and others.

https://doi.org/10.4153/S0008414X22000396 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000396


Shintani lifts of nearly holomorphic modular forms 1451

2.1 Differential operators on modular forms

For M = ( a b
c d ) ∈ SL2(R) and an element z of H ∶= {z = x + iy ∈ C∣y > 0}, denote

j(M , z) ∶= cz + d. Let Mp2(R) denote the metaplectic double cover of SL2(R), and
let Mp2(Z) be the inverse image of SL2(Z) inMp2(R). We write elements ofMp2(R)
as pairs (M , ϕ), with M ∈ SL2(R) and ϕ a holomorphic function on H such that
ϕ(z)2 = j(M , z).

Given a representation ρ of a finite index subgroup Γ ⊆Mp2(Z) on a finite-
dimensional complex vector spaceV, a function f ∶H → V is calledmodular of weight
κ ∈ 1

2Z and representation ρ if the functional equation

f ∣κ (M , ϕ)(z) ∶= ϕ(z)−2κ f (Mz) = ρ(M , ϕ) f (z)
holds for every element (M , ϕ) ∈ Γ. Let A!

κ(Γ, ρ) (resp. Aκ(Γ, ρ)) denote the space
of such functions that are real-analytic with at most exponential (resp. polynomial)
growth near the cusps. It contains the subspaces M̃ !

κ(Γ, ρ), M !
κ(Γ, ρ), Mκ(Γ, ρ), and

Sκ(Γ, ρ) of nearly holomorphic, weakly holomorphic, holomorphic, and cusp forms,
respectively. We shall omit ρ from the notation when it is trivial.

For a half-integer κ, we define

Rz ,κ = Rκ ∶= 2i∂z + κ
y , L = Lz ∶= −2iy2∂z , ξκ = 2iyκ∂z = yκ−2Lz , and

Δκ ∶= −Rκ−2Lz = −ξ2−κξκ = −4y2∂z + ∂z + 2iκy∂z = −y2(∂2x + ∂2y) − κy(∂y − i∂x),
(2.1)

which are the raising operator of weight κ, the weight lowering operator, the ξ-
operator of weight κ from [BF1], and the Laplacian operator of weight κ, respectively.
For n ∈ N, we write

Rn
κ ∶= Rκ+2n−2 ○ Rκ+2n−4 ○ ⋅ ⋅ ⋅ ○ Rκ+2 ○ Rκ(2.2)

for the iterated raising operator.
These differential operators preserve modularity, in the sense that

RκA
!
κ(Γ, ρ) ⊆ A!

κ+2(Γ, ρ), LzA
!
κ(Γ, ρ) ⊆ A!

κ−2(Γ, ρ), and ΔκA
!
κ(Γ, ρ) ⊆ A!

κ(Γ, ρ),
whereas for ξκ, which involves complex conjugation, we have

(2.3) ξκA!
κ(Γ, ρ) ⊆ A!

2−κ(Γ, ρ), where ρ is the complex conjugate representation.

It is known that Lz , Rκ, and Δκ preserve near holomorphicity, with Lz decreasing the
depth by 1, and Rκ and Δκ increasing it by at most 1. For more on these modular
forms, including their relations with quasi-modular forms and Shimura’s vector-
valued modular forms, see [MR, Ze3, Ze7].

Around a given point w = s + it ∈H, the natural local coordinate is

ζ = Aw(z) ∶= z−w
z−w ∈ {ζ ∈ C∣∣ζ ∣ < 1}, with 1 − Aw(z) = 2i t

z−w(2.4)
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for any z ∈H, which also satisfies

∣Aγw(γz)∣ = ###########
j(γ,w)Aw(z)

j(γ,w)
########### = ∣Aw(z)∣

for every z and w in H and γ ∈ SL2(R). The expansion of a holomorphic modular
form f of weight κ ∈ Z is given by Proposition 17 of [BGHZ]2 as

f (z) = ( 2it
z −w

)κ ∞∑
n=0

Rn
κ f (w) tnAw(z)n

n!
= (1 − Aw(z))κ ∞∑

n=0
Rn
κ f (w) tnAw(z)n

n!
.

(2.5)

Note that the proof of equation (2.5) makes no use of the modularity of f, so that
this expansion is valid for every holomorphic function f. We shall need a formula
extending equation (2.5) to nearly holomorphic modular forms.

Lemma 2.1 For f ∈ M̃ !
κ(Γ, ρ) and a point w = s + it ∈H, we have the expansion

f (z) = (1 − Aw(z))κ p∑
l=0

(1 − Aw(z))l
t l(1 − ∣Aw(z)∣2)l

∞∑
n=0

Rn
κ−l f l(w) tnAw(z)n

n!
.

Proof We write f (z) as in equation (1.4), and express each f l via equation (2.5), but
with κ replaced by κ − l . Recalling from Lemma 5.1 of [Ze4] that y equals t(1−∣Aw(z)∣2)

∣1−Aw(z)∣2 ,
we get

f (z) = p∑
l=0

(1 − Aw(z))κ−l ∑∞n=0 Rn
κ−l f l(w) tnAw(z)n

n!

t l(1 − ∣Aw(z)∣2)l ∣1 − Aw(z)∣2l .
Expanding ∣1 − Aw(z)∣2 yields the desired result. This proves the lemma. ∎

For any ε > 0, we will denote the pre-image of the ball of radius ε in C under Aw
by Bε(w) with the natural orientation on its boundary. We shall later need the limit
value of the following integral, which is determined as follows.

Corollary 2.2 Let f and w be as in Lemma 2.1, and take an integer μ. Then

lim
ε→0∫∂Bε(w)

f (z)(1 − Aw(z))κ−2 Aw(z)μdz = ⎧⎪⎪⎨⎪⎪⎩
− 4πt∣μ∣
(∣μ∣−1)!R

∣μ∣−1
κ f (w), μ < 0,

0, μ ≥ 0.

Proof The result follows from substituting in ζ = Aw(z), and thus dz = 2i t
(1−ζ)2 dζ ,

inside Lemma 2.1. This proves the corollary. ∎
We will carry out some integrations of modular forms on H, with respect to

the invariant measure dμ(z) ∶= dz∧dz
−2i y2 = dxd y

y2 . The following standard consequence
of Stokes’ theorem will be useful for evaluating some of these integrals (see, e.g.,
Proposition 4.1.1 of [L]).

2Note that there is a small typo there, where the expansion in 4πyw should be in its additive inverse−4πyw.
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Lemma 2.3 Let R be a connected domain in H whose boundary ∂R is a piecewise
smooth path in H (positively oriented), and assume that f, g, and G are real-analytic
functions on R such that g = −LzG. Then we have the equality

∫
R

f (z)g(z)dμ(z) = ∮
∂R

f (z)G(z)dz + ∫
R

Lz f (z)G(z)dμ(z).

2.2 Lattices producing modular curves

Let V ∶= M2(Q)0 be the signature (2, 1) quadratic space of trace zero matrices over
Q with quadratic form Q(λ) ∶= −N det λ for some 0 < N ∈ Q. Then G ∶= Spin(V) ≅
SL2, and the symmetric space of G is the space of oriented negative definite lines in
VR ∶= M2(R)0. We can identifyH with the connected component of this symmetric
space that contains the line spanned by ( 0 −1

1 0 )as a positive generator, via the map
taking z ∈H to RZ⊥(z) with

Z⊥(z) ∶= 1√
Ny

( x −∣z∣2
1 −x ), and we set Z(z) ∶= 1√

N
( z −z2

1 −z )
= 1√

N
(z
1
)(1 − z).

It is easy to check that γ ⋅ Z⊥(z) = Z⊥(γz) and γ ⋅ Z(z) = j(γ, z)2Z(γz) for every
γ ∈ SL2(R).

Given λ ∈ VR with Q(λ) = −ξ2 < 0, we know that λ = ξZ⊥(zλ) for some zλ = xλ +
iyλ ∈H, with sgn(ξ) = − sgn (λ, Z⊥(zλ)). In this case, Lemma 4.2 of [Ze4] proves the
equalities

(λ, Z⊥(z)) = −2ξ cosh d(z, zλ) = −2ξ( ∣z − zλ ∣2
2yyλ

+ 1) = −2ξ 1 + ∣Azλ(z)∣2
1 − ∣Azλ(z)∣2 ,

(λ, Z(z)) = −2ξ (z − zλ)(z − zλ)
2yλ

= 4ξyλAzλ(z)(1 − Azλ(z))2 ,
(2.6)

where d(z, zλ) is the hyperbolic distance between z and zλ .
Fix an even, integral lattice L ⊆ V , with its dual L∗ ∶= Hom(L,Z) viewed as a

subgroup of V containing L, and DL ∶= L∗/L the associated finite quadratic module.
We denote Γ = ΓL ⊆ G(Q) = SL2(Q) the inverse image of the discriminant kernel3
of L, and set Y ∶= YL ∶= Γ/H to be the associated (open) modular curve, with the
projection map π ∶H → Y . For every h ∈ DL and m ∈ Z + Q(h), we denote

Lm ,h ∶= {λ ∈ L + h∣Q(λ) = m}.(2.7)

Typical examples can be found in [BO], [AE], [LZ], or [Ze6]; e.g.,

L = {( −B C−A B )∣A, B,C ∈ Z} with Q = −det and Γ = SL2(Z).(2.8)

3For convenience, we shall henceforth assume that Γ ⊆ SL2(Z) (see Remark 2.4).
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Furthermore, let ρL be the Weil representation associated with L, in which Mp2(Z)
operates on the vector space C[DL], with the canonical basis {eh}h∈DL (see [Bo, Sch,
Str, Ze1] and others).

2.3 Cusps and geodesics

The Baily–Borel completion H∗ of H is obtained by adding the set Iso(V) ≅ P1(Q)
of isotropic lines inV. Let �∞ ∈ Iso(V) be the line spanned by u∞ ∶= ( 0 1

0 0 ), and given
� ∈ Iso(V), we take an element σ� ∈ SL2(Z) such that � = σ��∞, and set u� ∶= σ�u∞. If
Γ� ⊆ Γ ⊆ SL2(Z) is the stabilizer of �, then there exists α� ∈ N, called the width of the
cusp �, such that

σ−1� Γ�σ� = { ± ( 1 nα�
0 1 )∣n ∈ Z}.(2.9)

Let 0 < β� ∈ Q be such that

L ∩ � = Zβ�u� , and set ε� ∶= α�

β� .(2.10)

When (L + h) ∩ � ≠ ∅, we define 0 ≤ k�,h < β� to be the unique number such that

(L + h) ∩ � = (Zβ� + k�,h)u� , and set ω�,h ∶= k�,h
β� +Z ∈ R/Z.(2.11)

All these parameters are constant on Γ-orbits.
Near the cusp associated with � ∈ Iso(V), we work with the coordinates

z� = x� + iy� ∶= σ−1� z and q�(z�) ∶= e( z�
α�
).(2.12)

For ε > 0, we define the neighborhood Bε(�) ∶= {z ∈H∣∣q�(z�) < ε} of the cusp �. The
set

HT ∶=H/ ⋃
�∈Iso(V)

Be−2πT (�), for T > 1,(2.13)

is Γ-invariant, and YT ∶= Γ/HT is a truncated modular curve, with a fundamental
domain4

FT(L) ∶= ⋃
�∈Γ/ Iso(V)

σ�Fα�

T , where Fα
T ∶= α−1⋃

j=0
( 1 j
0 1 )FT(2.14)

is composed, for α ∈ N, of α translations of

FT ∶= {z = x + iy ∈H∣∣x∣ ≤ 1
2 , ∣z∣ ≥ 1, y ≤ T}.

Remark 2.4 The assumption Γ = ΓL ⊆ SL2(Z) is satisfied for the large family of
lattices from [Ze6], but not for every lattice L in V. However, the only place where
we use the assumption that Γ ⊆ SL2(Z) is in the form of the fundamental domain
from equation (2.14), with T > 1 being a sufficient bound, and in the integrality of
the parameter α� from equation (2.9). Since none of these facts are used in any proof
below, our results hold equally well for more general lattices.

4The fundamental domain actually depends on a choice of representatives for Γ/ Iso(V), but we
suppress it from the notation since this choice does not affect the results later.
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An element λ ∈ VR with Q(λ) > 0 defines a geodesic

cλ ∶= {z ∈H∣(λ, Z⊥(z)) = 0} ⊆H, as well as c(λ) ∶= Γλ/cλ ⊆ Y ,(2.15)

where Γλ is the stabilizer of λ in Γ. For λ0 = ( 1 0
0 −1 ) ∈ V , we orient the geodesic cλ0 =(0, i∞) to go up, and transfer this to an orientation on cλ and c(λ) for each such

λ ∈ VR via the action of SL2(R). We have the following well-known dichotomy.

Lemma 2.5 Let λ ∈ V be such that m = Q(λ) > 0. If m ∈ N ⋅ (Q×)2, then Γλ is the
trivial subgroup {±I}, and the geodesic cλ connects two cusps in P1(Q). Otherwise, the
image of Γλ in SO+(V) ≅ PSL2(Q) is infinite cyclic.

In the first case in Lemma 2.5, we call λ split-hyperbolic. For m ∈ Q and for λ ∈ V ,
we then set, by a slight abuse of notation,

ι(m) ∶= ⎧⎪⎪⎨⎪⎪⎩
1, if

√
m/N ∈ Q×,

0, otherwise,
and ι(λ) ∶= ⎧⎪⎪⎨⎪⎪⎩

1, if λ is split-hyperbolic,
0, otherwise.

(2.16)

If ι(λ) = 1, then λ⊥ is spanned by �λ and �−λ in Iso(V), which correspond to where cλ
ends and begins, respectively. If Q(λ) = m, then we have

σ−1�λ
λ = √

m
N ( 1 −2rλ

0 −1 ) for some rλ ∈ Q, with rλ + α�λZ ∈ Q/α�λZ canonical.
(2.17)

The canonical image rλ + α�λZ ∈ Q/α�λZ from equation (2.17), which we shall hence-
forth still denote by just rλ , is called the real part of cλ , and it is constant on Γ-orbits.

For � ∈ Iso(V), m ≥ 0, and h ∈ DL , we set, for later use, the symbol

ι�(m, h) ∶= ⎧⎪⎪⎨⎪⎪⎩
1, there exists λ ∈ Lm ,h ∩ �⊥ , positively oriented if m > 0,
0, otherwise.

(2.18)

In other words, for m > 0, we have ι�(m, h) = 1 if and only if � = �λ for some λ ∈ Lm ,h .
The additive subgroup L ∩ � acts on Lm ,h ∩ �⊥, and we have the following standard
result.

Lemma 2.6 (Lemma 3.1 of [BFIL]) For � ∈ Iso(V), 0 < m ∈ Q, and h ∈ DL such
that ι�(m, h) = 1, the natural map Lm ,h ∩ �⊥ → (Lm ,h ∩ �⊥)/(L ∩ �) factors through
Γ�/(Lm ,h ∩ �⊥). For every λ ∈ Lm ,h ∩ �⊥, there are 2

√m
N ε� pre-images of λ + (L ∩ �)

in Γ�/(Lm ,h ∩ �⊥), namely the images of {λ + jβ�u�∣0 ≤ j ≤ 2
√m

N ε� − 1} modulo Γ�.

