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modular forms
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Yingkun Li® and Shaul Zemel

Abstract. In this paper, we compute the Fourier expansion of the Shintani lift of nearly holomorphic
modular forms. As an application, we deduce modularity properties of generating series of cycle
integrals of nearly holomorphic modular forms.

1 Introduction

For a discriminant d € Z, let Q4 be the set of binary quadratic forms of discriminant d,
which is acted on by the group T := SL,(Z) with finitely many orbits. When d < 0,
each A € Q,; gives rise to a CM points z, in the upper half-plane J{. The values of the
j-function

1 ;
j(z) == —+744+196,884g + - - -, q:=e(z) = e
q

at such CM points are called singular moduli, and they are algebraic numbers gen-

erating certain abelian extensions, e.g., ring class fields, of the imaginary quadratic

field Q(\/d) by the theory of complex multiplication. The paper [Za] proved the

surprising result that the dth trace of the normalized function J(z) := j(z) — 744 is

the |d|th Fourier coefficient of a weakly holomorphic modular form g of weight 3.
When d > 0, each A = [A, B, C] € Qg gives rise to a geodesic

)= {zeTH: Alz]* + BR(z) + C =0}

on 3. If d is not a perfect square, then the stabilizer ) of A in T is infinite and ¢(1) :=
I)\cy is a closed cycle on the modular curve Y = T\X. Instead of values, one can
consider integrals of modular forms along these cycles, and study the properties (e.g.,
modularity) of their generating series. This idea lies in the basis of the construction of
modular forms of half-integral weight in [Sn].

The non-holomorphic Eisenstein series of weight 2, defined as

3
E;(2) ::1—24201(11)(1"——, y:=Jz,
nx1 Ty

offers an elegant example. For a fixed fundamental discriminant A <0, let yA be the
genus character from, e.g., Section 1.2 of [GKZ] (with N = 1), which takes A € Z* to
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Shintani lifts of nearly holomorphic modular forms 1447

(é), if A € Q4 with Ald, (n,A) =1, and A represents n,

1) ya(d):= { n

0, otherwise.

Then, for any fundamental discriminant D < 0 co-prime to A, we have the formula

(12) S xa() [ E:(2)dz = ~12H(-A)H(-D),

AeT'\Qap c(d)

where H(n) is the Hurwitz class number considered in [HZ]. This twisted cycle
integral (generalizing the classical integral, in which the character is trivial) is also
the |D|th Fourier coefficient of 12H(~A) times the weight 2 mock modular form
studied in loc. cit. In fact, this equality holds for any discriminant D < 0 after suitably
regularizing the left-hand side (see Corollary 1.12 of [ANS]"). The modular completion
of this mock modular form is a harmonic Maass form in the sense of [BF1], whose
image under the differential operator &3/, (see (2.1)), also known as the shadow of the
mock modular form, is a multiple of the Jacobi theta series of weight %

Note that for a fundamental discriminant D > 0, the twisted trace of singular
moduli

Ay b xa ()
a3 AD,~8) ._\/BAGF\Q%;,A»O [Ta| J)

(again generalizing the usual trace, with no character) is the Dth Fourier coefficient of
the weakly holomorphic modular form f_» = g* + O(q) of weight } from [Za]. This
coeflicient is the same with J = j — 744 replaced by j when DA is not a square.

While searching for analogues of the result from [Za] mentioned above, Duke,
Imamoglu, and Téth studied the generating series of cycle integrals of the j-function
in [DIT], and showed that it is a mock modular form of weight % whose shadow is the
weight 2 form g from [Za]. Furthermore, it is the first member of a family of mock
modular forms with weakly holomorphic shadows of weight %

Using Serre duality, it is easy to see that there is a unique mock modular form f. » of
weight 2 and level 4 in Kohnen's plus space with shadow 5> f_» and Fourier expansion

J-a(z) = 48|A|H(-A) + O(4°).

From the result in [DIT], it is natural to ask about ways to construction f. 5. This was
first done by Jeon, Kang, and Kim in [JKK1] using Maass—Poincar¢ series. The sequel
[JKK2] expressed its Fourier coeflicients, using the same approach as in [DIT], as cycle
integrals of sesqui-harmonic modular forms of weight zero.

In [BFI], Bruinier, Funke, and Imamoglu obtained another proof of the main
result of [DIT] by applying a theta lift, which also gave a geometric interpretation of
the Fourier coefficients with square indices. This idea was used by Alfes-Neumann
and Schwagenscheidt in [ANS] to construct f » as the holomorphic part of the
Shintani theta lift of a harmonic Maass form | of weight 2, which expresses the
Fourier coefficients of f. as the twisted cycle integrals of J. Our first result is another

UThe different sign comes from the opposite orientation that they use—compare the formula on page
14 with our equation (2.17).
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1448 Y. Liand S. Zemel

expression of the Fourier coefficients of f , in terms of cycle integrals of nearly
holomorphic modular forms.

Theorem 1.1 Let A <0 be a fixed fundamental discriminant. For any discriminant
D <0, the twisted regularized cycle integral

Toap(JE)= 3 xa(h) [(r:fj(z)E;(z)dz,

Ael'\Qap

with the regularization defined as in equation (4.6), is the | D|th Fourier coefficient of f-a.

To prove Theorem 1.1, we will follow the theta lift approach as in [ANS, BF1, BFI],
and use the theta kernel with the same archimedean Schwartz function as in [Sh].
(this is also the case n = 1 of the theta function from [Ze2]). We shall apply it to nearly
holomorphic modular forms, and compute the resulting Fourier expansions. Recall
that a real-analytic modular form f on J{ with at most linear exponential growth near
the cusps is called nearly holomorphic if it can be presented as

W -3
1=0 J

for some p € N, which is called the depth of f if f, is not identically zero. In other

words, it is annihilated by the operator L’ ! where L, is the lowering operator defined
in (2.1). We denote the space of such modular forms of weight « with respect to T by
M., and use the superscript < p to mean the subspace of forms with depth at most p.
Since these differential operators commute with the slash operators, the condition of
being nearly holomorphic is purely archimedean, and can be defined for any weight,
Fuchsian group, character, representation, or multiplier system.

Nearly holomorphic modular forms of depth 0 are just weakly holomorphic, and
the Fourier expansions of their Shintani lifts have been computed in [ANS, BFI,
BGK, Sh]. In particular, Shintani lifts of weakly holomorphic forms are holomorphic.
Moreover, the main result of [ANS] shows that the Shintani lift of harmonic weak
Maass forms without a special constant term is harmonic, and with this constant
term, the Laplacian operator takes the lift to a unary theta function. This “sesqui-
harmonicity” is also visible in the zeroth member Z, of the family of modular forms
from [DIT]. We will show in Corollary 4.4 that when 0 < p < k, the Shintani lift of a
nearly holomorphic modular form is also nearly holomorphic, and establish results
analogous to the harmonic case (with or without constant terms) (see Theorem 1.2
in the Introduction, as well as Theorem 4.3, Proposition 4.5, and Remark 4.6 for
the general statement). One could perhaps try to give another proof of the nearly
holomorphic lift result by using the isomorphism

with f1: H — Cholomorphicfor0< 1< p

p .
(L.5) D My~ M!z’kgp’ (fl‘)f:o e ZRék—ijf’
0<j<p =0
described in, e.g., [MR, Ze3, Ze7], and analyzing the effects of raising operators on
theta kernels. Here, Rg k-2
When p > k, the map from equation (1.5) is not surjective, and misses some nearly
holomorphic modular forms from the right-hand side. A particular example is the

is the iterated raising operator defined in (2.2).

https://doi.org/10.4153/50008414X22000396 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X22000396

Shintani lifts of nearly holomorphic modular forms 1449

form J - E in Theorem 1.1, or just E; itself. The Fourier expansions of their Shintani
lifts do not follow from applying differential operators to known results, and are the
main concern of this paper. In Theorem 4.3, we give the complete Fourier expansion
of their Shintani lift. For the rest of the introduction, though, we will consider a special
case of this result in level 1, which we now present.