Remark 2.7 The number 2
√m

N ε� from Lemma 2.6 is therefore integral. Moreover,
for �, m, and h as in Lemma 2.6, take some positively oriented λ ∈ Lm ,h ∩ �⊥, and let
rλ be as in equation (2.17). Then we have

{rμ ∣μ ∈ Lm ,h ∩ �⊥ positively oriented} = rλ + β�
2

√
N
mZ/α�λZ ⊆ Q/α�λZ,

a set of 2
√m

N ε� evenly spaced elements ofQ/α�λZ.
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2.4 Schwartz forms, theta functions, and Shintani lifts

Given k ∈ N, we can define the Schwartz function

φ̃k(λ; τ, z) ∶= (λ, Z(z))ke[Q(λ)τ + (λ, Z⊥(z))2 iv
2 ](2.19)

for λ ∈ VR and τ = u + iv ∈H, and construct the vector-valued theta function

Θk ,L(τ, z) ∶= ∑
h∈DL

Θk ,L ,h(τ, z)eh , Θk ,L ,h(τ, z) ∶= √
v ∑
λ∈L+h

φ̃k(λ; τ, z).(2.20)

Theorem 4.1 of [Bo] implies that for fixed z ∈H, we have Θk ,L(τ, z) ∈
Ak+ 1

2
(Mp2(Z), ρL), whereas for fixed τ ∈H, it is easy to verify that Θk ,L ,h(τ, z) ∈

A−2k(Γ) for every h ∈ DL . After collecting terms, we can use equation (2.7) to rewrite

Θk ,L ,h(τ, z) = √
v ∑
m∈Z+Q(h)

[ ∑
λ∈Lm ,h

(λ, Z(z))k e−πv(λ ,Z⊥(z))2]qm
τ , qτ ∶= e(τ).

(2.21)

Recall that the (probabilists’) Hermite polynomials are defined as

Hen(ξ) ∶= (−1)ne ξ2/2( d
d ξ )ne−ξ2/2 = (ξ − d

d ξ )n ⋅ 1 = ⌊n/2⌋∑
b=0

(−1)bn!
b!(n − 2b)!2b ξn−2b .(2.22)

Then, for � ∈ Iso(V) and k ∈ N, one defines the unary theta function

Θk ,�(τ) ∶= ∑
λ∈(L∗∩�⊥)/(L∗∩�)

Hek (√2πv(σ−1� λ, I(Z(i))))(2πv)k/2 qQ(λ)
τ ∑

h∈DL
h+(L∗∩�)/(L∩�)=λ

eh

= ∑
h∈DL

∑
0≤m∈Z+Q(h)

ι(m)=1

a(Θk ,� ,m, h, v)qm
τ eh ∈ Ak+ 1

2
(Mp2(Z), ρL), with

a(Θk ,� ,m, h, v) ∶= Hek (2√2πmv)(2πv)k/2
⎧⎪⎪⎨⎪⎪⎩
(ι�(m, h) + (−1)k ι�(m,−h)), m > 0,
ι�(0, h), m = 0.

(2.23)

Remark 2.8 The theta functions ΘSh(τ, z) and Θ�,k(τ) from equations (4.1) and
(4.2) of [ANS] correspond to (−√N/y2)k+1Θk+1,L(τ, z), (−i

√
N)kΘk ,�(τ), and

equation (2.23), respectively, in our setting.

The function Θk ,� from equation (2.23) appears in the asymptotic expansion of the
theta kernel Θk ,L from (2.20), as is given in the following result. It is essentially part
(2) of Proposition 4.2 of [ANS], which refers toTheorem 5.2 of [Bo] for the proof, and
can also be proved using properties of appropriate variants of the lattice sums from
equation (3.34) below.
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Lemma 2.9 Given � ∈ Iso(V), there exists a constant C� > 0 such that

(Θk ,L ∣2k ,z σ�)(τ, z�) = ik yk+1�√
Nβ�

Θk ,�(τ) + O(e−C� y2�) as y� →∞.

For f ∈ A!
2k(Γ), we follow [ANS, BFI] (among others) to define its regularized

Shintani lift, using the fundamental domain from equation (2.14), to be the theta
integral

Ik ,L(τ, f ) ∶= ∑
�∈Γ/ Iso(V)

CTs=0 [ lim
T→∞∫Fα�

T

( f ∣2k σ�)(z�)(Θk ,L ∣−2k σ�)(τ, z�)y−s� dμ(z�)],
(2.24)

which is an element of Ak+ 1
2
(Mp2(Z), ρL). When the constant term of f at every

cusp is zero, the integral converges absolutely and no regularization is necessary (see
Proposition 4.1 of [BF2]).

3 Special functions

In this section, we construct singular Schwartz functions that serve as higher-order
antiderivatives of the ones appearing in the theta kernel. This requires the study of
several families of polynomials and a few types of special functions and their proper-
ties, including their Fourier transforms and lattice sums. All of these expressions show
up in the evaluation of the various parts of the Shintani lift of nearly holomorphic
modular forms in Section 4.

3.1 Familiar functions

Let g(ξ) denote the Gaussian e−ξ
2/2. For ξ > 0, it has the antiderivative

−√π√
2
⋅ erfc ( ξ√

2
) = −∫ ∞

ξ
e−w

2/2dw = −∫ ∞
ξ2/2

e−s ds√
2s

= − 1√
2
Γ( 1

2 ,
ξ2
2 ),(3.1)

where erfc is the complementary error function and Γ(μ, t) is the incomplete Gamma
function defined as

Γ(μ, t) ∶= ∫ ∞
t

e−ssμ ds
s

for t > 0. If 0 < μ ∈ N, then this formula is well defined for every t ∈ R, and for μ ∈ Z,
it is meaningful for t < 0 as follows: If μ = 0, then the integral is defined using the
Cauchy principal value, and for smaller μ, we employ repeated integration by parts.
The explicit formulae are given by

Γ(μ, t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
e−t(μ − 1)!∑μ−1

a=0
ta
a! = e−t tμ(1 − d

dt )μ−1 1t , when 0 < μ ∈ N and t ∈ R,
(−1)μ
∣μ∣! (Γ(0, t) + e−t ∑∣μ∣−1a=0

a!
(−t)a+1 ), when − μ ∈ N, and t ≠ 0,

(3.2)
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Γ(0, t) can also be written as −Ei(−t) using the exponential integral Ei(t) ∶=−∫ ∞−t e−w dw
w , and the equality

d
dt Γ(μ, t) = −e−t tμ−1(3.3)

holds whenever Γ(μ, t) is defined.
Modifying the antiderivative from equation (3.1), we now define

e(ξ) ∶= − sgn(ξ)√
2 Γ( 1

2 ,
ξ2
2 ) = − sgn(ξ)∫ ∞

∣ξ∣
e−w

2/2dw for ξ ≠ 0.(3.4)

It decays rapidly as ∣ξ∣ → ∞, but it is discontinuous at ξ = 0 with the jump

lim
ξ→0+

e(ξ) − lim
ξ→0−

e(ξ) = −√2Γ( 1
2 , 0) = −√2π.

We therefore have, as distributions on R, the equality

d
d ξ e(ξ) = g(ξ) −√

2π ⋅ δ(ξ),(3.5)

where δ(ξ) is the Dirac delta distribution. Our next goal is to find higher-order
antiderivatives of g(ξ).

3.2 Two families of polynomials

First, we will consider two sequences of polynomials inQ[ξ], which we denote by Pν
and Qν with ν ∈ N and defined recursively as follows. They will show up in equation
(3.17) and Proposition 3.14, whence their importance. Set

P0(ξ) = 1 and Q0(ξ) = 0, as well as
P′ν(ξ) = Pν−1(ξ) and Pν(ξ) + Q′ν(ξ) − ξQν(ξ) = Qν−1(ξ) for ν ≥ 1.

(3.6)

The fact that equation (3.6) defines unique sequences of polynomials, and their parity
properties, are established via the following lemma.

Lemma 3.1 Let p and q be two polynomials inQ[ξ]. Then there is a unique pair (P,Q)
of polynomials P and Q such that P′ = p and P + Q′ − ξQ = q. Moreover, if p and q have
opposite parities, then so do P and Q, with that of P (resp. Q) coinciding with that of q
(resp. p). In addition, if p ≠ 0 has leading coefficient r and deg q ≤ deg p, then deg P =
degQ + 1 = deg p + 1 and the leading coefficients of both P and Q are r

deg P .

Proof Let g(ξ) ∶= e−ξ
2/2 denote the usual Gaussian. Then, for each k ≥ 1, the poly-

nomial

pk(ξ) ∶= g(ξ)−1 d
dξ

(g(ξ)ξk−1) = (k − 1)ξk−2 − ξk ∈ Q[ξ]
has degree k, parity (−1)k , and leading coefficient−1. It is thus clear that {1} ∪ {pk}k≥1
is a basis ofQ[ξ] overQ, that respects the parity decomposition.Therefore, there exist
unique P̃ ∈ Q[ξ], c ∈ Q, and Q ∈ Q[ξ] such that
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P̃′ = p, P̃(0) = 0, and g(ξ)(q(ξ) − P̃(ξ) + c) = d
dξ

(g(ξ)Q(ξ))
= g(ξ)(Q′(ξ) − ξQ(ξ)).

Setting P ∶= P̃ − c proves the first assertion. For even q and odd p, P̃ andP are also even,
andQ is thus odd. If q is odd and p is even, then P̃ is also odd, and then integrating from−∞ to ∞ shows that c = 0 in this case, completing the proof of the parity assertion.
The assertion about the degrees and the leading coefficients when deg q ≤ deg p are
now easily checked from this construction. This proves the lemma. ∎
Corollary 3.2 Equation (3.6) defines unique sequences {Pν}∞ν=0 and {Qν}∞ν=0 of
polynomials in ξ. Moreover, Pν is a polynomial of degree ν with leading coefficient 1

ν!
and parity (−1)ν for any ν ≥ 0, and Qν is a polynomial of degree ν − 1 with leading
coefficient 1

ν! and parity (−1)ν−1 for any ν ≥ 1.

Proof All the statements hold for ν = 0 by equation (3.6), and once they hold for
ν − 1, taking p = Pν−1 and q = Qν−1 in Lemma 3.1 determines Pν and Qν as P and Q,
respectively, with the required properties. This proves the corollary. ∎

For convenience, we list the polynomials Pν and Qν for 0 ≤ ν ≤ 4:

P0(ξ) = 1, P1(ξ) = ξ, P2(ξ) = ξ2 + 1
2

, P3(ξ) = ξ3 + 3ξ
6

, P4(ξ) = ξ4 + 6ξ2 + 3
24

,

Q0(ξ) = 0, Q1(ξ) = 1, Q2(ξ) = ξ
2
, Q3(ξ) = ξ2 + 2

6
, Q4(ξ) = ξ3 + 5ξ

24
.

It will be useful for us to consider the (ordinary) generating series

Ψ(ξ, t) ∶= ∞∑
ν=0

Pν(ξ)tν and Υ(ξ, t) ∶= ∞∑
ν=0

Qν(ξ)tν ,(3.7)

considered, at the moment, as formal power series in ξ and t, on which derivatives
operate in the usual, formal way. They can be characterized in the following way.

Proposition 3.3 The formal power series Ψ = Ψ(ξ, t) (resp. Υ = Υ(ξ, t)) is character-
ized as the unique real-analytic function satisfying the following properties:
(i) For each power tν of t, the power series in ξ that multiplies it is finite, i.e., a

polynomial.
(ii) At t = 0, we have the equality Ψ(ξ, 0) = 1 (resp. Υ(ξ, 0) = 0) as series in ξ.
(iii) The power series satisfies the differential equation

∂ξΨ(ξ, t) = t ⋅Ψ(ξ, t) (resp. Ψ(ξ, t) + ∂ξΥ(ξ, t) − ξ ⋅ Υ(ξ, t) = 1 + t ⋅ Υ(ξ, t)).
Proof Assume that Ψ and Υ satisfy these properties, and write their expansion in
t as in equation (3.7), with polynomial coefficients P̃ν(ξ) and Q̃ν(ξ), respectively,
by Property (i). Now, Property (ii) implies that P̃ν and Q̃ν satisfy the condition for
ν = 0 in equation (3.6), and also explain the existence of the term 1 in the differential
equation for Υ in Property (iii) (set t = 0 there). Next, comparing the coefficient
of tν with ν ≥ 1 in the series resulting from substituting these expansions into the
differential equations from Property (iii) yields the other part of equation (3.6).
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Hence, {P̃ν}∞ν=0 and {Q̃ν}∞ν=0 are sequences satisfying that equation, so that P̃ν = Pν
and Q̃ν = Qν for every ν ∈ N by Corollary 3.2. This proves the proposition. ∎

Proposition 3.3 allows us to determine the series Ψ and Υ explicitly as the expan-
sions of real-analytic functions, which also shows that their Taylor expansion in (3.7)
converges absolutely for all t and ξ.

Regarding Property (i) in that proposition, see Remark 3.5.

Theorem 3.4 The power series Ψ and Υ from equation (3.7) describe the functions

Ψ(ξ, t) = e ξt+t
2/2 and Υ(ξ, t) = e(ξ+t)

2/2 ∫ ξ+t
ξ

e−w
2/2dw

= e ξt+t
2/2 ∫ t

0
e−ξw−w

2/2dw .

These functions also satisfy the differential equations

(∂t − ξ)Ψ(ξ, t) = tΨ(ξ, t) and (∂t − ξ)Υ(ξ, t) = tΥ(ξ, t) + 1.

Proof It suffices to show that the asserted series have the properties fromProposition
3.3. Property (ii) is immediate for both (by substituting t = 0), Property (i) for
Ψ is easy to check by expanding it in t, and the two differential equations (that
from Property (iii) and the one asserted here) are easily established by simple
differentiation. Differentiation also shows that

∂ξΥ(ξ, t) = (ξ + t)Υ(ξ, t) + e(ξ+t)
2/2[e−(ξ+t)2/2 − e−ξ

2/2] = (ξ + t)Υ(ξ, t) + 1 − Ψ(ξ, t),
from which Property (iii) for Υ quickly follows.

Next, note that Property (i) for Υ is equivalent to ∂ν
tΥ(ξ, t)∣t=0 being a polynomial

in ξ for every ν ∈ N. To see this, we first evaluate ∂tΥ(ξ, t) as 1 + (ξ + t)Υ(ξ, t),
yielding the remaining differential equation as well. Simple induction now shows that,
for every ν, the derivative ∂ν

tΥ(ξ, t) is a polynomial in ξ + t plus another polynomial in
ξ + t times Υ(ξ, t). After substituting t = 0, the fact that Υ(ξ, 0) = 0 yields the desired
assertion. This proves the theorem. ∎
Remark 3.5 If one considers Property (iii) from Proposition 3.3 as differential
equations for functions, then solving them implies that there exist functions ψ(t) and
ϕ(t) such that as functions, Ψ(ξ, t) and Υ(ξ, t) are
ψ(t)e ξt+t2/2 and e(ξ+t)

2/2
⎡⎢⎢⎢⎢⎣ϕ(t) + ∫ ξ+t

ξ
e−w

2/2dw + (ψ(t) − 1)∫ ∞
ξ

e−w
2/2dw

⎤⎥⎥⎥⎥⎦,
respectively.The initial conditions fromProperty (ii) amount to the equalitiesψ(0) =
1 and ϕ(0) = 0. Showing that the polynomial property of the Taylor expansions from
Property (i) in Proposition 3.3 is equivalent to ψ and ϕ being the constant functions
with the respective values seems, however, not very straightforward.

Remark 3.6 The differential equations fromTheorem 3.4 also imply that

νPν(ξ) − ξPν−1(ξ) = Pν−2(ξ) and νQν(ξ) − ξQν−1(ξ) = Qν−2(ξ) for all ν ≥ 2.
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For the explicit expressions for the polynomials from equation (3.6), recall the well-
known formula for the generating function of the (probabilists’)Hermite polynomials,
stating that

e ξt−t
2/2 = ∞∑

ν=0
Heν(ξ) tν

ν!
.(3.8)

It can be proved, for example, by comparing equation (2.22) with the Taylor series of
e−(ξ−t)

2/2 at t = 0. Theorem 3.4 then implies the following result.

Corollary 3.7 For every ν ∈ N, we have

Pν(ξ) = (−i)ν
ν!

Heν(iξ) ∶= e−ξ
2/2

ν!
dν

d ξν e
ξ2/2 = (ξ + d

d ξ )ν ⋅ 1ν! =
⌊ν/2⌋∑
a=0

ξν−2a

a!(ν − 2a)!2a .
In particular, Pν is a polynomial of degree ν and parity (−1)ν such that ν!Pν ∈ Z[ξ] and
Pν(0) is 1

2ν/2(ν/2)! for even ν and 0 for odd ν.