Given A = [A, B,C] € Qg, denote A(z) := Az? + Bz + C. Suppose that f € M!Z,ksp
expands as

P
(1.6) fz)=> > c(n, Dg"y™".

1=0 neZ

Given d € Z that is not a square, we define, for k even, the trace

17) Tra(f) = 3

Aér\Qd

ﬁf(za)’ k=0,d<0,
Jeoy f(@A(2)dz, d>o, Vd ¢z

(we shall not use the negative d case when k > 0). If d = 2 > 0 with r € N, then we
have I'\Q, = {£[0, 7, j]|0 < j < r — 1} and we define the trace as

r—1 T )
Tra(f) = ZTIEEOJ;) f%p]f( -1 1iy)(riy)*idy + (2ir)*

x > e(n D¢a(k—1,T;2m),
0<I<p
n<0, r|n

where the function ¢, is defined in equation (4.4). Finally, for d = 0 and even k > 0,
we set

19) Trg(f) 5= €(0,0)¢(1 - k) = =¢(0,0) 2,

where {(s) is the Riemann zeta function and By is the kth Bernoulli number.

We can now state the Fourier expansion of the Shintani lift of f € ]\7112,(S ? for even
k > 0. For odd k € N, one can obtain a similar result with twisted cycle integrals as in
equation (1.2).

Theorem 1.2 Let f € ]\71;,{S P have the expansion from equation (1.6), and suppose
that 0 < k € N is even and ¢(0, k) = 0. The following expansion defines a real-analytic
modular form of weight k +  and level 4 in Kohnen’s plus space:

Le/2] Tra(L22f) 4

i poo (16my)P!
d=0,1(mod 4)

Y i hi(2y/27d]y) _ Tra(Ryek 5 L2f) ) q
0>deZ 1=k (2 2n\d|y)l 2K (1= k) |d]|
d=0,1(mod 4)

1k
2
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2 (591(-2) % Braca(-1)2 (0, 1)

+ 1
,Z_l (8ny)2(2m)k =2 (1 +1-k)!
odd

Ve 3 LIy @an)TE D) i
ENP (rvzm)  (DF @R

n<o0, r|n

where the special functions h; and ]| are defined in equations (3.17) and (3.31),
respectively. When p < k, it is nearly holomorphic, of depth [gJ Otherwise, its image
under the differential operator fkﬂ/z_zlp/zJLlP/zJ is nearly holomorphic of weight
2| 2] - k+ 32 and depth 2| 2| -k +1.

Remark 1.3 'Theorem 1.2 holds also for k = 0, once one adds to the expansion 2,/y
times the constant

[ f@du) = Jim [ f@)dutz).

Remark1.4 Inthe setting of Theorem 1.2, the generating series 3", Tr4 (f)q? defines,
when p <k, a quasi-modular form of weight k + 1 and depth [gJ Note that the
constant term ¢(0, k — 1) appearing in the third sum in Theorem 1.2 vanishes when
p = k — 1, since it is a multiple of the constant term of the weight 2 weakly holomorphic
form L*~! f at the unique cusp of the modular curve of level 1. For p > k, this series can
be completed to a such a modular form using these special functions (see Remark 4.7).

The key ingredient to the calculation of the Fourier expansion in [ANS, BF2, BFI,
BFIL] is the construction of a rapidly decaying antiderivatives of the Schwartz function
used to construct the theta kernel. Such singular Schwartz functions are important also
in evaluating singular theta lifts and constructing Green currents for special divisors
on orthogonal and unitary Shimura varieties (see, e.g., [FH]).

In our case, we need not only the first antiderivative, but also the higher-order
antiderivatives. For the first antiderivative, we can build it from the error function
(see equation (3.4)). Surprisingly, the higher-order derivatives h,, defined in equa-
tion (3.17), turn out to be combinations of the Gaussian and the error function
with polynomial coefficients P, and Q,. These polynomials, which are defined in
equation (3.6), are closely related to the Hermite polynomials, and are of independent
interest.

The paper is organized as follows. After recalling some basic notions in Section 2,
we devote Section 3 to study the properties of the polynomials P, and Q, and of
related special functions, including their Fourier transforms, asymptotic behaviors,
and certain lattice sum evaluations. Then, in Section 4, we complete the computations
of the orbital integrals and the proof of the main theorem (Theorem 4.3), as well as its
implications for Theorems 1.1 and 1.2.

2 Isotropic lattices and modular forms

This section introduces the notions and notation that are required for the rest of the
paper. We follow the setup of [ANS, BF1, BFI, BFIL] and others.
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2.1 Differential operators on modular forms

For M= (%) eSLy(R) and an element z of 3 := {z=x +iy e C|y > 0}, denote
j(M, z) := cz + d. Let Mp,(R) denote the metaplectic double cover of SL,(R), and
let Mp, (Z) be the inverse image of SL,(Z) in Mp, (R). We write elements of Mp, (R)
as pairs (M, ¢), with M € SL,(R) and ¢ a holomorphic function on H such that
8(2)? = j(M,2).

Given a representation p of a finite index subgroup I' € Mp,(Z) on a finite-
dimensional complex vector space V, a function f : 7 — V is called modular of weight
K € 37 and representation p if the functional equation

fle (M, 8)(2) = ¢(2)*" f(Mz) = p(M, $) f ()

holds for every element (M, ¢) € T. Let A’ (T, p) (resp. A, (T, p)) denote the space
of such functions that are real-analytic with at most exponential (resp. polynomial)
growth near the cusps. It contains the subspaces M'. (T, p), M%(T, p), M, (T, p), and
S (T, p) of nearly holomorphic, weakly holomorphic, holomorphic, and cusp forms,
respectively. We shall omit p from the notation when it is trivial.

For a half-integer , we define

(2.1)
R,k =Ry = 2182 + %) L=1L,:= —Zi)’zaz) fl{ = 21)/”972 = yﬁizfz, and

Ay = —Re oL, = =& & = —4y%0. + 0z + 2ikydz = —y*(97 + 97) — riy(9y — i),

which are the raising operator of weight x, the weight lowering operator, the &-
operator of weight x from [BF1], and the Laplacian operator of weight «, respectively.
For n € N, we write

(2.2) R: = Ryi2n-2 9 Riy2n-4 0" 0 Ry 0 Ry

for the iterated raising operator.
These differential operators preserve modularity, in the sense that

Ry AL(T,p) € Ay s (T, p), LaAL(T, p) € Ay, (T,p), and A AL (T, p) € AL(T, p),
whereas for &, which involves complex conjugation, we have
(23) &.AL(T,p)c A5, (T,p), where p is the complex conjugate representation.

It is known that L,, R, and A, preserve near holomorphicity, with L, decreasing the
depth by I, and R,; and A,; increasing it by at most 1. For more on these modular
forms, including their relations with quasi-modular forms and Shimura’s vector-
valued modular forms, see [MR, Ze3, Ze7].

Around a given point w = s + it € J(, the natural local coordinate is
(2.4) {=A,(2) =22 e{eC||( <1}, with  1-A,(z)=2L

z=w z-w
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for any z € I, which also satisfies
i(y,w)Aw(2)
j(y:w)

for every z and w in 3 and y € SL,(R). The expansion of a holomorphic modular
form f of weight € Z is given by Proposition 17 of [BGHZ]* as

(2.5)

‘AyW(VZN = =14, (2)]

f(Z)=( 2it ) > R0 (1 @) 5 R

Note that the proof of equation (2.5) makes no use of the modularity of f, so that
this expansion is valid for every holomorphic function f. We shall need a formula
extending equation (2.5) to nearly holomorphic modular forms.

t"A,(2)"
nl

Lemma 2.1 For f € M'.(T, p) and a point w = s + it € I, we have the expansion

2o (1-4, (Z)) < (Z)”
= _Aw E _— E o .
f@= @) =0 t'(1- A, (2)] )l i

Proof We write f(z) as in equation (1.4), and express each f; via equation (2.5), but

with k replaced by x — I. Recalling from Lemma 5.1 of [Ze4] that y equals H-lAn @)

-4, ()P >
we get
( - Ay (Z)) Yo RE_ fi(w) tnAZ(Z) 21
f()Z =A@l
t(1-|Aw(2)|)
Expanding |1 -Ay(2) |2 yields the desired result. This proves the lemma. [ ]

For any ¢ > 0, we will denote the pre-image of the ball of radius ¢ in C under A,,
by B, (w) with the natural orientation on its boundary. We shall later need the limit
value of the following integral, which is determined as follows.