Note that the proof of Theorem 3.4 yields the equality ∂tΥ(ξ, t) = ∂ξΥ(ξ, t) +
Ψ(ξ, t), from which we deduce that Qν+1(ξ) = Q′ν(ξ)+Pν(ξ)

ν+1 , and using equation (3.6),
we get

Qν(ξ) = ν−1∑
a=0

(ν − 1 − a)!
ν!

d a

d ξa Pν−1−a(ξ) = ⌊(ν−1)/2⌋∑
a=0

(ν − 1 − a)!
ν!

Pν−1−2a(ξ),(3.9)

with Pμ(ξ) given in Corollary 3.7. It is thus indeed a polynomial of degree ν − 1 and
parity (−1)ν−1 such that ν!Qν ∈ Z[ξ]. It follows that Qν(0) = 0 for even ν, whereas if
ν is odd, then

Qν(0) = 2 ν−1
2 ( ν−1

2 )!
ν!

= (ν−1)/2∏
j=0

1
2 j + 1

.(3.10)

Remark 3.8 The recursion (3.6) extends naturally to ν ∈ Z, in which case Pν(ξ) = 0
and

Qν(ξ) = (−1)1−ν He−1−ν(ξ)
for ν ≤ −1. We take these as the definitions of Pν and Qν in these cases. Then Remark
3.6 extends to all ν ∈ Z.

The polynomials Heν form an Appell sequence in the sense that He′ν = νHeν−1 (see,
e.g., the exponential example in Section 5 of [Ze5] and some of the references therein),
andCorollary 3.7 shows that the same applies also to the polynomials ν!Pν .Thismeans
explicitly that the equalities

Heν(ξ + η) = ν∑
j=0

(ν
j
)η j Heν− j(ξ) and Pν(ξ + η) = ν∑

j=0
η jPν− j(ξ)

j!
(3.11)

hold. This either follows from the generating function Ψ(ξ, t) (as well as the expo-
nential generating function e ξt−t

2/2) being e ξt times a function of ξ alone (see, e.g.,
[Ze5], even though this was known much earlier), or by simple computations using
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the explicit formulae. A change of variable in equation (3.11) produces, for every l ∈ N,
the equality

l∑
ν=0

(−1)ν(l − ν)!(ξ + ζ)l−νPν(ξ) = Pl(ζ) ∈ Q[ξ, ζ].(3.12)

3.3 Auxiliary polynomials

We now define a few other families of polynomials, which will appear later in the
Fourier expansion of the Shintani lift.

Lemma 3.9 For any l ∈ N, the polynomial

Π l(ξ, ζ) ∶= l∑
ν=0

(−1)ν(l − ν)!(ξ + ζ)l−νQν(ξ) ∈ Q[ξ, ζ]
has degree l − 1 in ξ, and it satisfies the equality Π l(−ζ , ζ) = −Q l(ζ). We also have

∂ζΠ l(ξ, ζ) = Π l−1(ξ, ζ) and ∂ξ(Π l(ξ, ζ)g(ξ)) = ((ξ + ζ)l
l !

− Pl(ζ))g(ξ)
for every l ∈ N, and the generating series

∞∑
l=0

Π l(ξ, ζ)t l = −e t
2/2+ζ t ∫ t

0
e ξw−w

2/2dw .

Proof Thedegree in ξ and the value of Π l(−ζ , ζ) are immediate from the definition.
Substituting the definition of Π l(ξ, ζ) inside the generating series produces
∞∑
l=0

l∑
ν=0

(−1)ν t l(l − ν)!(ξ + ζ)l−νQν(ξ) = ∞∑
ν=0

∞∑
μ=0

tμ

μ!
(ξ + ζ)μ(−t)νQν(ξ) = e t(ξ+ζ)Υ(ξ,−t)

(with μ = l − ν ≥ 0), where we have substituted equation (3.7). The value of the series,
which we denote by Φ(ξ, ζ , t), now follows from Theorem 3.4. One checks directly
that this series satisfies the differential equations

∂ζΦ(ξ, ζ , t) = tΦ(ξ, ζ , t) and (∂ξ − ξ)Φ(ξ, ζ , t) = e t
2/2+ζ t∫ t

0
(ξ −w)e ξw−w2/2dw

= e(ξ+ζ)t −Ψ(ζ , t)
(using Theorem 3.4 again), from which the two required equalities follow for every l
after expanding everything in t. This proves the lemma. ∎
Remark 3.10 Write the sum Π l(ξ, ζ) + Q l(ζ) as Π̃ l(ξ + ζ , ζ) for some polyno-
mial Π̃ l . The equality Π l(−ζ , ζ) = −Q l(ζ) from Lemma 3.9 implies that Π̃ l(ω, ζ) ∈
ωQ[ω, ζ].

Using the polynomial Π̃ l from Remark 3.10, we define

E l(ζ) ∶= 1√
2π ∫ ∞

−∞
Π̃ l(ξ + ζ , ζ)

ξ + ζ
g(ξ)dξ ∈ R[ζ].(3.13)

We shall need their following properties.
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Lemma 3.11 We have E0 = E1 = 0, E l(−ζ) = (−1)lE l(ζ), and E l(ζ) ∈ Q[ζ] for the
polynomials from equation (3.13). Moreover, if Hn ∶= ∑n

a=1 1
a denotes the nth harmonic

number, then we have

E l(0) = −Pl(0) l∑
a=1, 2∤a

1
a
= −Pl(0)

2
(2H l − H⌊l/2⌋) for l ∈ N.

Proof Theorem 3.4 and Lemma 3.9 evaluate the generating series
∞∑
l=0

E l(ζ)t l = ∞∑
l=0

∫ ∞
−∞

g(ξ)Π l(ξ, ζ) + Q l(ζ)
ξ + ζ

t ldξ

= ∫ t

0
eζ(t−w)+(t

2−w2)/2 ∫ ∞
−∞

g(ξ) 1 − e(ξ+ζ)w

ξ + ζ
dξdw .

We now claim that for every real ζ , w, and h, we have

1√
2π ∫ ∞

−∞
e(ξ+ζ)w − 1

ξ + ζ
g(ξ + h)dξ = ∫ w

0
e(ζ−h)s+s

2/2ds.(3.14)

To see this, we differentiate the left-hand side with respect to w and apply the usual
trick of completion to the square in order to obtain 1√

2π e(ζ−h)w+w
2/2 times ∫ ∞−∞ g(ξ +

h −w)dξ. As the latter integral equals
√
2π, we deduce that both sides have the same

derivative with respect to w, and since they both vanish for w = 0, they are equal for
every w. Substituting equation (3.14) into our generating series yields

∞∑
l=0

E l(ζ)t l = −eζ t+t
2/2 ∫ t

0
e−ζw−w

2/2 ∫ w

0
eζs+s

2/2dsdw ,

yielding the vanishing of E0 and E1. We apply the operator ζ + t − ∂t to both sides, and
usingTheorem 3.4 again, with equation (3.7), we get

∞∑
l=1

(ζE l(ζ) + E l−1(ζ) − (l + 1)E l+1(ζ))t l = ∫ t

0
eζs+s

2/2ds

= ∫ t

0
Ψ(ζ , s)ds = ∞∑

l=1
Pl−1(ζ)

l
t l .

The resulting recurrence relation establishes the rationality and the parity, and as the
asserted values for the constant terms satisfy the resulting relation for ζ = 0, these
values follow as well. This proves the lemma. ∎

Given l ∈ N, equation (3.12) and the definition of the polynomials Π l in Lemma
3.9 show that Pl (ξ)−(−1)l Pl (ζ)

ξ+ζ and Q l (ξ)−(−1)lΠ l (ξ,ζ)
ξ+ζ are polynomials inQ[ξ, ζ]. We can

then define

Ω l(ζ) ∶= 1√
2π ∫ ∞

−∞
(Pl(ξ) − (−1)lPl(ζ))e(ξ) + (Q l(ξ) − (−1)lΠ l(ξ, ζ))g(ξ)

ξ + ζ
dξ,

(3.15)

and deduce the following properties.
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Lemma 3.12 The generating series of the polynomials from equation (3.15) is
∞∑
l=0

Ω l(ζ)t l = ∫ t

0
e−ζs e

t2/2 − es
2/2

t − s
ds.

Proof By applying Theorem 3.4 and the generating series from Lemma 3.9, we can
write

∞∑
l=0

Ω l(ζ)t l = e−ζ t+t
2/2√

2π ∫ ∞
−∞

e(ζ+ξ)t − 1
ζ + ξ

(e(ξ) + g(ξ)∫ t

0
e−ξw−w

2/2dw)dξ,

where the second term in the parentheses is ∫ t
0 g(ξ +w)dw. We now claim that

1√
2π ∫ ∞

−∞
e(ζ+ξ)t − 1

ζ + ξ
e(ξ)dξ = ∫ t

0
eζs 1 − es

2/2

s
ds.(3.16)

Indeed, as with equation (3.14), both sides vanish for t = 0, and for comparing their
derivatives with respect to t, we employ integration by parts and use equation (3.5)
and the equality ∫ ∞−∞ g(ξ)dξ = √

2π again. Substituting equations (3.14) and (3.16)
transforms our expression for the generating series into

e−ζ t+t
2/2(∫ t

0
eζs 1 − es

2/2

s
ds + ∫ t

0
∫ t

0
e(ζ−w)s+s

2/2dsdw)
= e−ζ t+t

2/2 ∫ t

0
eζs 1 − es

2/2−ts

s
ds,

from which the desired formula follows by taking s ↦ t − s. This proves the
lemma. ∎
Remark 3.13 Expanding all the exponents in the generating series from Lemma 3.12
and integrating yields the series ∑∞m=0∑∞b=1∑2b−1

r=0
t2b+m(−ζ)m

2bb!m!(2b+m−r) , where the internal
sum over r can be written as the difference H2b+m − Hm between two harmonic
numbers.Writing 1

2bb! as P2b(0) as well as P2b−1(0) = 0 using Corollary 3.7, we deduce
that

Ω l(ζ) = (−1)l l∑
ν=1

Pν(0)(H l − H l−ν) ζ l−ν(l − ν)! = (−1)l(l − 1
2 ) ζ l−2

l !
+ O(ζ l−4)

is a rational polynomial of degree l − 2 and parity (−1)l every l ∈ N. We shall later also
need, for k ∈ N, the rational, (−1)k-symmetric, degree k − 2 polynomial

Ω̃k(η) ∶= (−i)kΩk(iη) = (−1)k k∑
ν=1

Heν(0)
ν!

(Hk − Hk−ν) ηk−ν

(k − ν)! .
3.4 Singular Schwartz functions

For every ν ∈ Z and ξ ∈ R, we shall now define

hν(ξ) ∶= Pν(ξ)e(ξ) + Qν(ξ)g(ξ),(3.17)

which has the following property generalizing equation (3.5).
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Proposition 3.14 For any ν ∈ Z, the function hν has parity (−1)ν−1, and we have
d
d ξ hν(ξ) = hν−1(ξ) −√

2π ⋅ Pν(0) ⋅ δ(ξ).
Proof Theparity follows from that of the polynomials Pν andQν fromCorollary 3.2.
The second claim follows from equation (3.5), the equality g′(ξ) = −ξg(ξ), and the
relation from equation (3.6). This proves the proposition. ∎
Remark 3.15 The decay of g and e from equations (3.1) and (3.4) imply that

∣hν(ξ)∣ = oε ,ν(e−(1−ε)ξ2/2) as ∣ξ∣ → ∞ for ν ∈ Z and ε > 0.

Lemma 3.16 For any ν ∈ Z and ξ > 0, we have the equalities νhν(ξ) − ξhν−1(ξ) =
hν−2(ξ) and ξ3 d

d ξ
hν(ξ)
ξν = − hν−2(ξ)

ξν−2 .

Proof The first equality is a direct consequence of Remarks 3.6 and 3.8, and the
second one follows from the first via Proposition 3.14. This proves the lemma. ∎

Since hν are in L1 with exponential decay, their Fourier transforms ĥν should be
bounded and C∞. However, for ν ≥ 0, hν is not C∞, hence not a Schwartz function,
and thus ĥν need not be in L1. The explicit formula is given in the following result.

Proposition 3.17 For every ν ≥ −1 and t ∈ R, we have the equality

ĥν(t) ∶= ∫ ∞
−∞

hν(ξ)e(−ξt)dξ = √
2π( g(2πt)(2πit)ν+1 −

ν∑
r=0

Pr(0)(2πit)ν−r+1 )
= √

2π
∞∑

r=ν+1
Pr(0)(2πit)ν−r+1 .

In particular, ĥν is bounded and C∞.

Proof The case ν = −1 is just the Fourier transform of the Gaussian, combined with
equation (3.8) and Corollary 3.7. Now, applying the Fourier transform to Proposition
3.14 yields the equality 2πit ⋅ ĥν(t) = ĥν−1(t) −√

2π ⋅ Pν(0) for every ν ∈ Z. The gen-
eral formula follows by induction on ν (to both sides), and implies the boundedness
and C∞ properties. This proves the proposition. ∎

For two indices κ and ν in Z, we define the function

φκ,ν(λ, z) ∶= (λ, Z(z))κ(2π)(ν+1)/2 hν(√2π(λ, Z⊥(z))),(3.18)

with λ ∈ VR and z ∈H such that (λ, Z⊥(z)) ≠ 0. For κ < 0, we also impose the condi-
tion (λ, Z(z)) ≠ 0.These functions decay like Schwartz functions by Remark 3.15. But
near points where (λ, Z⊥(z)) or (λ, Z(z)) vanishes, theymay become discontinuous.
They are therefore “singular” Schwartz functions.The reason for introducing themwill
be clear in Proposition 3.18.

The parity from Proposition 3.14 implies that

φκ,ν(−λ, z) = (−1)κ+ν+1φκ,ν(λ, z) for every λ ∈ VR and z ∈H,(3.19)
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and the behavior of Z(z) and Z⊥(z) under the action of SL2(R) implies that the
function φκ,ν(λ, z) from equation (3.18) has the modularity property

φκ,ν(γλ, γz) = j(γ, z)−2κφκ,ν(λ, z) for λ ∈ VR , z ∈H, and γ ∈ SL2(R).(3.20)

Note that for all k ∈ N, the functions from equations (2.19) and (3.18), and the
expansions from equations (2.20) and (2.21), are related by

φ̃k(λ; τ, z) = v−k/2qQ(λ)
τ φk ,−1(√vλ, z) and Θk ,L ,h(τ, z) = v

1−k
2 ∑
m∈Z+Q(h)

∑
λ∈Lm ,h

φk ,−1(√vλ, z)qm
τ ,

(3.21)

since h−1 is just the Gaussian g. Moreover, since Z(z) − yZ⊥(z) = i y√
N
( 1 −2z
0 1 ), we can

write

φκ,ν(λ, z) = yκ(ξ + iη)κ(2π)(κ+ν+1)/2 hν(ξ) with ξ = √2π(λ, Z⊥(z)) and η = √ 2π
N (λ, ( 1 −2z

0 1 )),
(3.22)

and prove the following result.

Proposition 3.18 Take κ and ν in Z as well as an element 0 ≠ λ ∈ VR. Then we have

−Lzφκ,ν(λ, z) = φκ+1,ν−1(λ, z)
at every point z ∈H such that (λ, Z⊥(z)) ≠ 0, where if κ < 0, then we assume that z
must also satisfy (λ, Z(z)) ≠ 0.

Proof Write φκ,ν(λ, z) as in equation (3.22), and then simple calculations give that
Lz y = y2, Lz ξ = −y(ξ + iη), and Lzη = 0 in these parameters. Combining this with
Proposition 3.14 produces the desired result. This proves the proposition. ∎

Note that the assumption (λ, Z(z)) ≠ 0 is always satisfied when Q(λ) ≥ 0 (and
λ ≠ 0), and if Q(λ) < 0, then it holds for every z ∈H except a single point, in which
Z⊥(z) is a scalar multiple of λ.

3.5 Fourier transforms

We shall also need the Fourier expansion of the following generalization of the
functions hν . Take κ ∈ Z, and then for ξ ∈ R and η ∈ R, we define

eκ(ξ; η) ∶= (ξ + iη)κ−1h0(ξ) = (ξ + iη)κ−1e(ξ) and
gκ(ξ; η) ∶= (ξ + iη)κ−1h−1(ξ) = (ξ + iη)κ−1g(ξ).(3.23)

For any l ∈ N, we use equation (3.12) and the polynomials from Lemma 3.9 and define

gκ, l(ξ; η) ∶= Pl(iη)eκ(ξ; η) +Π l(ξ, iη)gκ(ξ; η) = l∑
ν=0

(−1)ν(l − ν)!(ξ + iη)κ+l−ν−1hν(ξ).
(3.24)
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By applying equation (3.5) and the derivative formula from that lemma (or Proposition
3.14 with equation (3.12)), we get

∂ξgκ+1, l(ξ; η) = κgκ, l(ξ; η) + gκ+l+1(ξ; η)
l !

−√
2π(iη)κPl(iη)δ(ξ).(3.25)

We assume that η ≠ 0 in case κ ≤ 0, and then the expression from equations (3.23) and
(3.24) are L1 as functions of ξ. Let thus êκ, ĝκ, and ĝκ, l denote the Fourier transform
of eκ , gκ, and gκ, l in ξ, respectively. The results for η < 0 can be obtained from those
with η > 0 because we have

gκ, l(ξ;−η) = (−1)κ+lgκ, l(−ξ; η) and hence ĝκ, l(t;−η) = (−1)κ+l ĝκ, l(−t; η).
For analyzing the behavior of ĝκ, l(t; η), we shall need additional special functions.

For every ν ∈ Z, j ∈ N, t ∈ R, and η > 0, we define

Iν , j(η, t) ∶=∫ ∞
−t

(w + t) j
j!

e−ηw(e−w2/2 − ν∑
μ=0

Heμ(0)
μ!

wμ) dw
wν+1 , Iν(η) ∶= Iν ,0(η, 0).

(3.26)

For ν ≤ −1, this is defined for all η ∈ R. It is easy to check that
∂ηIν , j(η, t) = Iν−1, j(η, t) + Heν(0)

ν! j! ∫ ∞
−t

(w + t) je−ηwdw = Heν(0)
ν!η j+1 eηt − Iν−1, j(η, t)

(3.27)

for all ν and j (note the difference in the summation over μ in Iν , j and in Iν−1, j) and thus
in particular I′ν(η) = Heν(0)

ν!η − Iν−1(η), while equation (3.1) and simple differentiation
give

I−1(η) = −eη
2/2e(η) and ∂t Iν , j(η, t) = ⎧⎪⎪⎨⎪⎪⎩

Iν , j−1(η, t), if j ≥ 1,
eηtg(t), if j = 0 and ν = −1.

(3.28)

Using the functions from equation (3.26), we can now evaluate the Fourier transforms
êκ and ĝκ of the functions from equation (3.23) as follows.

Lemma 3.19 For κ ≥ 1, we have the equalities

êκ(t; η) = √
2π

κ−1∑
μ=0

(κ − 1
μ

)(iη)κ−1−μ(−2πi)μ ⋅ ( d
dt

)μ(g(2πt) − 1
2πit

) and

ĝκ(t; η) = √
2π(−i)κ−1 Heκ−1(2πt − η)g(2πt).

On the other hand, when κ ≤ 0 and η > 0, we get

êκ(t; η) = √2π ⋅ iκe−2πηt I0,−κ(η, 2πt) and ĝκ(t; η) = √2π ⋅ iκ−1e−2πηt I−1,−κ(η, 2πt).
Proof The results for κ ≥ 1 follow from applying the differential operator(iη − ∂ t

2πi )κ−1 to the cases ν = 0 or ν = −1 of Proposition 3.17, respectively, combined
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with equation (3.11) for the latter. For the case κ ≤ 0, we recall that

∫ ∞
−∞

(ξ + iη)κ−1e(−ξt)dξ = ⎧⎪⎪⎨⎪⎪⎩
2π ⋅ iκ−1 (2πt)∣κ∣e−2πηt∣κ∣! , if t > 0,
0, if t < 0,

and we can express the Fourier transform of the product as the convolution of the
Fourier transforms. This proves the lemma. ∎
Remark 3.20 Consider the function ξ ↦ (ξ + iη)κ−1hν(ξ), generalizing equation
(3.23) to any ν. Its Fourier transform can be evaluated via the proof of Lemma 3.19,
using the full Proposition 3.17 and Corollary 3.7. When κ ≤ 0, this gives just√
2πiκ+ν Iν ,κ(η, t). For κ = 0 and t = 0, this reduces to the equality ∫ ∞−∞ hν(ξ)

ξ+iη dξ =√
2πiν Iν(η).
We can now deduce the following useful property.

Lemma 3.21 For every ν ∈ Z and η > 0, we have the equality η3 d
dη

Iν(η)
ην = Iν−2(η)

ην−2 .

Proof Using equation (3.27), Remark 3.20, and the first equality in Lemma 3.16,
we get

η1+ν d
dη

Iν(η)
ην = Heν(0)

ν!
− (ηIν−1(η) + νIν(η))

= Heν(0)
ν!

− (−i)ν√
2π ∫ ∞

−∞
νhν(ξ) + iηhν−1(ξ)

ξ + iη
dξ

= Heν(0)
ν!

− (−i)ν√
2π ∫ ∞

−∞
(hν−2(ξ)

ξ + iη
+ hν−1(ξ))dξ.

The first integral produces the desired result Iν−2(η) by Remark 3.20 again, and inte-
grating Proposition 3.14 evaluates, via Remark 3.15, the second one as −(−1)νPν(0).
As this cancels with the first term by Corollary 3.7, this proves the lemma. ∎

One can also show, using the polynomials from equation (3.30), that

Iν = P̃ν I0 − Q̃ν I−1 + Ω̂ν , with a polynomial Ω̂ν of degree ∣ν∣ − 2 and parity (−1)ν .(3.29)

We can also evaluate the Fourier transform of gκ, l at t = 0.

Proposition 3.22 Given any κ ∈ Z, l ∈ N, and η > 0, we have

ĝκ, l(0; η) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−√2πiκ+l

κ⋅l ! (Heκ+l(η) − ηκHel(η)), if κ ≠ 0 and κ + l ≥ 0,√
2π ⋅ (−i)l(I l(η) − Ω̃ l(η)), if κ = 0,

where Iν , j and Ω̃k are defined in equation (3.26) and Remark 3.13, respectively.

Proof When κ ≠ 0 and η > 0, we can integrate equation (3.25) (using the fact that
Remark 3.15 extends to the functions gκ, l ) to obtain
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ĝκ, l(0; η) = ∫ ∞
−∞

gκ, l(ξ; η)dξ = 1
κ
∫ ∞
−∞

(− gκ+l+1(ξ; η)
l !

+√
2π(iη)κPl(iη)δ(ξ))dξ

= 1
κ
( − ĝκ+l+1(0; η)

l !
+√

2πPl(iη)(iη)κ),
which gives the desired value by Lemma 3.19 and Corollary 3.7.

When κ = 0, we evaluate directly, where the formula from Remark 3.20 gives

ĝ0, l(0; η) = √2π(−i)l I l(η) − (−1)l ∫ ∞

−∞

h l(ξ) − (−1)l(Pl(iη)e(ξ) +Π l(ξ, iη)g(ξ))
ξ + iη

dξ.

As equation (3.17) transforms the latter integral into (−1)l√2πΩ l(iη) via equation
(3.15), we get the desired value by Remark 3.13. This proves the proposition. ∎

3.6 Asymptotic estimates

For determining the asymptotic behavior of the functions Iν , j and the Fourier trans-
forms ĝκ, l , we shall also need the following special functions. Like the definition of
Ω̃k in Remark 3.13, the polynomials Pν and Qν for ν ∈ Z given in equation (3.6) and
Remark 3.8 have the modifications

P̃ν(η) ∶= iνPν(iη) and Q̃ν(η) ∶= iν−1Qν(iη),(3.30)

of the same parities as Pν and Qν . Using these, we define the functions

J−1(η) ∶= g(iη) = eη
2/2 , J0(η) ∶= −∫ η

0
er

2/2dr = 1√
2π ∫ ∞

0

e−ηs − eηs

s
g(s)ds,

and Jν(η) ∶= P̃ν(η)J0(η) − Q̃ν(η)J−1(η) for ν ∈ Z

(3.31)

(the two expressions for J0(η) are the same because they vanish at η = 0 and have the
same derivative, and since P̃0 = Q̃−1 = 1 and P̃−1 = Q̃0 = 0, the two definitions for ν = 0
and for ν = −1 coincide). Since the polynomials from equation (3.30) satisfy identities
analogous to those from equation (3.6) and Remark 3.6, the latter of which yields the
equality ηJν(η) + ηJν−1(η) = −Jν−2(η) for every η and ν, evaluating the derivatives of
J0 and J−1 implies, for all ν ∈ Z, the relations

J′ν = −Jν−1 , Jν(−η) = (−1)ν−1 Jν(η), and η3 d
dη

Jν(η)
ην = Jν−2(η)

ην−2 .(3.32)

The following estimates will be helpful when we evaluate sums of Fourier trans-
forms later.

Lemma 3.23 For any ε > 0 and fixed η ∈ R, we have the asymptotic growth

I−1,0(η, t) = ⎧⎪⎪⎨⎪⎪⎩
√
2πJ−1(η) + oη ,ε(e−(1−ε)t2/2), t →∞,

oη ,ε(e−(1−ε)t2/2), t → −∞,

with J−1(η) from equation (3.31). More generally, given j ∈ N, we have

I−1, j(η, t) = Pj(t − η)I−1,0(η, t) + o j,η ,ε(e−(1−ε)t2/2) as t → ±∞.
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Moreover, given η > 0 and such ε, and with J0 from equation (3.31), we get

j!
t j

I0, j(η, t) = −(−1) j j!Γ(− j,−ηt) + ⎧⎪⎪⎨⎪⎪⎩
√
2πJ0(η) + O j,η( 1

t ), t →∞,
o j,η ,ε(e−(1−ε)t2/2), t → −∞.

Proof Using equation (3.4) and the value
√
2π of ∫ ∞−∞ g(ξ)dξ, the first equation

follows from

I−1,0(η, t) = ∫ ∞

−t
e−ηw−w

2/2dw = eη
2/2 ∫ ∞

η−t
g(s)ds = ⎧⎪⎪⎨⎪⎪⎩

eη
2/2(√2π − e(t − η)), t > η,−eη2/2e(η − t), t < η,

and Remark 3.15. Next, using the definition in equation (3.26) and simple algebra, we
get, for every η ∈ R and j ∈ N, the equality
δ j,0eηt−t

2/2 = −∫ ∞

−t

d
dw
( (w+t) jj! e−ηw−w

2/2)dw = ( j + 1)I−1, j+1 − (t − η)I−1, j − (1 − δ j,0)I−1, j−1 .
Since the left-hand side times any polynomial is oε(e−(1−ε)t2/2) as t → ±∞, a simple
induction on j combines with Remark 3.6 to prove the second relation.

Now, suppose t ≠ 0 and η > 0. For j = 0, we evaluate

I0,0(η, t) = ∫ ∞

−t
e−ηw g(w) − 1

w
dw = ∫ ∣t∣

−t
e−ηw g(w)

w
dw + ∫ ∞

∣t∣
e−ηw g(w)

w
dw − Γ(0,−ηt).

As t → −∞, the first term above vanishes and the second term is oη ,ε(e−(1−ε)t2/2) for
any fixed η ∈ R. As t →∞, the second term behaves the same, whereas using equation
(3.31), we see that the first term contributes

∫ t

−t
e−ηw g(w)

w
dw = ∫ ∞

0

e−ηw−eηw

w
g(w)dw − ∫ ∞

t

e−ηw − eηw

w
g(w)dw

= √
2πJ0(η) + oη ,ε(e−(1−ε)t2/2).

This proves the third equality for j = 0. When j ≥ 1, we can write j!
t j I0, j(η, t) as

1
t j ∫

∞

−t

(w + t) j − t j

w
e−ηw−w

2/2dw − eηt

t j ∫
∞

0

s j − t j

s − t
e−ηsds + ∫ ∞

−t
e−ηw g(w) − 1

w
dw .

After expanding (w + t) j binomially, the first term is seen to be o j,η ,ε(e−(1−ε)t2/2)
as t → −∞ and O j,η( 1

t ) as t →∞. Expanding s j−s j
s−t and applying equation (3.2), the

second term becomes −(−1) j j!Γ(− j,−ηt) + Γ(0,−ηt), and the third term is just the
expression for j = 0. Putting everything together proves the last desired equality. This
proves the lemma. ∎

In fact, the first term in the last equation in the proof of Lemma 3.23 can easily be
evaluated explicitly up to o j,η ,ε(e−(1−ε)t2/2) alsowhen t →∞, but the estimateO j,η( 1

t )
will be sufficient for our purposes.
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Remark 3.24 The generating series ∑∞j=0 I−1, j(0, 0)X j of the constants{I−1, j(0, 0)}∞j=0 is
∫ ∞

0
ewX−w2/2dw = eX

2/2 ∫ ∞

0
e−(w−X)

2/2dw = eX
2/2(∫ ∞

0
e−w

2/2dw + ∫ X

0
e−w

2/2dw)
(by symmetry), which equals Υ(0, X) +√

π/2Ψ(0, X) by Theorem 3.4. It therefore
follows from equations (3.7) and (3.17) and the parity from Proposition 3.14 that

I−1, j(0, 0) = Q j(0) +√
π/2Pj(0) = lim

ξ→0−
h j(ξ) = (−1) j−1 lim

ξ→0+
h j(ξ) for j ∈ N.

We can now state the asymptotic expansion of ĝκ, l(t; η).
Proposition 3.25 Take κ ∈ Z, l ∈ N, and η ∈ R, with η > 0 in case κ ≤ 0. We then have

ĝκ, l(t; η) = −√2π iκ+l Hel(η)
l !(−2πt)κ e−2πηtΓ(κ,−2πηt) + oκ, l ,η ,ε(e−2π2(1−ε)t2),

an expression holding as t → −∞ as well as in the limit t →∞ when κ ≥ 1. On the other
hand, if κ ≤ 0 and η > 0, then the limit as t →∞ is given by the same formula plus the
term

2π(−i)κ+l∣κ∣!(−2πt)κ e−2πηt[J l(η) + Oκ, l ,η( 1
t )],

where J l(η) is the function defined in equation (3.31).

Proof Taking the Fourier transform of equation (3.24) allows us to write

ĝκ, l(t; η) = Pl(iη)êκ(t; η) +Π l( ∂ t
−2πi , iη)ĝκ(t; η).

When κ ≥ 1, we apply Lemma 3.19 and equation (3.2) to obtain that

êκ(t; η) = −√2π e−2πηtΓ(κ,−2πηt)(2πit)κ + oκ, l ,ε(ηκ−1e−(1−ε)t
2/2) as t → ±∞

and that Π l( ∂ t
−2πi , iη)ĝκ(t; η) is bounded by the same error term.This establishes, via

Corollary 3.7, the desired formula in this case. On the other hand, for κ ≤ 0 and η > 0,
we deduce from Lemma 3.19 that

ĝκ, l(t; η) = √
2π ⋅ iκe−2πηtPl(iη)I0,−κ(η, 2πt)

+√
2π ⋅ iκ−1Π l( ∂ t

−2πi , iη)e−2πηt I−1,−κ(η, 2πt).
Lemma 3.23 now shows that, in the limit t → −∞, the first summand is

−√2π ⋅ iκPl(iη) e−2πηtΓ(κ,−2πηt)(−2πt)κ + oκ, l ,ε(e−2π2(1−ε)t2)
and the second one goes into the error term, which yields the required formula also
here by another application of Corollary 3.7. In the limit t →∞, we get the same
contribution, but we need to consider the additional terms from Lemma 3.23 in that
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limit. The term arising from the first summand is

2π ⋅ iκe−2πηt∣κ∣!(2πt)κ [Pl(iη)J0(η) + Oκ, l ,η( 1
t )].(3.33)

For the one from the second summand, Remark 3.10 allows us to write

Π l( ∂ t
−2πi , iη)e−2πηt I−1,−κ(η, 2πt)
= [ − Q l(iη) + Π̃ l( ∂ t

−2πi + iη, iη)]e−2πηt I−1,−κ(η, 2πt)
= e−2πηt[ − Q l(iη)I−1,−κ(η, 2πt) + Π̃ l( ∂ t

−2πi , iη)I−1,−κ(η, 2πt)]
(by the action on that exponent). Lemma 3.23 and the fact that Corollary 3.2 gives
the estimate P∣κ∣(2πt − η) = (2πt)∣κ∣∣κ∣! [1 + Oκ,η( 1

t )] show that
√
2π ⋅ iκ−1 times the first

summand here is

−2π ⋅ iκ−1e−2πηt∣κ∣!(2πt)κ [Q l(iη)J−1(η) + Oκ, l ,η( 1
t )].