Corollary 2.2 Let f and w be as in Lemma 2.1, and take an integer u. Then

4l plpl-1
limf LAW(Z)HGIZ: - 1)|R flw), wu<o,
0 Jos.(w) (1= Ay (2))"72 0, u>0.

Proof The result follows from substituting in { = A,,(z), and thus dz = (lz_i(')z di,

inside Lemma 2.1. This proves the corollary. u

We will carry out some integrations of modular forms on I, with respect to

the invariant measure du(z) := d_zz’l\;iz = d’;‘jy . The following standard consequence
of Stokes’ theorem will be useful for evaluating some of these integrals (see, e.g.,
Proposition 4.1.1 of [L]).

ZNote that there is a small typo there, where the expansion in 47 yw should be in its additive inverse
—4myw.
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Lemma 2.3 Let R be a connected domain in H whose boundary oR is a piecewise
smooth path in 3 (positively oriented), and assume that f, g, and G are real-analytic
functions on R such that g = —L,G. Then we have the equality

[ f@8@du) = § f(2)G()dz+ [ 116 (E)du(z).

2.2 Lattices producing modular curves

Let V := M,(Q)° be the signature (2,1) quadratic space of trace zero matrices over
Q with quadratic form Q(A) := ~N det A for some 0 < N € Q. Then G := Spin(V) 2
SL,, and the symmetric space of G is the space of oriented negative definite lines in
Vg := M, (R)°. We can identify 3 with the connected component of this symmetric
space that contains the line spanned by (‘1’ o )as a positive generator, via the map
taking z € H to RZ*(z) with

L . 1 x _| |2 . 1 -2
4 (z)._\/ﬁy(1 _Zx ), and we set  Z(z) _\/ﬁ(i —Zz )

S

It is easy to check that y-Z*(z) = Z*(yz) and y- Z(2) = j(y,2)*Z(yz) for every
Y € SLz(R)

Given A € Vg with Q(1) = —& < 0, we know that A = £Z*(z; ) for some z; = x; +
iy € H, withsgn(&) = —sgn (1, Z*(z,)). In this case, Lemma 4.2 of [Ze4] proves the
equalities

1+ |4z, (2

. (12(2)) = -2 coshd(,22) = 25(|Z o l):‘z‘E RFE
2.6

(z-2)(z-21) _ 4604, (2)
LZ(2)) = - - :
(2(2)) = 26— (1A, (2)

where d(z, z)) is the hyperbolic distance between z and z,.

Fix an even, integral lattice L € V, with its dual L* := Hom(L,Z) viewed as a
subgroup of V containing L, and Dy, := L*/L the associated finite quadratic module.
We denote I = I, € G(Q) = SL,(Q) the inverse image of the discriminant kernel’
of L, and set Y := Y7 := T\} to be the associated (open) modular curve, with the
projection map 7 : H — Y. For every h € Dy and m € Z + Q(h), we denote

(2.7) Lyn:={AeL+hlQ(A)=m}.
Typical examples can be found in [BO], [AE], [LZ], or [Ze6]; e.g.,
(2.8) L={(Z%%) =—det and T =SL,(Z).

3For convenience, we shall henceforth assume that T € SL;(Z) (see Remark 2.4).
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Furthermore, let p; be the Weil representation associated with L, in which Mp,(Z)
operates on the vector space C[ Dy ], with the canonical basis {¢j, } nep, (see [Bo, Sch,
Str, Zel] and others).

2.3 Cusps and geodesics

The Baily-Borel completion H* of K is obtained by adding the set Iso( V) 2 P{(Q)
of isotropic lines in V. Let £o, € Iso( V') be the line spanned by u, := ( 00 ) and given
£ € Iso( V'), we take an element oy € SL,(Z) such that £ = 0,0o,, and set uy := Gyt If
[, € T € SLy(Z) is the stabilizer of ¢, then there exists a; € N, called the width of the
cusp ¢, such that

(2.9) 07 ' Toop = { = (§ " )|n e Z}.
Let 0 < 8, € Q be such that
(2.10) Lnl=27ZBsup, andset egp:= %

When (L + h) n ¢ # @&, we define 0 < kg ;, < B¢ to be the unique number such that

(2.11) (L+h)nl=(ZBo+kopn)us, andset wpy:= ké” +Z eR/Z.

All these parameters are constant on I'-orbits.
Near the cusp associated with ¢ € Iso(V'), we work with the coordinates

(2.12) Zo=Xx¢+iypi=07'z and qe(zy) = e(z—z).

For ¢ > 0, we define the neighborhood B, (¢) : {z € 9{||qg (z¢) < €} of the cusp £. The
set

(2.13) Hr:=H\ J Bear(l), for T>1,

Lelso(V)

is T-invariant, and Y7 := [\Hr is a truncated modular curve, with a fundamental
domain*

(2.14) Fr(L):= U aJF, where ‘%':O( )7
LeT\ Iso(V) j=0

is composed, for « € N, of « translations of
Fre={z=x+iyeH|x|<i, |]>1, y< T}

Remark 2.4 'The assumption I' =T € SLy(Z) is satisfied for the large family of
lattices from [Ze6], but not for every lattice L in V. However, the only place where
we use the assumption that T € SL,(Z) is in the form of the fundamental domain
from equation (2.14), with T >1 being a sufficient bound, and in the integrality of
the parameter ay from equation (2.9). Since none of these facts are used in any proof
below, our results hold equally well for more general lattices.

“The fundamental domain actually depends on a choice of representatives for I'\ Iso(V'), but we
suppress it from the notation since this choice does not affect the results later.
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An element A € Vg with Q(A) > 0 defines a geodesic
(215) ¢y = {z € i]-(|()t,Zl(z)) = 0} c K, as well as c(A)=T\cy Y,

where T is the stabilizer of A in T. For A4 = ( 3 %) € V, we orient the geodesic c;, =
(0,ic0) to go up, and transfer this to an orientation on ¢, and c(A) for each such
A € Vg via the action of SL, (R). We have the following well-known dichotomy.

Lemma 2.5 Let A€V be such that m = Q(1) > 0. If me N - (Q*)?, then Ty is the
trivial subgroup {+1}, and the geodesic c) connects two cusps in P'(Q). Otherwise, the
image of T in SO* (V') = PSL,(Q) is infinite cyclic.

In the first case in Lemma 2.5, we call A split-hyperbolic. For m € Q and for A € V,
we then set, by a slight abuse of notation,

(2.16)
1(m) = {1’ if \/m/N € Q%, 1, if A is split-hyperbolic,

0, otherwise, 0, otherwise.

and ()= {

If1(1) =1, then A* is spanned by £, and ¢_, in Iso( V'), which correspond to where c,
ends and begins, respectively. If Q(1) = m, then we have

(2.17)
a[ll/\ =4/ %(}) ’3{" ) forsome ry€Q, with 7y +ayZecQ/apZ canonical.

The canonical image r) + oy, Z € Q/ay, Z from equation (2.17), which we shall hence-
forth still denote by just 1), is called the real part of c), and it is constant on I'-orbits.
For £ € Iso(V), m > 0, and h € Dy, we set, for later use, the symbol

1, thereexists A € L,, , N ¢*, positively oriented if m > 0,
(2.18) lg(m,h) = { X1 m,h ) vely

0, otherwise.

In other words, for m > 0, we have 1p(m, h) = lifand only if £ = £, for some A € L,, .
The additive subgroup L n ¢ acts on L,, , N ¢*, and we have the following standard
result.