Equations (3.30) and (3.31) now show that this expression combines with the one
from equation (3.33) to the asserted extra term, up to the required error term. Finally,
equation (3.28) and the property of Π̃ l fromRemark 3.10 imply, via Lemma 3.23 again,
that the expression involving that polynomial also goes into the error term.This proves
the proposition. ∎

3.7 Lattice sums

To evaluate the constant term of the Shintani lift, we need to calculate certain lattice
sums involving the function gκ, l defined in equation (3.24). For κ ∈ Z, l ∈ N, η ∈ R, a
real number υ > 0, and an element ω ∈ R/Z, we consider the sum

Gκ, l(ω; υ, η) ∶= ∑
0≠ξ∈Z+ω

gκ, l(υξ; η),(3.34)

which converges absolutely by Remark 3.15 and defines a continuous function in η.
We will be interested in its value at η = 0, denoted by

Gκ, l(ω; υ) ∶= Gκ, l(ω; υ, 0) = lim
η→0+

Gκ, l(ω; υ, η),(3.35)

and its asymptotic expansion as υ → 0+.

Remark 3.26 The function Gκ, l from equation (3.34), or its variant from equation
(3.35), is defined as a lattice sum, andwould naturally be expressible also via its Fourier
series, which amounts to the Poisson Summation Formula. Indeed, the summed
function gκ, l is differentiable away from 0with a strongly decaying derivative, making
Gκ, l differentiable with respect to ω when ω ≠ 0. Therefore, the Fourier expansion of
the lattice sum Gκ, l converges pointwise to it for every ω ≠ 0. Since the mth Fourier
coefficient of Gκ, l (for η ≠ 0) is, by simple integration, 1

υ ĝκ, l(m
υ ; η), we obtain that

the Poisson Summation Formula for Gκ, l is valid for ω ≠ 0. In fact, since the one-
sided derivatives of gκ, l also exist (provided that gκ, l(0) is modified to have the limit
value from the appropriate side), the Fourier series converges also at ω = 0 to a value
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that can be described (both Fourier series convergence statements follow, for example,
from the Dirichlet–Dini Criterion). However, it is easier to consider the value at ω = 0
in terms of equation (3.44).

For analyzing it, we first need to recall a few familiar functions. Let {Bμ(ω)}∞μ=0
(for ω ∈ R) be the Bernoulli polynomials defined as

teωt

e t − 1
= ∞∑

μ=0
Bμ(ω) tμ

μ!
, so that in particular B1(ω) = ω − 1

2 ,

and then Bμ ∶= Bμ(0) are the Bernoulli numbers. Moreover, one defines Bμ to be the
1-periodic function that coincides with Bμ on the interval (0, 1), and whose value on
the integers is 0 in case μ = 1 and Bμ otherwise. Then Bμ with μ ≥ 2 is continuous on
R (and B0 is the constant function 1), and we have

B1(0) = 0 = lim
ω→0+

B1(ω) + 1
2 = lim

ω→0−B1(ω) − 1
2 and Bμ(ω) = − ∑

0≠m∈Z
μ!e(mω)(2πim)μ ,

(3.36)

the latter Fourier expansion being valid for every ω ∈ R/Z and 0 < μ ∈ N (this is
essentially equations (13)–(15) in Section 1.13 of [EMOT]).

We also recall from Section 1.11 of [EMOT] the function

F(q, s) = ∞∑
m=1

qm

ms for s ∈ C and q ∈ C with ∣q∣ < 1.(3.37)

Since we shall use this function only when s = − j for j ∈ N, where F(q,− j) is a
polynomial in q divided by (1 − q) j+1, the analytic continuation to any q ∈ C/[1,∞),
and even to any 1 ≠ q ∈ C, is immediate. Writing q = e(ω) for ω ∈ R, the fact that
F(q, 0) = q

1−q combines with equation (15) of Section 1.11 of [EMOT] (for j ≥ 1) to
give, for all j ∈ N, the expansion

F(e(ω),− j) = j!(−2πi ⋅ ω) j+1 − B j+1 + δ j,0

j + 1
+ O(ω).(3.38)

Another function to recall is the polygamma function, defined for m ∈ N and
z ∈ C as

ψ(m)(z) ∶= dm+1

dzm+1
log Γ(z) = −γδm ,0 + (−1)mm!

∞∑
a=0

( δm ,0(a + 1)m+1 − 1(a + z)m+1 ),
(3.39)

where δm ,0 is the Kronecker δ-symbol again.
Let ψ̃(m) be the 1-periodic function that coincides with ψ(m) from equation (3.39)

on (0, 1]. Then, for κ ∈ Z and ω ∈ R/Z, we define
Φκ(ω) ∶= ⎧⎪⎪⎨⎪⎪⎩

−Bκ(ω)/κ, κ ≥ 1,−[ψ̃(∣κ∣)(−ω) + (−1)κψ̃(∣κ∣)(ω)]/2∣κ∣!, κ ≤ 0,
(3.40)
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as well as

Ξκ(ω) ∶= (−2πi)1−κ√
2π

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F(e(ω),κ)/∣κ∣! + δκ,0/2, κ ≤ 0 and ω /∈ Z,−B1−κ(0)/(1 − κ)!, κ ≤ 1 and ω ∈ Z,
0, otherwise.

(3.41)

Note that, for all κ ∈ 2Z, we have the equality
Φκ(1) = CTs=1−κ ζ(s).(3.42)

Recalling the notation Hn for the nth harmonic number, we shall also need the
constant

C l ∶= γ + log 2 − 2H l + H⌊l/2⌋
2

= γ + log 2
2

− l∑
a=1, 2∤a

1
a
.(3.43)

We remark that it is easy to see, via the asymptotic Hn = log n + γ + o(1) as n →∞,
that C l from equation (3.43) grows as − log l

2 + o(1) as l →∞.
The evaluation of the expression that we need is now carried out as follows.

Proposition 3.27 Take κ ∈ Z, l ∈ N, η ∈ R, υ > 0, and ω ∈ R/Z. Then the value of the
expression Gκ, l(ω; υ) from equation (3.35) is

−√
2πυκ−1[Pl(0)Φκ(ω) + Q l(0)Ξκ(ω)]

+ ⎧⎪⎪⎨⎪⎪⎩
−√2π⋅iκ+l Heκ+l (0)

υκ⋅l ! + oκ, l ,ε(e−2π2(1−ε)/υ2), κ ≥ 1,√
2π
υ δκ,0Pl(0)(log υ + C l) + Oκ, l ,ω(υκ), κ ≤ 0,

with the O-notation concerning the behavior as υ → 0+.

Proof Consider first the case where κ ≥ 1. For ω ≠ 0, we use the Poisson Summation
Formula (justified by Remark 3.26), and applying Propositions 3.22 and 3.25 gives us

Gκ, l(ω; υ)
= 1

υ
(ĝκ, l(0; 0) + lim

η→0
∑

0≠m∈Z
e(mω)ĝκ, l(m

υ ; η))
= −√2πiκ+l

υκ
(Heκ+l(0)

l !
+ κHel(0)

l !
lim
η→0

∑
0≠m∈Z

e(mω)υκ(−2πm)κ e−2πηm/υΓ(κ,− 2πηm
υ ))

= √
2π

υκ
(−iκ+l Heκ+l(0)

l !
− κ!Pl(0) ∑

0≠m∈Z
e(mω)υκ(2πim)κ )

= √
2π

υκ
(−iκ+l Heκ+l(0)

l !
+ Pl(0)υκBκ(ω)),

via Corollary 3.7 and equation (3.36), up to an error termof oκ, l ,ε(e−2π2(1−ε)/υ2). From
the definition, it is also clear that

Gκ, l(0; υ) = lim
ω→0+

(Gκ, l(ω +Z; υ) − gκ, l(υω; 0)).(3.44)
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Equation (3.24) implies that − limξ→0 gκ, l(ξ; 0) vanishes for κ > 1, and we have

− lim
ξ→0+

g1, l(ξ; 0) = lim
ξ→0+

(−1)l+1h l(ξ) = I−1, l(0, 0) = Pl(0)√π/2 + Q l(0)
by Remark 3.24. Substituting these into equation (3.44), and applying equation (3.36)
for κ = 1, completes the proof for κ ≥ 1.

For κ ≤ 0, we will first consider the case where l = 1, in which

gκ,1(ξ; 0) = ξκh0(ξ) − ξκ−1h1(ξ) = −ξκ−1g(ξ); hence Gκ,1(ω; υ) = − lim
η→0+

∑
0≠ξ∈Z+ω

gκ(υξ; η).
Assuming that ω ≠ 0, we apply equation (3.35), the Poisson summation formula again,
Lemmas 3.19 and 3.23, and equations (3.11) and equation (3.37) (with its analytic
continuation), which compares Gκ,1(ω; υ) with
− √2πiκ−1

υ
( lim

η→0+
I−1,−κ(η, 0) + lim

η→0+
∑

0≠m∈Z
e−2πηm/υ I−1,−κ(η, 2πmυ )e(mω))

= −√2πiκ−1

υ
(I−1,−κ(0, 0) + ∞∑

m=1
(P∣κ∣( 2πmυ ) + oκ,ε(e−2π2(1−ε)m2/υ2))√2πe(mω))

= −√2πiκ−1

υ
(I−1,−κ(0, 0) +√2π

∣κ∣∑
j=0
( 2πυ ) j P∣κ∣− j(0)j!

F(e(ω),− j)) + oκ,ε(e−2π2(1−ε)/υ2).
(3.45)

Now, the summands with j < ∣κ∣ give Oκ,ω(υκ), and the same applies to the first term
when κ ≤ −1. Since I−1,0(0, 0) = √ π

2 by Remark 3.24, this is indeed the desired value,
since P1(0) = 0. For ω = 0, we apply equation (3.44), where we have seen that the
second term there is now + g(υω)

(υω)∣κ∣+1 . We expand the term F(e(ω),κ) from equation
(3.45) as in equation (3.38), and observe that the singularities in ω cancel with those of
the Laurent expansion of g(υω)

(υω)∣κ∣+1 , which is∑∞ν=0 iνPν(0)(υω)ν+κ−1 by equation (3.8)
and Corollary 3.7. Substituting into the limit from equation (3.44) yields

−√2πiκ−1

υ
(I−1,−κ(0, 0) −√2π

∣κ∣∑
j=0
( 2πυ ) j P∣κ∣− j(0)( j + 1)! (B j+1 + δ j,0)) + 1 + oκ,ε(e−2π2(1−ε)/υ2),

where again the same terms (and the 1) go into the error term. Since for κ = 0 the two
terms cancel, the result follows also in this case.

We now consider the case l = 0, where equations (3.24), (3.34), and (3.35) and the
trick from the proof of Lemma 8.5 of [BFI] evaluate Gκ,0(ω; υ) as

∑
0≠ξ∈Z+ω

e(υξ)(υξ)∣κ∣+1 = − ∑0≠ξ∈Z+ω

sgn(ξ)(υξ)∣κ∣+1 CTs=0(υ∣ξ∣)−s(∫ ∞

0
e−w

2/2wsdw − ∫ υ∣ξ∣

0
e−w

2/2wsdw).
(3.46)

Recalling the Hurwitz zeta function ζ(s, z) ∶= ∑∞n=1 1
(n+z)s , the first term in equation

(3.46) is the constant term at s = 0 of − 2(s−1)/2
υ∣κ∣+1+s Γ( s+1

2 ) times
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∑
0<ξ∈Z+ω

1
ξ∣κ∣+1+s

+ ∑
0<ξ∈Z−ω

(−1)κ
ξ∣κ∣+1+s

= ζ(∣κ∣ + 1 + s,ω) + (−1)κζ(∣κ∣ + 1 + s,−ω),
where±ω heremeans the corresponding representatives in (0, 1]. Since ζ(m + 1 + s, z)
with m ∈ N expands as δm ,0

s − (−1)mψ(m)(z)m! + O(s) (see equation (9) on Section 1.10 of
[EMOT] for m = 0 and just equation (3.39) for m > 0), the Taylor expansion of the
remaining functions and the value −γ − 2 log 2 of ψ( 1

2) produce the constant term
−√2πυκ−1( − ψ̃(∣κ∣)(−ω) + (−1)κψ̃(∣κ∣)(ω)

2∣κ∣! − δκ,0
γ + log 2 + 2 log υ

2
),

which is the desired expression since C0 = γ+log 2
2 by equation (3.43).The second term

in equation (3.46) becomes, after a simple substitution,

CTs=0 ∑
0≠ξ∈Z+ω

∫ 1

0

g(υρξ)(υξ)∣κ∣ ρsdρ = −CTs=0 ∫ 1

0
Gκ+1,1(ω; υρ)ρs−κdρ.

For κ ≤ −1, our expression for Gκ+1,1(ω; υρ) is Oκ((υρ)κ); hence the integral con-
verges at s = 0 and is Oκ(υκ). When κ = 0, we haveG1,1(ω; υρ) = −√2π

υρ −√
2πΞ1(ω)

up to rapidly decreasing functions, so that the integral is −√2π
υs (with no constant

term), again plus O(1) = Oκ(υκ). This proves the result for l = 0 as well.
For general l ∈ N, equation (3.24) and Remark 3.10 allow us to write

Gκ, l(ω; υ) = ∑
0≠ξ∈Z+ω

gκ, l(υξ; 0) = Pl(0) ∑
0≠ξ∈Z+ω

e(υξ)(υξ)∣κ∣+1 + ∑
0≠ξ∈Z+ω

Π l(υξ, 0) g(υξ)(υξ)∣κ∣+1
= Pl(0)Gκ,0(ω; υ) + Q l(0)Gκ,1(ω; υ) + ∑

0≠ξ∈Z+ω

Π̃ l(υξ, 0)
υξ

g(υξ)(υξ)∣κ∣ ,
where Π̃ l (υξ)

υξ is a polynomial in υξ. The first two terms now give the desired formula,
up to

√
2π
υ Pl(0)(C l − C0) in case κ = 0. When κ ≤ −1, it suffices to view the third

term as a linear combination of G j,1(ω; υ) with j ≥ κ + 1, all of which are O(υ j−1)
when j ≤ 0 and O( 1

υ ) in case j > 0, since these are all O(υκ). For κ = 0, we evaluate
∑ξ∈Z+ω

Π̃ l (υξ,0)
υξ g(υξ) using the Poisson Summation Formula, where all the Fourier

terms with m ≠ 0 give o l ,ε(e−2π2(1−ε)/υ2) once again. Finally, 1
υ times the zeroth

Fourier term is
√
2π
υ E l(0)by equation (3.13), which is precisely the required expression

by Lemma 3.11 and equation (3.43). This completes the proof of the proposition. ∎
4 Nearly holomorphic modular forms

In this section, we shall prove our result in the most general case, evaluating the
Shintani lift Ik ,L(τ, f ) from equation (2.24) for a nearly holomorphic modular form
f ∈ M̃ !