Lemma 2.6 (Lemma 3.1 of [BFIL]) For £€lIso(V), 0<meQ, and h e Dy such
that 1y(m, h) =1, the natural map Ly, , N €* - (L, 0 €1)/(L 0 L) factors through
T\(Ly,n N ). For every A € Ly, 004, there are 2\/%82 pre-images of A+ (Ln¥{)
in To\(Lm,n 0 £*), namely the images of {A + jBuel0 < j < 2\/%e; — 1} modulo Iy

Remark 2.7 The number 2, /%8@ from Lemma 2.6 is therefore integral. Moreover,

for ¢, m, and h as in Lemma 2.6, take some positively oriented A € L,, , N ¢*, and let
r) be as in equation (2.17). Then we have

{rulu € Ly, 0 €* positively oriented} = r) + %\/gZ/o%Z cQ/ay,Z,

a set of 2\/%54 evenly spaced elements of Q/ay, Z.
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2.4 Schwartz forms, theta functions, and Shintani lifts

Given k € N, we can define the Schwartz function

~ k 2 iv
(2.19) Pr(LiT,2) = (1, Z(2)) e[ Q)T+ (1, 2" (2)) ]
for A € Vg and 7 = u + iv € H, and construct the vector-valued theta function

(220)  Orr(1,2) = ), Orrn(T,2)en, Orrn(t,2) =V Y ¢r(Ai,2).
heDp AeL+h

Theorem 4.1 of [Bo] implies that for fixed zeXH, we have Oy (7,2)¢€
A1 (Mp,(Z), p1.), whereas for fixed € J, it is easy to verify that @ ;(7,z) €
A_2x(T) for every h € Dy. After collecting terms, we can use equation (2.7) to rewrite

(2.21)
Okn(1.2)=Vv > ()\,Z(z))Ice"”’(}"zl(z))2 q",  q.=e(7).

meZ+Q(h) L AeL,,

Recall that the (probabilists’) Hermite polynomials are defined as

2 n 2 n [n/2] _ !
(222) Hey(§) = (-1)" /(&) e ¥l = (6- &) 1= Y (-1)°n!

fn—Zb
& bi(n-2b)2t°

Then, for ¢ € Iso(V') and k € N, one defines the unary theta function

(2.23)

He, (\/m(ggla,ﬁ(Z(i))))qo(A) 3 en

Ae(L*ne) /(L*ne) (27v)k/2 heDy
h+(L*ne)/(LnL)=2

=3 > a(®kem h,v)q e, GA,H%(MpZ(Z),pL), with
heDy 0<meZ+Q(h)
1(m)=1

O (7) =

a(@g, g, m, h,v) =

(2mv)k/2 (0, h), m = 0.

Hey, (2v/27mv) {(lz(m,h) + (-)ki(m,~h)), m>o0,
Remark 2.8 'The theta functions ®g(7,2z) and @y, (7) from equations (4.1) and

(4.2) of [ANS] correspond to (—v/N/y*)¥*'@s,1.1(7,2), (=iv/N)*Oy (1), and
equation (2.23), respectively, in our setting.

The function @ 4 from equation (2.23) appears in the asymptotic expansion of the
theta kernel ® ; from (2.20), as is given in the following result. It is essentially part
(2) of Proposition 4.2 of [ANS], which refers to Theorem 5.2 of [Bo] for the proof, and
can also be proved using properties of appropriate variants of the lattice sums from
equation (3.34) below.

https://doi.org/10.4153/50008414X22000396 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X22000396

Shintani lifts of nearly holomorphic modular forms 1457

Lemma 2.9 Given { € Iso(V'), there exists a constant Cy > 0 such that

-k k+1
Y

V/NB¢

For f € A}, (T), we follow [ANS, BFI] (among others) to define its regularized
Shintani lift, using the fundamental domain from equation (2.14), to be the theta

Oe(T) + O(e_c“'z) as  y;— oo.

(k.1 |2k,z 00) (15 2¢0) =

integral

(2.24)

Tea(n.f)= X CT5=0[ im [ (f |k 00)(20) (@, |2k 00) (7. 20) y¢ " du(2e) |
LeT\ Iso(V) T=oo JF;

which is an element of A, 1 ( Mp,(Z),p L). When the constant term of f at every
cusp is zero, the integral converges absolutely and no regularization is necessary (see
Proposition 4.1 of [BE2]).

3 Special functions

In this section, we construct singular Schwartz functions that serve as higher-order
antiderivatives of the ones appearing in the theta kernel. This requires the study of
several families of polynomials and a few types of special functions and their proper-
ties, including their Fourier transforms and lattice sums. All of these expressions show
up in the evaluation of the various parts of the Shintani lift of nearly holomorphic
modular forms in Section 4.

3.1 Familiar functions

Let g(&) denote the Gaussian e~¥12 For £ > 0, it has the antiderivative

Nz £ o 1 e _ds 1
31) Y= erfc(—= :—f ew/dw:—f e —==-—I(%,%),
G /2 (\/5) ¢ en’ Vs /2 (2 )

where erfc is the complementary error function and I'(y, t) is the incomplete Gamma
function defined as

ST

[(p,t):= f e_ss”é
t s
for t > 0.If 0 < p € N, then this formula is well defined for every ¢t € R, and for u € Z,
it is meaningful for ¢ < 0 as follows: If y = 0, then the integral is defined using the
Cauchy principal value, and for smaller y, we employ repeated integration by parts.
The explicit formulae are given by

(3.2)
e (u-)IXh L= et (1- %)”71%, when0< yeNandteR,
T(ust) =4 oy il
) (r(o, £ +e ! X i), when - €N, and  # 0,
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I'(0,¢) can also be written as —Ei(—t) using the exponential integral Ei(t) :=
— [ e 4 and the equality

(3.3) LT(p,t) = —e 't

holds whenever I'(y, t) is defined.
Modifying the antiderivative from equation (3.1), we now define

Ga)  e(®) = BON(L ) - _ggn(d) [m” e Pdw for £%0.

It decays rapidly as |£] — oo, but it is discontinuous at & = 0 with the jump
gin(}+ e(&) - EILIE e(§) =-v2r(1,0) = -v2nm

We therefore have, as distributions on R, the equality

(3.5) see(8) = g(8) - V2m-8(8),

where §(£) is the Dirac delta distribution. Our next goal is to find higher-order
antiderivatives of g(&).

3.2 Two families of polynomials

First, we will consider two sequences of polynomials in Q[ £], which we denote by P,
and Q, with v € N and defined recursively as follows. They will show up in equation
(3.17) and Proposition 3.14, whence their importance. Set

Py(&)=1 and Qu(&) =0, as well as
Py(§) =Pra(§) and  Py(§) + Q(8) — §Qu(8) = Qva(§) forv 2 1.

The fact that equation (3.6) defines unique sequences of polynomials, and their parity
properties, are established via the following lemma.

(3.6)

Lemma 3.1 Let p and q be two polynomials in Q[ &]. Then there is a unique pair (P, Q)
of polynomials P and Q such that P' = p and P + Q" — £Q = q. Moreover, if p and q have
opposite parities, then so do P and Q, with that of P (resp. Q) coinciding with that of q
(resp. p). In addition, if p + 0 has leading coefficient r and deg q < degp, then deg P =
deg Q +1=deg p +1and the leading coefficients of both P and Q are 3+ gP
Proof Letg(¢):= ¢=¥/2 denote the usual Gaussian. Then, for each k > 1, the poly-
nomial

pi(§) =g(§)" ( (£)8") = (k-1)§2 - & cQ[¢]

has degree k, parity (-1)*, and leading coefficient —1. It is thus clear that {1} U {ps } k1
is a basis of Q[ ] over Q, that respects the parity decomposition. Therefore, there exist
unique P € Q[£], c € Q, and Q € Q[ £] such that
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B'=p, P(0)=0, and g(f)(q(f)—f’(f)ﬂ)=di€(g(€)Q(f))
- g(5)(Q(8) - £Q(8).

Setting P := P — ¢ proves the first assertion. For even g and odd p, P and Pare also even,
and Qis thus odd. If g is odd and p is even, then P is also odd, and then integrating from
—o0 to oo shows that ¢ = 0 in this case, completing the proof of the parity assertion.
The assertion about the degrees and the leading coefficients when deg g < deg p are
now easily checked from this construction. This proves the lemma. [

Corollary 3.2 Equation (3.6) defines unique sequences {P,}52, and {Q,}2, of
polynomials in §. Moreover, P, is a polynomial of degree v with leading coefficient -;
and parity ( 1)Y for any v > 0, and Q, is a polynomial of degree v —1 with leadmg
coefficient X and parity (-1)""" for any v > 1.

Proof All the statements hold for v = 0 by equation (3.6), and once they hold for
v -1, taking p = P,_; and g = Q,_; in Lemma 3.1 determines P, and Q, as P and Q,
respectively, with the required properties. This proves the corollary. ]

For convenience, we list the polynomials P, and Q, for 0 < v < 4:

+3£ 168 +3

, Pa(§) = 7;

PO =1 PO =& Pa(8) = L py() = o
+5€

Qo) =0, Qu(E) =1, Qs (&) = Q3(»:)-f 5 L Qu(8) =

It will be useful for us to consider the (ordmary) generating series

) o)

(3.7) Y(Et): Z ()t and Y(&t): Z &t

considered, at the moment, as formal power series in ¢ and ¢, on which derivatives
operate in the usual, formal way. They can be characterized in the following way.

Proposition 3.3  The formal power series ¥ = V(&, t) (resp. Y = Y (&, t)) is character-
ized as the unique real-analytic function satisfying the following properties:

(i) For each power t* of t, the power series in & that multiplies it is finite, i.e., a
polynomial.
(ii) Att =0, we have the equality ¥ (&,0) =1 (resp. Y(&,0) = 0) as series in &.
(iii) The power series satisfies the differential equation

af\y(f) t) :t"{/(f, t) (resp. \P(f’t)+afY(f’t)_£'Y(E) t) :1+t'Y(f>t))'

Proof Assume that ¥ and Y satisfy these properties, and write their expansion in
t as in equation (3.7), with polynomial coefficients P, (&) and Q, (&), respectively,
by Property (i). Now, Property (ii) implies that P, and Q, satisfy the condition for
v = 0 in equation (3.6), and also explain the existence of the term 1 in the differential
equation for Y in Property (iii) (set t = 0 there). Next, comparing the coefficient
of t¥ with v >1 in the series resulting from substituting these expansions into the
differential equations from Property (iii) yields the other part of equation (3.6).
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Hence, {P,}2, and {Q,}32, are sequences satisfying that equation, so that P, = P,
and Q, = Q, for every v € N by Corollary 3.2. This proves the proposition. [ ]

Proposition 3.3 allows us to determine the series ¥ and Y explicitly as the expan-
sions of real-analytic functions, which also shows that their Taylor expansion in (3.7)
converges absolutely for all # and &.

Regarding Property (i) in that proposition, see Remark 3.5.

Theorem 3.4 The power series ¥ and Y from equation (3.7) describe the functions
2 2 &+t )
V(& 1) = eSt/2 and Y( t) = (&2 ff e 2y
= pltt/2 ft e~ Eww 2 g,
0

These functions also satisfy the differential equations

(at - E)\P(f’ t) = t\P(& t) and (at - E)Y(f’ t) = tY(&‘) t) +1L

Proof Itsuffices to show that the asserted series have the properties from Proposition
3.3. Property (ii) is immediate for both (by substituting ¢ = 0), Property (i) for
¥ is easy to check by expanding it in ¢, and the two differential equations (that
from Property (iii) and the one asserted here) are easily established by simple
differentiation. Differentiation also shows that

DY (E ) = (E+ O)Y(E 1) + eE [0 L 8R) _ (£ 4 )Y (§,8) +1-W(E, 1),

from which Property (iii) for Y quickly follows.

Next, note that Property (i) for Y is equivalent to 0} Y (&, t) | .o being a polynomial
in & for every v € N. To see this, we first evaluate d,Y(&,¢) as 1+ (£+ )Y (&, ¢),
yielding the remaining differential equation as well. Simple induction now shows that,
for every v, the derivative 0] Y (&, t) isa polynomial in & + ¢ plus another polynomial in
&+ ttimes Y (&, t). After substituting t = 0, the fact that Y(£,0) = 0 yields the desired
assertion. This proves the theorem. [ ]

Remark 3.5 If one considers Property (iii) from Proposition 3.3 as differential
equations for functions, then solving them implies that there exist functions y(¢) and
¢(t) such that as functions, ¥ (&, ¢) and Y (&, t) are

2 2 E+t 2 ©0 2
v(t)et 2 and (D /2l<p(t) + ff e Pdw + (y(t) -1) /E e /Zdw],

respectively. The initial conditions from Property (ii) amount to the equalities y(0) =
land ¢(0) = 0. Showing that the polynomial property of the Taylor expansions from
Property (i) in Proposition 3.3 is equivalent to y and ¢ being the constant functions
with the respective values seems, however, not very straightforward.

Remark 3.6  The differential equations from Theorem 3.4 also imply that
VP, (&) —EP,_1(&) = P,5(&) and vQ,(&) - EQ,1(&) =Qy2(&) forall v>2.
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For the explicit expressions for the polynomials from equation (3.6), recall the well-
known formula for the generating function of the (probabilists’) Hermite polynomials,
stating that

2 (o) tv
(3.8) et = S He, (&) —.
v=0 vl
It can be proved, for example, by comparing equation (2.22) with the Taylor series of
e (&=D%/2 gt ¢ = 0. Theorem 3.4 then implies the following result.
Corollary 3.7 For every v € N, we have
-&/2 1 v/2] z;‘v—Za
e v 2 v
P& = T b, (1) = et o (e )" L

vl 4y v & al(v-2a)l2e’

In particular, P, is a polynomial of degree v and parity (-1)" such that v!P, € Z[&] and

P,(0) is mfor even v and 0 for odd v.

Note that the proof of Theorem 3.4 yields the equality 0,Y (&, 1) = 0;Y(&,t) +

¥ (¢, t), from which we deduce that Q,41(&) = w, and using equation (3.6),
we get

l(Vi)/ZJ (v-1-a)!

69 Q-3 e, (- Dy (O,

|

a=0 : a=0 vl

with P, () given in Corollary 3.7. It is thus indeed a polynomial of degree v — 1 and
parity (=1)*"! such that v!Q, € Z[&]. It follows that Q,(0) = 0 for even v, whereas if
v is odd, then

2T () 2
(3.10) Q.(0) = (VZ) =

o 2j+1

Remark 3.8 'The recursion (3.6) extends naturally to v € Z, in which case P,(£) =0
and

Qu(§) = (-1)"""He_1-,(£)

for v < —1. We take these as the definitions of P, and Q, in these cases. Then Remark
3.6 extends to all v € Z.

The polynomials He, form an Appell sequence in the sense that He!, = v He,_; (see,
e.g., the exponential example in Section 5 of [Ze5] and some of the references therein),
and Corollary 3.7 shows that the same applies also to the polynomials v!P,. This means
explicitly that the equalities

(3.11) He,(¢+7) = Z( ) 'He, j(§) and P,(&+7)= Z i ](5)

Jj=0 j=0

hold. This either follows from the generating function ¥ (£, ¢) (as well as the expo-
nential generating function eft-'/2) being e** times a function of & alone (see, e.g.,
[Ze5], even though this was known much earlier), or by simple computations using
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the explicit formulae. A change of variable in equation (3.11) produces, for every I € N,
the equality

l

(3.12) + )P (8) = P({) € Q[E, (]

3.3 Auxiliary polynomials
We now define a few other families of polynomials, which will appear later in the
Fourier expansion of the Shintani lift.