2k(Γ). Each of the Fourier coefficients of the lift is evaluated separately, with the
partition into types as is already seen in [ANS, BFI, DIT] and others, into negative
indices, non-square positive indices, square positive indices, and vanishing indices.
This requires the definition of several types of traces that show up in the calculations.
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The reader who wishes to compare our formulae with those from [ANS] should
consult Remark 2.8, due to the difference in conventions that is explained there.

4.1 Traces and regularizations

Recall that if λ ∈ L∗ satisfies Q(λ) < 0, then the stabilizer Γλ of λ in Γ is finite, and
λ is a multiple of Z⊥(zλ) for a unique zλ ∈H. We then define, for every k ∈ Z and
f ∈ A!

0(Γ), the trace

Tr(k)λ ( f ) ∶= [ − sgn (λ, Z⊥(zλ))]k∣Γλ ∣ f (zλ).(4.1)

If Q(λ) > 0, then we recall the geodesic cλ ⊆H and its image c(λ) ⊆ Y from equation
(2.15), and that when λ is not split-hyperbolic, i.e., when ι(λ) = 0 in the notation of
equation (2.16), the latter is a closed geodesic inside the open modular curve Y. We
can then define, for every g ∈ A!

2k(Γ), the trace

Trλ(g) ∶= ∮
c(λ)

g(z)(λ, Z(z))k−1dz.(4.2)

On the other hand, when λ is split-hyperbolic, i.e., when ι(λ) = 1, the image
c(λ) of cλ in Y is not compact, and if g grows toward the cusps, then the integral
corresponding to that from equation (4.2) does not converge. We shall regularize it
only for nearly holomorphic modular forms, i.e., for g ∈ M̃ !

2k(Γ). Then its Fourier
expansion near the cusp associated with some � ∈ Iso(V) is given, in the coordinates
from equation (2.12), by

g�(z�) ∶= (g ∣2k σ�)(z�) = p∑
l=0

g�, l(z�)
y l
�

= p∑
l=0
∑
n∈Z

c�(n, l)qn
�

y l
�

= p∑
l=0
∑
n≤0

c�(n, l)qn
�

y l
�

+ g0�(z�),
(4.3)

where p is the depth of g, c�(n, l) = 0 for all 0 ≤ l ≤ p when n ≪ 0, and the latter
decomposition is into the (finite) principal part and the cuspidal part g0� . Recall our
extension of the incomplete Gamma function in (3.2), and the truncated modular
curve YT from equation (2.13) for any T > 1. We also set for n and κ in Z, positive
reals c and T, split-hyperbolic λ ∈ V , and g ∈ M̃ !

2k(Γ) with expansion as in equation
(4.3) for � = �λ , the quantities

ϕn(κ, T ; r) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Γ(κ, rnT)/(rn)κ , n ≠ 0,−Tκ/κ, n = 0 and κ ≠ 0,− logT , n = 0 and κ = 0

and

Singλ(g , T) ∶= ik(2√Q(λ))k−1 p∑
l=0

∑
n∈Z

c�λ(n, l)e(nrλ
α�λ

)ϕn(k − l , T ; 2π
α�λ

).
(4.4)

Note that when n = 0, ϕ0 is independent of r, and we can then omit it from the
notation. In addition, assuming that f ∈ M̃ !

2k(Γ) expands as in equation (4.3), the
weight lowering property of the operator Lz implies that for every ν ∈ N we can write(Lν

z f )�(z�) as
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(Lν
z f ∣2k−2ν σ�)(z�) = Lν

z� f�(z�) = (−1)ν p∑
l=ν

l ! f�, l(z�)(l − ν)!y l� = (−1)ν ∑
n∈Z

p∑
l=ν

l !c�(n, l)qn
�(l − ν)!y l−ν�

.

(4.5)

We can now define the trace to be

Trλ(g) ∶= lim
T→∞

⎛⎝∫c(λ)∩YT

g(z)(λ, Z(z))k−1dz + Singλ(g , T) + (−1)k Sing−λ(g , T)⎞⎠.
(4.6)

We now prove that this is a regularization of the required trace.

Proposition 4.1 The quantity in the limit defining Trλ(g) in equation (4.6) exists and
is independent of the choice of T when it is sufficiently large.

Proof Since cλ only intersects the cusps �±λ , there exists some R > 1 such that for all
T > R, we find that c(λ) ∩ YT ≅ cλ ∩HT is contained in HR ∪ σ�λF

α�λ
T ∪ σ�−λF

α�−λ
T .

We thus obtain

∫
c(λ)∩YT

g(z)(λ, Z(z))k−1dz = ∫
cλ∩HR

g̃(z)dz + ∫
cλ∩σ�λF

α�λ
T /HR

g̃(z)dz

+ ∫
cλ∩σ�−λF

α�−λ
T /HR

g̃(z)dz

for every T > R, where we wrote g̃(z) for g(z)(λ, Z(z))k−1.The first term is indepen-
dent of T, and if we change, in the integral corresponding to ±λ, the variable to z� for
� = �±λ from equation (2.12), then it becomes

(±1)k ∫ r±λ+iT
r±λ+iR

g�(z�)(σ−1� (±λ), Z(z�))k−1dz� = (±i)k(2√Q(λ))k−1
× ∫ T

R
g�(r±λ + iy�)yk−1� dy�

via equation (2.17). This expression is a differentiable function of T, and equations
(3.3) and (4.3) show that its derivative is minus that of Singλ(g , T) from equation
(4.4). Hence, the expression from equation (4.6) is independent of T as long as T > R,
and in particular Trλ(g) exists. This proves the proposition. ∎

Note that limT→∞ ϕn(κ, T ; r) = 0 for any r > 0 when n > 0, and the integral of the
part g0�±λ from equation (4.3) converges as T →∞. Hence, the regularization from
Proposition 4.1 is essentially only of the integral of the principal part.This regularized
integral can also be viewed as the special value at s = k of an appropriately regularized
L-function of g, as in, e.g., [BFK].

Following [ANS, BFI], we now give an equivalent expression for the regularized
theta lift Ik ,L(τ, f ) of f from equation (2.24).

Proposition 4.2 For f ∈ M̃ !
2k(Γ) with asymptotic expansion at the cusp � as in

equation (4.3), the regularized theta lift Ik ,L(τ, f ) of f from equation (2.24) can be
written as
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lim
T→∞

⎛⎝∫YT

f (z)Θk ,L(τ, z)dμ(z) + ∑
�∈Γ/ Iso(V)

ik ε�√
N
Θk ,�(τ) p∑

l=0
c�(0, l)ϕ0(k − l , T)⎞⎠,

where ϕ0 is defined in equation (4.4).5

Proof We argue as in Proposition 5.2 of [ANS], focusing on the modifications
required for our statement, and leaving many details out as they are identical. For
fixed T, the constant term in the integral over YT is the substitution s = 0, and near a
cusp �, Lemma 2.9 expresses Θk ,L(τ, z) as amultiple of Θk ,�(τ) plus decreasing terms,
whose integral vanishes as T →∞. Here, instead of the first equation on page 2319 of
[ANS], the integral of our nearly holomorphic modular form yields

∫ ∞

1
∫ α�

0
( f ∣2k σ�)(z�)yk−1−s� dx�dy� = α�

p∑
l=0

c�(0, l)∫ ∞

1
yk−s−1−l� dy� = α�

p∑
l=0

c�(0, l)
k − l − s

.

The same identifications of these constant terms with our functions ϕ0(k − l , T) yield
the desired result. This proves the proposition. ∎

For k, f ∈ A!
0(Γ), and g ∈ A!

2k(Γ) as above and an index m ≠ 0, we can define the
combinations

Tr(k)m ,h( f ) ∶= ∑
λ∈Γ/Lm ,h

Tr(k)λ ( f ) for m < 0, Trm ,h(g) ∶= ∑
λ∈Γ/Lm ,h

Trλ(g) for m > 0.
(4.7)

Note that Γ/Lm ,h is finite when m ≠ 0, so that there is no question of convergence
in equation (4.7). On the other hand, when g ∈ M̃ !

2k(Γ) has the usual expansion and
Q(λ) = m = 0, we will define the trace to be

Tr0,h(g) ∶= ∑
�∈Γ/ Iso(V)

ε�√
N

ι�(0, h)c�(0, 0)(√Nβ�)kΦk(ω�,h),(4.8)

where ι�(m, h), ω�,h , and Φκ are defined in equations (2.18), (2.11), and (3.40),
respectively.

The main term of the Shintani lift from Theorem 4.3 will have the traces from
equations (4.7) and (4.8) as coefficients. However, for the terms with ι(m) = 1, we
need to define some corrections. Recall that when m > 0 and ι�(m, h) = 1, Remark
2.7 implies that the numbers rλ for oriented λ ∈ Lm ,h ∩ �⊥ are all the same modulo
β�
2

√
N
mZ. We can thus define, for our element f ∈ M̃ !

2k(Γ) of depth p expanded as in
equation (4.3) near each cusp � ∈ Γ/ Iso(V), the complementary trace

Trcm ,h( f , v) ∶= −(−2i√m)k ⋅ √2π ∑
�∈Γ/ Iso(V)

(ι�(m, h) + (−1)k ι�(m,−h)) ε�√
N

× ∑
0>n∈Z

n≡0 mod 2ε�
√

m/N

e(nrλ
α�

) p∑
l=k

(2πn
α�

)l−k l !c�(n, l)(l − k)! ⋅ J l(2√2πmv)
(2√2πmv)l ,

(4.9)

5Note that c�(0, l) is well defined for � ∈ Γ/ Iso(V) by the modularity of f.
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with J l(η) from equation (3.31). Note that the sum over n in equation (4.9) is finite,
and is empty for all but finitely many values of m.

We also define the complementary trace from constants

Trccm ,h( f , v) ∶= −(−2i√m)k ∑
�∈Γ/ Iso(V)

(ι�(m, h) + (−1)k ι�(m,−h)) ε�√
N

× k!c�(0, k) Ik(2√2πmv) − Ω̃k(2√2πmv)
(2√2πmv)k ,

(4.10)

where Ik and Ω̃k are defined in equation (3.26) and Remark 3.13, respectively. The
name represents the fact that only the constant terms c�(0, k) contribute to it.

When m = 0, there is only a complementary trace from constants, which is
defined as

Trcc0,h( f , v) ∶= δk ,0δh ,0
√

v ∫ reg

Y
f (z)dμ(z) + ∑

�∈Γ/ Iso(V)
ι�(0, h) ε�√

N
×

⎛⎝− k!c�(0, k)Pk(0) log (
√
2πNvβ�) + Ck(2πv)k/2 + p∑

l=0
l !c�(0, l)Q l(0)(

√
Nβ�)k−lΞk−l(ω�,h)(2πv)l/2 ⎞⎠,

(4.11)

where Ck and Ξκ are defined in equations (3.43) and (3.41) respectively, and
for f ∈ M̃ !

2k(Γ), the regularized integral ∫ reg
Y f (z)dμ(z) is the (convergent) limit

limT→∞ ∫YT
f (z)dμ(z).

4.2 Main theorem and proof

We can now state and prove our main theorem. Given k ∈ N and an element
f ∈ M̃ !

2k(Γ), we gather the traces from equations (4.7) and (4.8) and define

Inhk ,L ,h(τ, f ) ∶= ⌊p/2⌋∑
b=0

∑
0≤m∈Z+Q(h)

Trm ,h(L2b
z f )(4πv)bb! qm

τ ,(4.12)

which is a nearly holomorphic function of depth ⌊ p
2 ⌋ on H that is bounded at ∞.

Using the negative index case of equation (4.7), we also define

I
neg
k ,L ,h(τ, f ) ∶= ∑

0>m∈Z+Q(h)

p∑
l=k

4k
√

π∣m∣ k−12 h l(2√2π∣m∣v)√
2(4√2π∣m∣v)l(l − k)! Tr(k)m ,h(R l−k

2k−2lL
l
z f )qm

τ ,

(4.13)

which resembles the non-holomorphic part of a harmonic weak Maass form with
cuspidal ξ-image (see also the proof of Proposition 4.5). We also gather the traces
from equations 4.9–4.11, and set

I
c
k ,L ,h(τ, f ) ∶= ∑

0<m∈Z+Q(h)
ι(m)=1

Trcm ,h( f , v)qm
τ and I

cc
k ,L ,h(τ, f ) ∶= ∑

0≤m∈Z+Q(h)
ι(m)=1

Trccm ,h( f , v)qm
τ ,

(4.14)
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where the former is a finite sum of increasing terms, and the second one is infinite but
converges.

The main result, which evaluates the regularized Shintani lift of f, now reads as
follows.

Theorem 4.3 Write the vector-valued Shintani lift Ik ,L(τ, f ) of f ∈ M̃ !
2k(Γ), which

is defined in equation (2.24) and lies in Ak+ 1
2
(Mp2(Z), ρL), as ∑h∈DL

Ik ,L ,h(τ, f )eh .
Then the scalar-valued coefficient associated with h ∈ DL is given by

Ik ,L ,h(τ, f ) = Inhk ,L ,h(τ, f ) + I
neg
k ,L ,h(τ, f ) + Ick ,L ,h(τ, f ) + Icck ,L ,h(τ, f ),

where the terms are defined in equations (4.12)–(4.14).

Proof Weapply Proposition 4.2, and expandΘk ,L(τ, z) andΘk ,�(τ)using equations
(3.21) and (2.23) respectively, which gives

(4.15)

Ik ,L ,h(τ, f )

= lim
T→∞

⎛⎜⎜⎜⎜⎜⎜⎝

v
1−k
2 ∫

YT

f (z) ∑
m∈Z+Q(h)

qm
τ ∑

λ∈Lm ,h

φk ,−1(√vλ, z)dμ(z)+
∑

0≤m∈Z+Q(h)
ι(m)=1

qm
τ ∑

�∈Γ/ Iso(V)
ik ε�√

N
a(Θk ,� ,m, h, v) p∑

l=0
c�(0, l)ϕ0(k − l , T)

⎞⎟⎟⎟⎟⎟⎟⎠
.

We may interchange the order of integration and summation as both are absolutely
convergent for fixed T. Propositions 4.10–4.13 now evaluate the coefficient of qm

τ to be
the one implied by the asserted sum. This proves the theorem. ∎

A much simpler but interesting special case is the one where the depth p < k.

Corollary 4.4 Assume that f ∈ M̃ !,≤p
2k (Γ), and that p < k. Then

Ik ,L(τ, f ) = ∑
h∈DL

Inhk ,L ,h(τ, f )eh ∈ M̃≤⌊p/2⌋k+ 1
2

(Mp2(Z), ρL).
For p = 0, we recover the part of Theorem 6.1 of [ANS] with weakly holomorphic input.

Proof If p < k, then I
neg
k ,L ,h and Ick ,L ,h vanish identically (because both involve sums

over k ≤ l ≤ p), and equations (4.10) and (4.11) imply that Icck ,L ,h consists only of the
constant term

Trcc0,h( f , v) = ∑
�∈Γ/ Iso(V)

ι�(0, h) ε�√
N

k−1∑
l=0

l !c�(0, l)Q l(0)(
√

Nβ�)k−lΞk−l(ω�,h)(2πv)l/2
(because c�(0, k) = 0 when p < k). Since k − l > 0, the only term Ξk−l(ω�,h) from
equation (3.41) that may not vanish is when l = k − 1 and ω�,h = 0, where it equals
the constant − 1√

2π . However, equation (2.11) shows that the latter equality only
holds when h = 0, and thus equation (2.18) yields ι�(0, h) = 1 for all �, and the
terms involving ε�, β�, and

√
N reduce to α� when l = k − 1 by equation (2.10). This

reduces our expression for Icck ,L ,h to − Qk−1(0)
(2π)k/2v(k−1)/2 times ∑� α�c�(0, k − 1). However,
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the c�(0, k − 1)’s are, up to constant multiple that is independent of �, the constant
terms of the weakly holomorphic modular form Lk−1

z f ∈ M !
2(Γ), and by equation

(2.12), multiplying each by α� yields the residue of the corresponding meromorphic
differential Lk−1

z f dz at the cusp � (again, up to a constant multiple that is independent
of �).Thus, Icck ,L ,h is a multiple of the sum of residues of a meromorphic differential on
the compact curve associated with Γ at all of its poles, which therefore vanishes (this
also explains Remark 1.4). This proves the corollary. ∎

When p ≥ k, Corollary 4.4 no longer holds, but one can obtain a nearly holomor-
phic modular form after applying an appropriate weight-changing operator.

Proposition 4.5 For any f ∈ M̃ !,≤p
2k (Γ) for which the constant terms c�(0, k) vanish for

every �, we have

ξk−2⌊p/2⌋+ 1
2
L⌊p/2⌋τ Ik ,L(τ, f ) ∈ M̃≤p−k2⌊p/2⌋−k+ 3

2
(Mp2(Z), ρL).

Note that, for p < k, the depth is negative, so that the space M̃≤p−k2⌊p/2⌋−k+ 3
2
(ρL) is

trivial, and indeed the modular forms that are annihilated by the operator in question
are those lying in M̃≤⌊p/2⌋k+ 1

2
(Mp2(Z), ρL).

Proof The fact that ξk−2⌊p/2⌋+ 1
2
L⌊p/2⌋τ Ik ,L(τ, f ) lies in A2⌊p/2⌋−k+ 3

2
(Mp2(Z), ρL)

follows from the weight changing properties of Lτ and ξk−2⌊p/2⌋+ 1
2
, including the

conjugation of the representation in equation (3.41). For investigating its analytic
properties, we need to evaluate the operation of Lτ on each of the summands in
Theorem 4.3.

Thefirst summand, fromequation (4.12), is nearly holomorphic of depth ⌊ p
2 ⌋. Every

application of Lτ reduces the depth by 1, and then the application of the ξ-operator,
which is again Lτ composed with a modified complex conjugation, annihilates the
weakly holomorphic expression L⌊p/2⌋τ Inhk ,L ,h(τ, f ). Now, the terms from equation
(4.13), as well as those from equation (4.14) defined in equation (4.9), involve the
expressions h l (η)

η l and J l (η)
η l respectively, for η = 2

√
2π∣m∣v and k ≤ l ≤ p, times con-

stants times qm
τ . As applying Lτ = −2iv2∂τ to a function of η is the same as η3

16π∣m∣
d
dη ,

Lemma 3.16 and equation (3.32) imply that this effect amounts, up to scalar multiples,
to subtracting 2 from the index l. After doing so ⌊ p

2 ⌋ + 1 times (including the action of
the ξ-operator), we remain only with indices k − 2⌊ p

2 ⌋ − 2 ≤ l ≤ p − 2⌊ p
2 ⌋ − 2, that are

thus negative.
However, equations (3.17) and (3.31), the vanishing of Pν and P̃ν via Remark 3.8 and

equation (3.30), and the parity ofQν and Q̃ν imply that for negative l, such expressions
are odd polynomials in η, of degree at most 4⌊ p

2 ⌋ + 3 − 2k multiplied by e±η
2/2

respectively. Recalling that for the effect of ξk−2⌊p/2⌋+ 1
2
wemust conjugate andmultiply

by v to the negative half-integral power k − 2⌊ p
2 ⌋ − 3

2 , and substituting the value
2
√
2π∣m∣v of η, we indeed obtain a decaying nearly holomorphic expression from

the image of Inegk ,L ,h(τ, f ) for each h ∈ DL , and a finite increasing nearly holomorphic
expression from the image of Ick ,L ,h(τ, f ) for every h. For the depth bound, we need
the lowest power of η in the expressions η∣l ∣Q l(η) or η∣l ∣Q̃ l(η) for negative l in our
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range, which arises from the value p − 2⌊ p
2 ⌋ − 2 of l that is minimal in absolute value,

divided by η4⌊p/2⌋+3−2k . For odd p, this is l = −1 with η multiplied by a constant term,
yielding a denominator of v2⌊p/2⌋+1−k = v p−k , and if p is even then l = −2 is multiplied
by a linear polynomial in η, and the denominator is v2⌊p/2⌋−k = v p−k as well.

It remains to consider the constant terms in equation (4.14), defined in equa-
tion (4.11). The first term, appearing only when k = 0, is a multiple of

√
v, which

after ⌊ p
2 ⌋ + 1 operations of Lτ becomes a multiple of v⌊p/2⌋+3/2, and after conjugating

and multiplying by v−2⌊p/2⌋− 3
2 (with k = 0) yields v−⌊p/2⌋, indeed nearly holomorphic

with the required degree bound. Similarly, ⌊ p
2 ⌋ + 1 actions of Lτ and multiplication by

vk−2⌊p/2⌋− 3
2 take the lth term in the last in equation (4.11) to a multiple of vk−⌊p/2⌋− l+1

2 .
Since the multiplier Q l(0) restricts l to be odd, and with l ≤ p the maximal value of
l+1
2 is ⌈ p

2 ⌉, the result here is nearly holomorphic of degree at most p − k. As this covers
all the expressions that are not multiples of the coefficients c�(0, k), this proves the
proposition. ∎
Remark 4.6 A natural question to ask, in view of Proposition 4.5, is what can be
said about the ξk−2⌊p/2⌋+ 1

2
L⌊p/2⌋τ Ik ,L(τ, f ) in case the coefficients c�(0, k) do not

vanish. Following the proof of that proposition, the terms involving Ik(η)
ηk from

equation (4.10) inside equation (4.14) behave like those with h l (η)
η l or J l (η)

η l (see Lemma
3.21 and equation (3.29)), and as the polynomial Ω̃k from Remark 3.13 has degree
k − 2 and parity (−1)k , the corresponding expression from equation (4.10) is nearly
holomorphic of degree at most ⌊ p

2 ⌋ and is thus annihilated by L⌊p/2⌋τ . Now, we can
express Iν for ν ∶= k − 2⌊ p

2 ⌋ − 2 < 0 via equation (3.29), where using equation (3.8) the
multiplier of I−1 becomes a multiple of P−1−ν . As one can verify by induction that
the polynomial Ω̂ν from equation (3.29) equals minus the same multiple of Q−1−ν for
ν < 0, this determines Iν(η) as a multiple of eη

2/2h−1−ν(η), and with the powers
of m and v, this evaluates the image of the expression from equation (4.10) under
ξk−2⌊p/2⌋+ 1

2
L⌊p/2⌋τ as a multiple of h∣ν∣−1(η)

η∣ν∣−1 q−mτ with our η.The termwith the scalar and
the logarithm in the constant term from equation (4.11), which shows up only for even
k because of the multiplier Pk(0), becomes, after this operator, a constant divided by
v
∣ν∣−1
2 . Recall that the nearly holomorphic part from Proposition 4.5 is annihilated after

applying ξk−⌈p/2⌉+ 3
2
Lk−p
τ , so one can apply this operator to the remaining expression.

Using similar considerations once again, and verifying that all the multipliers match
(including the constant terms) shows, via equation (2.23), that the resulting expression
is a constantmultiple of the sum∑�∈Γ/ Iso(V) c�(0, k)Θ2⌈p/2⌉−k ,�(τ). In total, for p < k,
the Shintani lift is annihilated by one application of ξ∗L∗τ (by Corollary 4.4), when
p ≥ k and c�(0, k) = 0 for all �, it is killed after two applications of such operators,
resembling harmonicity (this is Proposition 4.5), and with the extra term, a third
application is required for sending the lift to 0, which is a type of a sesqui-harmonic
property (because the theta function from equation (2.23) is nearly holomorphic
itself).

We can now deduce the theorems mentioned in the Introduction.
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Proof ofTheorem 1.1 We applyTheorem 4.3 to the scaled lattice LΔ ∶= ΔL for L from
equation (2.8), with Q = − det

∣Δ∣ .Then L∗Δ = L∗ and it is well known (see [GKZ] or [AE])
that if g ∈ A!

3
2
(Mp2(Z), ρLΔ) and Γ ∶= PSL2(Z), then
ΥΔ(g)(z) ∶= 1[Γ ∶ ΓLΔ] ∑

δ∈DLΔ

χΔ(δ)gδ(4z) ∈ A!
3
2
(Γ̃0(4)),

where χΔ is the character from equation (1.1) and Γ̃0(4) ⊆Mp2(Z) is the metaplectic
cover of Γ0(4). Moreover, it is in the Kohnen plus space. We denote I∗Δ(z, f ) ∶=
ΥΔ(I∗1,LΔ

(z, f )) for ∗ ∈ {nh, neg, c, cc}. When f = J ⋅ E∗2 , we have k = p = 1, and
only nonzero coefficients of the principal part are c�(Δ, 0) = 1, c�(Δ, 1) = − 3

π , and
c�(0, 0) = −24 for any � ∈ Iso(V). The fact that c�(0, 1) = 0 and Q0 = 0 implies that
IccΔ (z, f ) = 0, and we have

Γ/QΔ2 = Γ{[0, ∣Δ∣,C]∣C ∈ Z/ΔZ}, ΓLΔ ,∞/�∞ = ΓLΔ ,∞{[0, 0,C]∣C ∈ Z/ΔZ},(4.16)

with the value χΔ([0, ∣Δ∣,C]) = χΔ([0, 0,C]) = ( C
Δ ), the real part r[0,∣Δ∣,C] = − C

∣Δ∣ ,
and B1(ω�∞ ,[0,0,C]) = B1( C

∣Δ∣) = C
∣Δ∣ − 1

2 for 0 < C < ∣Δ∣. Since Lz f = 3
π J, χΔ is anti-

symmetric, and the sign from equation (4.1) is that of −A from λ as in equation (2.8),
we have

I
neg
Δ (z, f ) = −12√

2π
∑

0<D∈Z

⎛⎝ ∑
0≪λ∈Γ/QΔD

χΔ(λ)∣Γλ ∣ J(zλ)⎞⎠h1(2√2πDy)
2
√
2πDy

q−D

as well as

InhΔ (z, f ) = 48∣Δ∣H(−Δ) + ∑
0>D∈Z

⎛⎝ ∑
λ∈Γ/QΔD

χΔ(λ)Trλ( f )⎞⎠q−D ,

where for the latter constant we use equation (4.16) and the equality

∣Δ∣−1∑
C=1

(C
Δ
)( C∣Δ∣ − 1

2
) = 1∣Δ∣

∣Δ∣−1∑
C=1

C(C
Δ
) =

√∣Δ∣
π

L(( ⋅Δ ), 1) = 2H(−Δ).
Moreover, the congruence from equation (4.9) gives a∣Δ, the fundamentality of Δ
leaves only a = ∣Δ∣ after ΥΔ , and then equation (4.16) and a standard Gauss sum

evaluation yield IcΔ(z, f ) = 12√
2π

√∣Δ∣ ⋅ J1(2√2π∣Δ∣y)
2
√

2π∣Δ∣y q∣Δ∣.

Now, let f̃−Δ(z) denote the holomorphic part InhΔ (z, f ), which has the required
expansion. Since Lemma 3.16 and equation (3.32) imply that ξ 3

2
takes the functions

h1(2
√

2πDy)
(2√2πDy) q−D and

J1(2√2π∣Δ∣y)
2
√

2π∣Δ∣y q∣Δ∣ to − qD

4
√
2πD

and + qΔ

4
√

2π∣Δ∣ respectively, the com-

plement InegΔ (z, f ) + IcΔ(z, f ) of f̃−Δ(z) is indeed harmonic, with the asserted ξ 3
2
-

image 3
2π f−Δ . This completes the proof of the theorem. ∎
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Proof ofTheorem 1.2 We applyTheorem 4.3 to the lattice L in equation (2.8), where
for which the parameters are N = α� = β� = ε� = 1, combined with the isomorphism
from [K] to scalar-valued modular forms. The vanishing of c(0, k) implies the van-
ishing of the main terms of Icck ,L . As equations (3.10) and (3.41) evaluate the remaining
term from equation (4.11) to be the asserted one, and the first term in equation (4.11)
produces the onementioned inRemark 1.3, this proves the first claimof the (extended)
theorem. The remaining two claims follow directly from Corollary 4.4 (there exists
only one cusp, so c(0, k − 1) = 0 in this case) and Proposition 4.5. This proves the
theorem. ∎
Remark 4.7 Using [Ze3, Ze7], the sum ∑⌊p/2⌋a=0

1
va a!L

a
τIk ,L(τ, f ) is a (vector-valued)

quasi-modular form of weight k + 1
2 and depth ⌊ p

2 ⌋, and one checks that the contri-
bution of Inhk ,L ,h(τ, f ) is just ∑0≤m∈Z+Q(h) Trm ,h( f )qm

τ for every h ∈ DL . Moreover,
Lemmas 3.16 and 3.21 and equation (3.32) show that applying this combination to
I
neg
k ,L ,h(τ, f ), Ick ,L ,h(τ, f ), and Icck ,L ,h(τ, f ) amounts to replacing h l from equation
(4.13), J l in equation (4.9), and Ik appearing in equation (4.10) by ∑a h l−2a(−2)aa!,∑a J l−2a2aa!, and ∑a Ik−2a2aa!, respectively. Moreover, after substituting equations
(3.17), (3.31), and (3.29), the respective coefficient of h0, J0, and I0 in these com-
binations is just the corresponding denominator η l or ηk . It would be interesting
to investigate these functions further. We also note that as long as 2a ≤ k, the term
La
τIk ,L(τ, f ) is easily verified to be 1

(−4π)a times the Shintani lift Ik−2a ,L(τ, L2a
z f ).

4.3 Orbital integrals

In order to prove Theorem 4.3, we need to evaluate equation (4.15), which we can do
for every m ∈ Z + Q(h) separately. Moreover, the integral over YT can be replaced by
an integral over FT from equation (2.14), and integrals over (nice) regions in H can
be expressed using the following lemma.

Lemma4.8 Let λ ∈ VR and f ∈ M̃ !
2k(Γ) of some depth p be given, and take a connected

domainR ⊆H with a piecewise smooth positively oriented boundary ∂R. Then we have

∫
R

f (z)φk ,−1(√vλ, z)dμ(z) = p∑
ν=0

∮
∂R

(Lν
z f )(z)φk−ν−1,ν(√vλ, z)dz.

Proof We apply Lemma 2.3 repeatedly, where in the νth step f is replaced by
Lν
z f and g(z) = φk−ν ,ν−1(√vλ, z). Then Proposition 3.18 allows us to take G(z) =

φk−ν−1,ν(√vλ, z), and the sum ends after ν = p since Lp+1
z f = 0 by assumption. This

proves the lemma. ∎
In view of equation (4.12), we will need the following lemma later.

Lemma 4.9 Let λ ∈ V with ι(λ) = 1, v > 0, and f ∈ M̃ !
2k(Γ) of some depth p be given,

and denote η = 2
√
2πQ(λ)v. Then we have the equality

⌊p/2⌋∑
b=0

Singλ(L2b
z f )(4πv)bb! = ik(2√Q(λ))k−1∑

n∈Z

p∑
l=0

c�λ(n, l)e(nrλ
α�λ

)ϕn(k − l , T ; 2π
α�λ

)Hel(η)
η l .
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Proof As Corollary 3.7 presents the coefficient in front of Singλ(Lμ
z f ) on the

left-hand side of the first equality as Pμ(0)
(2πv)μ/2 , substituting equation (4.5), with the

summation index l replacing l − μ, into equation (4.4), expresses the left-hand side
of the first equality as

p∑
μ=0

Pμ(0)(2πv)μ/2 ik−μ(2√Q(λ))k−μ−1 p∑
l=μ
∑
n∈Z

l !c�λ(n, l)(l − μ)! e(nrλ
α�λ

)ϕn((k − μ) − (l − μ), T ; 2π
α�λ

)
= ik(2√Q(λ))k−1 p∑

j=0
∑
n∈Z

c�λ(n, l)e(nrλ
α�λ

)ϕn(k − l , T ; 2π
α�λ

) l∑
μ=0

l !Pμ(0)(l − μ)!(2i√2πQ(λ)v)μ .
Equation (3.11) and Corollary 3.7 now express the sum over μ as l !Pl (iη)

(iη)l = He l (η)
η l , as

desired. This proves the lemma. ∎
Now, the coefficient of qm in equation (4.15) is evaluated for m < 0, m > 0

with ι(m) = 0, m > 0 with ι(m) = 1, and m = 0 respectively, in the following four
propositions.