Lemma 3.9 For any | € N, the polynomial

1 _1\Vv
MED =Y (0

has degree | — 1 in &, and it satisfies the equality T1;(-{, {) = =Q;({). We also have

(0 =60 and ax(ms00) - (Lm0 Juo

(E+0'7"Qu(§) € Q&

for every I € N, and the generating series

il‘[,(f, Ot = et _[te'fw_wz/ldw.
0

Proof The degree in ¢ and the value of I1; (-, {) are immediate from the definition.
Substituting the definition of I1; (£, {) inside the generating series produces

oo vl
Z:Z: l)t

(with g = I — v > 0), where we have substituted equation (3.7). The value of the series,
which we denote by ®(¢&,{, t), now follows from Theorem 3.4. One checks directly
that this series satisfies the differential equations

LE 0 )ii EER R0 Qu(0) = O (g )

AD(E (,t) = td(E,(, t) and (3 — E)D(E, () = efz/“fffot(s— w)eE 2 gy
= (&0 _ (L, 1)

(using Theorem 3.4 again), from which the two required equalities follow for every I
after expanding everything in ¢. This proves the lemma. [ ]

Remark 3.10 Write the sum I1;(£,{) + Q;({) as II;(£+{,{) for some polyno-
mial I1;. The equality IT;(=¢, ¢) = ~Q;({) from Lemma 3.9 implies that IT;(w, {) €
wQ[w, ].

Using the polynomial IT; from Remark 3.10, we define

513) E(0) “’“ *( Og(e)at RILI.

7

We shall need their following properties.
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Lemma 3.11 We have Eg = E; = 0, E;(={) = (-1)'E;({), and E;({) € Q[{] for the
polynomials from equation (3.13). Moreover, if H, :== ¥ _, % denotes the nth harmonic
number, then we have

1
E@=-p©) Y 1o PO0y gy for ren

a=1, 24+a a 2

Proof Theorem 3.4 and Lemma 3.9 evaluate the generating series

gEz(C)t’ - gj_:g(f)wtldf

t oo 1- (&+Ow
= [ et [ () —dédw.

We now claim that for every real {, w, and h, we have
1 [eS) e(er{)W -1
V2 /:oo §+¢

To see this, we differentiate the left-hand side with respect to w and apply the usual

(3.14)

8(f+h)d€=f (=Mt f2 g
0

trick of completion to the square in order to obtain \/%e((‘h)w“"z/ % times [ g(&+

h —w)d&. As the latter integral equals /27, we deduce that both sides have the same
derivative with respect to w, and since they both vanish for w = 0, they are equal for
every w. Substituting equation (3.14) into our generating series yields

iEz(()tl :—e“”zﬁfte_(“"“’z/zfwe(s“z/zdsdw,
=0 0 0

yielding the vanishing of Ey and E;. We apply the operator { + ¢ — 9, to both sides, and
using Theorem 3.4 again, with equation (3.7), we get

(CEI(() +E1(0)-(1 +1)El+1(())tl _ /(;te(ﬁsz/zds

iﬁ&a@m:iHJOﬂ

I=1 !

N

I
—

The resulting recurrence relation establishes the rationality and the parity, and as the
asserted values for the constant terms satisfy the resulting relation for { = 0, these
values follow as well. This proves the lemma. ]

Given [ € N, equation (3.12) and the definition of the polynomials IT; in Lemma

3.9 show that 2 (5)_(5112@,(() and Q’(f)_(gi)(ln’ &0 are polynomials in Q[£, {]. We can
then define

(3.15)

Q(¢) =

1 /°° (Pz(f)—(—l)le(C))e(5)+(Qz(é’)—(—1)’Hz(5,())g(f)d€
V2m J-e §+¢ ’

and deduce the following properties.
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Lemma 3.12  The generating series of the polynomials from equation (3.15) is

oo 22 _ esz/z

Z Ot _f el T8 g

=0 t—s

Proof By applying Theorem 3.4 and the generating series from Lemma 3.9, we can
write

oo e 2 roo H(HE)E

O == | T (e(s)+g<£> Ji te_EW‘WZ/Zdw)df,

where the second term in the parentheses is fot g(&+ w)dw. We now claim that

%) e((‘*"f)t 1 esz/Z
(3.16) \/E f Le(e)de - f ——ds.

Indeed, as with equation (3.14), both sides vanish for ¢ = 0, and for comparing their
derivatives with respect to t, we employ integration by parts and use equation (3.5)
and the equality [ g(&)d& = /27 again. Substituting equations (3.14) and (3.16)
transforms our expression for the generating series into

’/2
e_(z+t2/2(fte(sl_es/ds+/tfte(<‘w)”52/2dsdw)
0 S 0 0

2
) t 1—e° [2—ts
:e—(t+z /2] e(s ds,
0 N

from which the desired formula follows by taking s+~ t—s. This proves the
lemma. n

Remark 3.13 Expanding all the exponents in the generating series from Lemma 3.12

. . . . 0o oo w2b-1 M pm
and integrating yields the series >>,7_o Y521 Yroo T 2b i)’

sum over r can be written as the difference H,y,,, — H,, between two harmonic
numbers. Writing as P, (0) as well as P,p_1(0) = 0 using Corollary 3.7, we deduce
that

where the internal

_1
2bp!

l—v -2

= (- HE o

is a rational polynomial of degree I — 2 and parity (—1)’ every I € N. We shall later also
need, for k € N, the rational, (~1)*-symmetric, degree k — 2 polynomial

Q;(¢) = (-1) ZP(O)(HI Hi_,)——

HeVO nkr
( Hk_Hkv)(k ok

Qi(n) = (-i)*Qi(in) = (-1)* Z

3.4 Singular Schwartz functions

For every v € Z and & € R, we shall now define

(317) hy (&) = Py(§)e(8) + Q. (§)8(d),

which has the following property generalizing equation (3.5).
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Proposition 3.14  For any v € Z, the function h, has parity (-1)""", and we have
2ehv(8) = hya (8) = V2m- P(0) - 8(8).

Proof The parity follows from that of the polynomials P, and Q,, from Corollary 3.2.
The second claim follows from equation (3.5), the equality g'(&) = —&g(£), and the
relation from equation (3.6). This proves the proposition. ]

Remark 3.15 'The decay of g and e from equations (3.1) and (3.4) imply that
|hy (8)] = os,v(e’(l’s)sz/z) as |& - oo for veZ and &>0.

Lemma 3.16 For any v € Z and &> 0, we have the equalities vh,(&) — Eh,1(&) =
By a(8) and L@ _ _ha(®)

d£ EV £V72
Proof The first equality is a direct consequence of Remarks 3.6 and 3.8, and the
second one follows from the first via Proposition 3.14. This proves the lemma. ]

Since h, are in L' with exponential decay, their Fourier transforms h, should be
bounded and C*°. However, for v > 0, h, is not C*, hence not a Schwartz function,
and thus 4, need not be in L. The explicit formula is given in the following result.

Proposition 3.17 For every v > -1 and t € R, we have the equality

() = [:hv(f)e(—&)df:\/z_( st 5 O )

t)v+1 — Zﬂlt)v r+1

-V i P,(0)

r=v+1 (Zﬂit)v_r+1 .
In particular, h, is bounded and C*.

Proof The case v = —1is just the Fourier transform of the Gaussian, combined with
equation (3.8) and Corollary 3.7. Now, applying the Fourier transform to Proposition
3.14 yields the equality 27it - i, (t) = hy_y(t) — /27 - P,(0) for every v € Z. The gen-
eral formula follows by induction on v (to both sides), and implies the boundedness
and C* properties. This proves the proposition. ]

For two indices s and v in Z, we define the function

_ (KZ(2)" L
(3.18) Prv(L,2) = Whv(\/zn()t, Z'(2))),
with A € Vi and z € H such that (A, Z*(2)) # 0. For & < 0, we also impose the condi-
tion (A, z (z)) # 0. These functions decay like Schwartz functions by Remark 3.15. But

near points where (/\, z*+ (z)) or (/\, Z(z) ) vanishes, they may become discontinuous.
They are therefore “singular” Schwartz functions. The reason for introducing them will
be clear in Proposition 3.18.