Proposition 4.10 For every h ∈ DL and 0 > m ∈ Z + Q(h), we have the equality

lim
T→∞v

1−k
2 ∫

YT

f (z) ∑
λ∈Lm ,h

φk ,−1(√vλ, z)dμ(z)
= p∑

l=k

4k
√

π∣m∣ k−12 h l(2√2π∣m∣v)Tr(k)m ,h(R l−k
2k−2lL

l
z f )√

2(4√2π∣m∣v)l(l − k)! .

Proof The proof is similar to that of Proposition 3.9 of [BFIL]. Remark 3.15 gives
us the strong decay of φκ,ν(√vλ, z), so that we can take the integral over z ∈ Y .
Unfolding, cutting out a small neighborhood Bε(zλ) for each λ ∈ Γ/Lm ,h , and apply-
ing Lemma 4.8 yields

∫
Y

f (z) ∑
λ∈Lm ,h

φk ,−1(√vλ, z)dμ(z)
= lim

ε→0
∑

λ∈Γ/Lm ,h

−1∣Γλ ∣
p∑

l=0
∮
∂Bε(zλ)

(L l
z f )(z)φk−1−l , l(√vλ, z)dz.

Substituting equations (2.6) and (3.18) (with ζ = σ
√∣m∣ for σ ∶= − sgn (λ, Z⊥(zλ))),

and multiplying by v 1−k
2 , shows that the desired left-hand side is the sum over λ and

l of

∑
λ∈Γ/Lm ,h

p∑
l=0

−(4yλσ
√∣m∣)k−1−l(2π)(l+1)/2v l/2∣Γλ ∣ limε→0∮∂Bε(zλ)

(L l
z f )(z)Azλ(z)k−1−ldz
(1 − Azλ(z))2k−2 l−2 h l(2σ√2πmv 1+ε2

1−ε2 ).
Evaluating this limit via Corollary 2.2, using the parity from Proposition 3.14, and
applying equations (4.1) and (4.7) yields the desired right-hand side. This proves the
proposition. ∎
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Proposition 4.11 If h ∈ DL and 0 < m ∈ Z + Q(h) with ι(m) = 0, then we have

v
1−k
2 lim

T→∞∫
YT

f (z) ∑
λ∈Lm ,h

φk ,−1(√vλ, z)dμ(z) = ⌊p/2⌋∑
b=0

Trm ,h(L2b
z f )(4πv)bb! .

Proof An element λ ∈ Lm ,h is not perpendicular to � for any � ∈ Iso(V), and its
stabilizer Γλ is infinite cyclic by Lemma 2.5. Therefore, the functions φκ,ν(√vλ, z)
again decay strongly, via Remark 3.15, toward any cusp �. We combine this with the
usual unfolding argument to express our left-hand side as

v
1−k
2 lim

T→∞ ∑
λ∈Γ/Lm ,h

∫
Fλ ,T

f (z)φk ,−1(√vλ, z)dμ(z)
= v

1−k
2 ∑

λ∈Γ/Lm ,h

∫
Fλ

f (z)φk ,−1(√vλ, z)dμ(z),
whereFλ is a fundamental domain for the action of Γλ onH andFλ ,T ∶= Fλ ∩HT (this
is well defined modulo Γ by equation (3.20) and the modularity of f ). We now remove
an ε-neighborhood of the geodesic cλ from Fλ for applying Lemma 4.8, substitute
the value of each φk−ν−1,ν from equation (3.18), and gather powers of v to write our
expression as

− ∑
λ∈Γ/Lm ,h

p∑
ν=0

limε→0+ (hν(ε) − hν(−ε))(2π)(ν+1)/2vν/2 ∫
cλ∩Fλ

(Lν
z f )(z)(λ, Z(z))k−ν−1dz.

However, the integral is Trλ(Lν
z f ) from equation (4.2), summing over λ replaces

it by Trm ,h(Lν
z f ) from equation (4.7), and we have limε→0+ (hν(ε) − hν(−ε)) =−√2πPν(0) by Proposition 3.14.The desired formula now follows fromCorollary 3.7.

This proves the proposition. ∎
When ι(m) = 1, the coefficient a(Θk ,� ,m, h, v) from (2.23), as well as the traces

from equations (4.9) and (4.10), may be nonzero. Recalling the functions ϕn from
equation (4.4), the limit of the corresponding coefficient from equation (4.15) is
evaluated as follows.

Proposition 4.12 Let h ∈ DL and 0 < m ∈ Z + Q(h) with ι(m) = 1 be given. Then, for
large T > 1, we have

v
1−k
2 ∫

YT

f (z) ∑
λ∈Lm ,h

φk ,−1(√vλ, z)dμ(z) = ⌊p/2⌋∑
b=0

Trm ,h(L2b
z f )(4πv)bb! + Trcm ,h( f , v)

+ Trccm ,h( f , v) − ∑
�∈Γ/ Iso(V)

ε� ik√
N

a(Θk ,� ,m, h, v) p∑
l=0

c�(0, l)ϕ0(k − l , T) + O( 1
T ).

Proof For λ ∈ Lm ,h , we setHλ ,T ∶=H/(Bε(�λ) ∪ Bε(�−λ)) for ε = e−2πT . The usual
unfolding argument, the fact that the stabilizer of λ ∈ Lm ,h is trivial by Lemma 2.5,
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and the decay from Remark 3.15 allow us to replace, as in Lemma 5.2 of [BF2], the
left-hand side by

v
1−k
2 ∑

λ∈Γ/Lm ,h

∫
HT

f (z)φk ,−1(√vλ, z)dμ(z)
= v

1−k
2 ∑
λ∈Γ/Lm ,h

∫
Hλ ,T

f (z)φk ,−1(√vλ, z)dμ(z) + O( 1
T )

(the error term here is, in fact, much better). The argument from the proof of
Proposition 4.11 expresses the term associated with λ ∈ Γ/Lm ,h as

⌊p/2⌋∑
b=0

1(4πv)bb! ∫c(λ)∩YT

(L2b
z f )(z)(λ, Z(z))k−1−2bdz(4.17)

+ p∑
ν=0

v
1−k
2 ∫

∂Hλ ,T
(Lν

z f )(z)φk−ν−1,ν(√vλ, z)dz.

Next, ∂Hλ ,T = ∂Bε(�λ) ∪ ∂Bε(�−λ) for this ε, both with the opposite orientation.
In the integral along the first part, as σ−1� takes ∂Bε(�λ) to R + iT , equation (2.17)
expresses the corresponding term in equation (4.17) as

− p∑
ν=0

∫ ∞
−∞

v
1−k
2 (Lν

z f ∣2k−2νσ�λ)(x�λ + iT)φk−ν−1,ν(√mv
N ( 1 −2rλ

0 −1 ), x�λ + iT)dx�λ .

Equation (3.19) thus implies that the integral along ∂Bε(�−λ) is evaluated in the same
manner, with λ replaced by −λ, and multiplied by (−1)k .

Applying equation (3.18), noting that the pairings with Z(x�λ + iT) and
Z⊥(x�λ + iT) are 2√mv(x�λ + iT − rλ) and 2

√
mv
T (x�λ − rλ) respectively, we substi-

tute η ∶= 2
√
2πmv and ξ ∶= η

T (x�λ − rλ) and use equations (4.5) and (3.24) and the
definition of the Fourier transform to present the latter expression as

−v 1−k
2

p∑
ν=0
∫ ∞

−∞
∑
n∈Z

p∑
l=ν

(−1)ν l !c�λ(n, l)(l − ν)!T l−ν e−2πnT/α�λ e( nx�λα�λ
) T k−ν−1

(2π)k/2 (ξ + iη)k−ν−1hν(ξ)dx�λ

= − v
1−k
2 ∑

n∈Z

p∑
l=0

l !c�λ(n, l)T k−l−1

(2π)k/2 e−2πnT/α�λ ∫ ∞

−∞
e( nx�λα�λ

)gk−l , l(ξ; η)dx�λ

= − v
1−k
2 ∑

n∈Z

p∑
l=0

l !c�λ(n, l)T k−l

(2π)k/2η e−2πnT/α�λ e( nrλ
α�λ
)ĝk−l , l( − nT

α�λ η
; η).

Propositions 3.22 and 3.25 show, via equation (4.4), that the contribution of fixedn and
l to the latter expression is i kηk−1

(2πv)(k−1)/2 c�λ(n, l)e( nrλ
α�λ

) = ik(2√m)k−1c�λ(n, l)e( nrλ
α�λ

)
times⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

He l (η)
η l ϕn(k − l , T ; 2π

α�λ
), n > 0 or n < 0 and l > k,

He l (η)
η l ϕn(k − l , T ; 2π

α�λ
) − (−1)k√2π( 2πn

α�λ
)l−k l !

(l−k)!
J l (η)
η l , n < 0 and l ≥ k,

(He l (η)
η l − Hek(η)

ηk )ϕ0(k − l , T), n = 0 and l ≠ k,

(He l (η)
η l − Hek(η)

ηk )ϕ0(k − l , T) − (−1)k k!ηk (Ik(η) − Ω̃k(η)), n = 0 and l = k,
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where the error terms from the former proposition go into O( 1
T ) and the first term

with l = k trivially vanishes.
Now, since Q(λ) = m for our λ, Lemma 4.9 shows that the sum over n and l of

the first terms gives ∑⌊p/2⌋b=0
Singλ(L2b

z f )
(4πv)bb! . Hence, these terms, the corresponding ones

from the integral along ∂Bε(�−λ), and the first term from equation (4.17) combine,
via equation (4.6), to ∑⌊p/2⌋b=0

Trλ(L2b
z f )

(4πv)bb! , and after summing over all λ ∈ Γ/Lm ,h , we
get the first asserted term by equation (4.7). Now, fix � ∈ Γ/ Iso(V), and equation
(2.18) implies that in the sum of the remaining terms over λ ∈ Γ/Lm ,h , we only get
contributions to the integral along ∂Bε(�λ) when ι�(m, h) = 1, and to the one over
∂Bε(�−λ) if ι�(m,−h) = 1, with the sign (−1)k . Lemma 2.6 and Remark 2.7 now imply
that, for such �, the sum of e( nrλ

α�λ
) over λ with �λ = � gives 2ε�

√m
N e( nrλ

α�λ
) in case

2ε�
√m

N divides n and 0 otherwise. The resulting sums thus produce the remaining
required terms by equations (4.9), (4.10), and (2.23) and the value of η.This completes
the proof of the proposition. ∎

Theproof of Proposition 4.12 also shows that the regularized traces that show up in
that proposition, interpreted as regularized L-values, are not those of L2b

z f but rather
of its image under the Hecke U-operator of index 2ε�

√m
N .

We can now state and prove the analog of Propositions 4.10–4.12 for m = 0, again
using the expressions from equations (2.23) and (4.4), and with the trace from
equation (4.11).

Proposition 4.13 For an isotropic element h ∈ DL and large T > 1, we have

v
1−k
2 ∫

YT

f (z) ∑
λ∈L0,h

φk ,−1(√vλ, z)dμ(z) = ⌊p/2⌋∑
b=0

Tr0,h(L2b
z f )(4πv)bb! + Trcc0,h( f , v)

− ∑
�∈Γ/ Iso(V)

ikε�√
N

a(Θk ,� , 0, h, v) p∑
l=0

c�(0, l)ϕ0(k − l , T) + O( 1
T ).

Proof It is easy to see that L0,h/{0} = ⋃{�∈Iso(V) ∣ ι�(0,h)=1}[(L + h) ∩ �], a union that
respects the Γ-action. The same unfolding argument from the proofs of Propositions
4.11 and 4.12 allows us to write this part of the left-hand side as

∑
{�∈Γ/ Iso(V) ∣ ι�(0,h)=1}

v
1−k
2 ∫

Γ�/HT

f (z) ∑
λ∈(L+h)∩�

φk ,−1(√vλ, z)dμ(z),
andRemark 3.15 implies that replacing Γ�/HT by Γ�/H�,T , forH�,T ∶=HT/Bε(�), pro-
duces an error term that is much smaller that O( 1

T )6. As � is perpendicular to neither
Z(z) nor Z⊥(z) for any z ∈H, when we invoke Lemma 4.8 as the proof of Proposition
4.12, only the (negatively oriented) integral along the boundary Γ�/∂Bε(�) remains.
Now, since equation (2.9) shows that the latter maps under σ−1� onto (R/α�Z) + iT ,

6Also here, we actually work with representatives for Γ/ Iso(V), but we again allow this abuse of
notation.
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equation (2.11) expresses the summand associated with � as

− p∑
ν=0

v
1−k
2 ∫

R/α�Z
(Lν

z f ∣2k−2ν σ�)(x� + iT) ∑
0≠ξ∈Z+ω�,h

φk−1−ν ,ν(√v( 0 β� ξ
0 0 ), x� + iT)dx� + O( 1

T ).

Here, after applying equation (3.18), the pairings with Z(x�λ + iT) and Z⊥(x�λ +
iT) are just√Nvβ�ξ and

√
Nvβ� ξ
T respectively. Setting υ ∶= √2πNvβ�

T , equations (3.24),
(3.34), (3.35), and (4.5) and simple Fourier integration evaluate the main term as

− p∑
ν=0

v
1−k
2 ∫

R/α�Z
∑
n∈Z

p∑
l=ν

(−1)ν l !c�(n, l)(l − ν)!T l−ν e−2πnT/α�e(nx�
α�
) ∑

0≠ξ∈Z+ω�,h

(Tυξ)k−1−ν(2π)k/2 hν(υξ)dx�

=−√v
p∑

l=0

l !c�(0, l)(2πv)k/2 α�T k−1−l ∑
0≠ξ∈Z+ω�,h

gk−l , l(υξ; 0)=−√v
p∑

l=0

l !c�(0, l)(2πv)k/2 α�T k−1−lGk−l , l(ω�,h ; υ).
We apply Proposition 3.27 and substitute the value of υ, equation (2.10), and Corol-
lary 3.7 for Pk(0), and after summing over �, our part of the left-hand side takes the
form

∑
�∈Γ/ Iso(V)
ι�(0,h)=1

p∑
l=0

l !c�(0, l)
(2πv)(k−1)/2 β�ε�(√2πNvβ�)k−1−l[Pl(0)Φk−l(ω�,h) + Q l(0)Ξk−l(ω�,h)]

+ ik Hek(0)
(2πv)(k−1)/2 ∑

�∈Γ/ Iso(V)
ι�(0,h)=1

β�ε�√
2πNvβ�

⎛⎜⎜⎝ ∑0≤l≤p
l≠k

c�(0, l) Tk−l

k−l − c�(0, k)( log √2πNvβ�
T + Ck)

⎞⎟⎟⎠+O( 1
T ).

Note that the latter terms with l > k do not arise through this argument, but as they
decay like our error term, the expression is unaffected by adding them.

After canceling, writing ι�(0, h) as a multiplier, and evaluating Pl(0) using Corol-
lary 3.7, equation (4.5) shows that the first terms combine to the desired combination
of the traces from equation (4.8). Equation (4.4) then expresses the remaining expres-
sion as the main term from equation (4.11) plus

− ik Hek(0)(2πv)k/2 ∑
�∈Iso(V)

ι�(0, h) ε�√
N

p∑
l=0

c�(0, l)ϕn(k − l , T),
which is the last asserted term by equation (2.23). This gives the desired right-hand
side when h ≠ 0, and for h = 0, there is also the integral involving φk ,−1(0, z) from
0 ∈ L0,0. However, equation (3.18) evaluates it as 0kh−1(0) = δk ,0, and since in weight
0 we have, by equation (4.3), the bound

∫ reg

Y
f (z)dμ(z) − ∫

YT

f (z)dμ(z) = ∑
�∈Γ/ Iso(V)

∫ ∞
T

α�

p∑
l=0

c�(0, l)
y l+2�

= O( 1
T ),

we indeed get the remaining term from equation (4.11). This proves the
proposition. ∎
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