The parity from Proposition 3.14 implies that

(319)  ¢pu(-1,2) = (-1)""g, ,(A,z) forevery AeVg and zeX,
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and the behavior of Z(z) and Z*(z) under the action of SL,(R) implies that the
function ¢, , (A, z) from equation (3.18) has the modularity property

(320) @.\ (YA, y2) = j(y,2) " 9uv(A,z) for Ae Vg, zeH, and y € SLy(R).

Note that for all k € N, the functions from equations (2.19) and (3.18), and the
expansions from equations (2.20) and (2.21), are related by

(3.21)
or(l1,2) =v —k/2 Q(Mgok 1(\/_)L z) and Oy 1 p(7,2) = v Z Z (pk,,l(\/;)t,z)qf’,

meZ+Q(h)A€Ly,

since h_j is just the Gaussian g. Moreover, since Z(z) — yZ*(z) = i( 4 73#), we can

write VN
(3.22)
¢N,V(A,z):%hv(s) with &=V2r(3,24(2)) and 7=/2(1 (3 ),

and prove the following result.

Proposition 3.18 Take k and v in Z as well as an element 0 + A € V. Then we have
“L:9rv(A2) = Qri1v-1(A, 2)

at every point z € H such that (A, Z*(z)) # 0, where if k < 0, then we assume that z
must also satisfy (1, Z(z)) # 0.

Proof Write ¢, , (A, z) as in equation (3.22), and then simple calculations give that
L.y=y* L,{=~-y(E+in), and L,y = 0 in these parameters. Combining this with
Proposition 3.14 produces the desired result. This proves the proposition. [ ]

Note that the assumption (/\,Z (z)) # 0 is always satisfied when Q(1) > 0 (and
A #0), and if Q(A) < 0, then it holds for every z € I except a single point, in which
Z*(z) is a scalar multiple of A.

3.5 Fourier transforms

We shall also need the Fourier expansion of the following generalization of the
functions h,. Take x € Z, and then for £ € R and # € R, we define

ec(&n) = (E+in)""ho(§) = (§+in)"e(§)  and
g (&) = (§+in)" " ha(§) = (& + i)™ 'g(8).

For any | € N, we use equation (3.12) and the polynomials from Lemma 3.9 and define

(3.23)

(3.24)

gt (Em) = Puin)en(En) + TL (& in)ga(Ein) = ZO o

(£+lrl)ﬁ+l v— lh (5)
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By applying equation (3.5) and the derivative formula from that lemma (or Proposition
3.14 with equation (3.12)), we get

(325)  Oegurni(En) = kgt (&) + W —V2r(in)"Py(in)d(¥).

We assume that # # 0 in case £ < 0, and then the expression from equations (3.23) and
(3.24) are L' as functions of &. Let thus &, &, and g,.; denote the Fourier transform
of e, g, and g, ; in &, respectively. The results for # < 0 can be obtained from those
with # > 0 because we have

8.1 (&-1) = (-1)""'g,.1(-&#) andhence gri(t-1) = (-1)""'gai(-t:1).

For analyzing the behavior of g, ; (#; 1), we shall need additional special functions.
ForeveryveZ, je N, t e R, and y > 0, we define

(3.26)

Lj(n )= |

o (w+t j —awl —w? v He (O) dW
( j' ) ¢’ (e " Z :"Wﬂ) wv+l’ Iv(ﬂ) = IV’O(H’O)'
. §=0 .

For v < -1, this is defined for all # € R. It is easy to check that
(3.27)

He, (0
Oyl (1 1) = L (. 1) + 2o0)

']l

for all vand j (note the difference in the summation over ¢ in I, jandinI,_; ;) and thus

He, (0)
!’1j+1

f (w+t) e ™dw = —I,j(7n,t)

in particular I}, (1) = He"fvo) —I,-1(#), while equation (3.1) and simple differentiation
give

(3.28)

2 Iv . ,t , f . > 1,
Ii(n) =—e" /26(17) and 0¢Ly,j (1, 1) :{ goi(mst), if j

e'g(t), ifj=0andv=-1.

Using the functions from equation (3.26), we can now evaluate the Fourier transforms
€. and g, of the functions from equation (3.23) as follows.

Lemma 3.19 For k > 1, we have the equalities
e -1\ (ig) e (d \"[gent) -1
eL(tn) =V2 || | === d
&(t:1) 71;;;( 7 ) (=2mi)* \dt 2mit an
g.(t;17) = V2r(=i)" " He,_, (21t — )g(27t).
On the other hand, when k < 0 and 1 > 0, we get
& (tn) =V2m-i"e ™ Iy (g, 2nt) and Gr(t;n) = V2m-i" e Ly . (y, 211).

Proof The results for x>1 follow from applying the differential operator
-1
(i n- %)H to the cases v = 0 or v = -1 of Proposition 3.17, respectively, combined
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with equation (3.11) for the latter. For the case x < 0, we recall that

cK— I(Z”t)lhl rmt

2w #’ lft>0,
0, ifr<o,

[ imye-gnde - {

and we can express the Fourier transform of the product as the convolution of the
Fourier transforms. This proves the lemma. [ ]

Remark 3.20 Consider the function &+~ (&+in)"'h,(&), generalizing equation
(3.23) to any v. Its Fourier transform can be evaluated via the proof of Lemma 3.19,
using the full Proposition 3.17 and Corollary 3.7. When x <0, this gives just

V2mi**VI, (7, t). For k=0 and t = 0, this reduces to the equality [ hfi(;)dg =
V2mivL(n).

We can now deduce the following useful property.

Lemma 3.21 For every v € Z and 1 > 0, we have the equality ;73%7 1”15:7) = I”’;ﬁ,(f).

Proof Using equation (3.27), Remark 3.20, and the first equality in Lemma 3.16,

we get

1+viIV(’7) HEV(O)
dn n*

= (nLy-1(n) + vL,(n))

_ HeV(O) B f‘x’ vh, (&) +inh,_ l(f)
vl V2r J- E+in

_ Hev(o) v—2 f)
- (£+z h”‘l“))dg'

The first integral produces the desired result I,_,(#) by Remark 3.20 again, and inte-
grating Proposition 3.14 evaluates, via Remark 3.15, the second one as —(-1)"P,(0).
As this cancels with the first term by Corollary 3.7, this proves the lemma.

n

One can also show, using the polynomials from equation (3.30), that

(3.29)
I,=P,Iy-Q,0_;+Q,, witha polynomial Q, of degree |v| — 2 and parity (-1)".

We can also evaluate the Fourier transform of g, ; at t = 0.

Proposition 3.22 Givenany k € Z, | €N, and n > 0, we have

K11

Varm - (=)' (Li(n) = Qu(n)), if =0,

g.1(0:7) = -2 (He,ﬁl(n) -n" Hel(n)), ifc+0and k+12>0,

where I,,; and Q. are defined in equation (3.26) and Remark 3.13, respectively.

Proof When x # 0 and # > 0, we can integrate equation (3.25) (using the fact that
Remark 3.15 extends to the functions g, ;) to obtain
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g0 = [ Twatinae- L [T (- B S0 oo Jag
:1( ekt +\/_1’1(111)(1'11)}6)’

K I

which gives the desired value by Lemma 3.19 and Corollary 3.7.
When & = 0, we evaluate directly, where the formula from Remark 3.20 gives

G 0n) = Var(-i) 1 - (1) [T O (UL = R e o

As equation (3.17) transforms the latter integral into (~1)'\/27Q; (i) via equation
(3.15), we get the desired value by Remark 3.13. This proves the proposition. ]

3.6 Asymptotic estimates

For determining the asymptotic behavior of the functions I, ; and the Fourier trans-
forms g,..;, we shall also need the following special functions. Like the definition of
Qy in Remark 3.13, the polynomials P, and Q, for v € Z given in equation (3.6) and
Remark 3.8 have the modifications

(3.30) P,(n) = i"P,(in) and Q. () :=i"7'Q,(in),
of the same parities as P, and Q,. Using these, we define the functions
(3.31)

. 2/ . ’1’22 0o NS _ ol
) =gim) =™ go(n)i= = [["ePar= o [ g(5)ds
and Jv(1) = Py (m)Jo (1) = Qv(1)J-1(17) for veZ

(the two expressions for ] (#7) are the same because they vanish at 77 = 0 and have the
same derivative, and since Py = Q_; = land P_; = Q, = 0, the two definitions for v =
and for v = -1 coincide). Since the polynomials from equation (3.30) satisfy 1dent1tles
analogous to those from equation (3.6) and Remark 3.6, the latter of which yields the
equality 4], (1) + nJ,-1(n) = —J,—2(n) for every y and v, evaluating the derivatives of
Jo and J_; implies, for all v € Z, the relations

3i Jv(1) _ Jv-2(1)
d,,l n nv—Z :
The following estimates will be helpful when we evaluate sums of Fourier trans-
forms later.

(332 J,=~Jvan Ju(-n)=(-1)""J,(n), and

Lemma 3.23  For any € > 0 and fixed 1 € R, we have the asymptotic growth

Iio(n,t) = {\/E] 1(’7)+o,1 (e (- s)t/z) R

ms(e (1-¢) ¢ /2), t - —o0,
with J_1(n) from equation (3.31). More generally, given j € N, we have

Lyj(n,t) = Pi(t =) ao(n,t) + 050 (e0D2)  as 1o soo,
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Moreover, given > 0 and such e, and with ], from equation (3.31), we get

j IR P \/271]0(11)4-0]-,,1(%), t — oo,
thO»](YI’t)_ ( 1) ]'r( b l/[t)+{0 (e—(l—s)t2/2)’ t > —o0.

Jo1s€

Proof Using equation (3.4) and the value /27 of [ g(&)d&, the first equation
follows from

o . 2y [0 T/ 2m - e(t - t
Iq,o(n,t)z[t efnwfw/zdw:e”/zf g(s)ds:{e (Vam—e(t=m), t>n

-t —e"z/ze(q—t), t<y,

and Remark 3.15. Next, using the definition in equation (3.26) and simple algebra, we
get, for every # € R and j € N, the equality
< d

—$2 - wfw2 .
8j,03r” /2 _ _ f %( (w;t)} e /Z)dW = (J + 1)171>jJrl — (t — 7’])1—1,1‘ - (1 - ‘Sj,O)Ll,jfl-
—t

Since the left-hand side times any polynomial is os(e_(l_g)tz/z) as t - +oo, a simple

induction on j combines with Remark 3.6 to prove the second relation.
Now, suppose t # 0 and 7 > 0. For j = 0, we evaluate

oo _ || oo
Io,o(’7>f)=[t equ%dw=f e"’deW+Ll efnwwdw—r(o,—qt).

—t w w

As t — —oo0, the first term above vanishes and the second term is o”,s(e_(l_s)tz/z) for
any fixed 7 € R. As t — oo, the second term behaves the same, whereas using equation
(3.31), we see that the first term contributes

t 00 LW _ ,HW 00 oW _ oMW
/e—andW:f ig(w)dw—f € T8 o(w)dw
- 0 w t w

t w
=V2rJo(y) + on,g(e_(l_s)tz/z).

This proves the third equality for j = 0. When j > 1, we can write %Io,j(ry, t) as

t

1 o (wt+t) -t _ 2 e ol _ oo _ w) -1
f/ ¥e ™ W/Zdw—f[ —e ”Sds+f e ”W&dw.
ti J—¢ w t7 Jo s—t —t w

After expanding (w + t)/ binomially, the first term is seen to be oj,me(e‘(l‘e)tz/z)
as t > —oo and O M(%) as t - oo. Expanding 5::;} and applying equation (3.2), the
second term becomes —(-1)7jIT(~j, -xt) + [(0, —;t), and the third term is just the
expression for j = 0. Putting everything together proves the last desired equality. This
proves the lemma. u

In fact, the first term in the last equation in the proof of Lemma 3.23 can easily be
evaluated explicitlyupto o;,, . ( e_(l‘s)tz/z) alsowhen t — oo, but the estimate O; , ( : )
will be sufficient for our purposes.
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Remark 3.24 'The generating series Y72, 1.1,j(0,0)X’ of the constants
{1.4,j(0,0)}5%, is

[oo X gy = X /oo e (X2 gy, eXZ/Z( foo e P+ [X e_wz/zdw)
0 0 0 0

(by symmetry), which equals Y(0, X) +/7/2¥(0, X) by Theorem 3.4. It therefore
follows from equations (3.7) and (3.17) and the parity from Proposition 3.14 that

14,;(0,0) = Q;(0) + \/m/2P;(0) = {lim hi(&) = (-1)7" Elim hj(§) for jeN.
—0~ -0+
We can now state the asymptotic expansion of g, ;(#;77).

Proposition 3.25 Takerk € Z, 1 € N, and y € R, with n > 0 in case k < 0. We then have
sk+
H 2 2
g.1(tn) = —\/ZHwe’Z””tr(n, -2nnt) + o,{,l,n,g(e’Z" (=o'
I(-2mt)"

an expression holding as t — —oo as well as in the limit t — co when k > 1. On the other
hand, if k <0 and y > 0, then the limit as t — oo is given by the same formula plus the
term

S\t
Me%m[fz () + O ()]
where J;(n) is the function defined in equation (3.31).
Proof Taking the Fourier transform of equation (3.24) allows us to write
gei(tin) = P(im)& () + (55, in)gx ().
When « > 1, we apply Lemma 3.19 and equation (3.2) to obtain that

e 2T (K, —27nt)
(2mit)"

2
+0.0.6(n e (17002 as t — o0

& (1) = -V

and that IT; ( _Z;ﬂ. ,i 11) Z.(t; 1) is bounded by the same error term. This establishes, via

Corollary 3.7, the desired formula in this case. On the other hand, for k < 0and # > 0,
we deduce from Lemma 3.19 that

gi(t;n) =\ 2m-i%e ™ Py (in)Io, . (1, 27t)
+ V2 i (22 i) e T Ly (1, 2mt).

—2mi’

Lemma 3.23 now shows that, in the limit t — —oo, the first summand is

e 2™'T (K, —2mnt)
(—2mt)"

—V2m-i®Py(in) + o,i,l,g(e’z”z(lfs)tz)
and the second one goes into the error term, which yields the required formula also
here by another application of Corollary 3.7. In the limit t — oo, we get the same

contribution, but we need to consider the additional terms from Lemma 3.23 in that
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limit. The term arising from the first summand is

2 - ine—Zmyt

(3.33) ]l (2nt)"

[P(im)o(n) + Optn(1)]-

For the one from the second summand, Remark 3.10 allows us to write

11, ( o in)e ™1y _.(n,2mt)

“2mi?
= [ -Qi(in) + ﬁz(,ij,,- +in, in)]e’zn”tl,l,,,{(n,Znt)
= e_z”’“[ - Qi(in)I1_w(n,2mt) + 1:[1(_3;”., i11)I_1,_,€(11,27rt)]
(by the action on that exponent). Lemma 3.23 and the fact that Corollary 3.2 gives
the estimate P, (27t — 1) = ()" [1+ Ok,n(})] show that /27 - i*~! times the first

I=[!

summand here is
27 - iﬁ—le—ZTH]t

_W[Qz(iﬂ)l_l(n) + 0 (M)]

Equations (3.30) and (3.31) now show that this expression combines with the one
from equation (3.33) to the asserted extra term, up to the required error term. Finally,
equation (3.28) and the property of IT; from Remark 3.10 imply, via Lemma 3.23 again,
that the expression involving that polynomial also goes into the error term. This proves
the proposition. [ ]

3.7 Lattice sums

To evaluate the constant term of the Shintani lift, we need to calculate certain lattice
sums involving the function g, ; defined in equation (3.24). Fork € Z,l e N,y € R, a
real number v > 0, and an element w € R/Z, we consider the sum

(3.34) Goi(wv, )= > gei(v&y),

0#¢cZ+w

which converges absolutely by Remark 3.15 and defines a continuous function in #.
We will be interested in its value at # = 0, denoted by

(3.35) Gi,1(w30) := Gy (w5 0,0) = lino1 G, (w;0,1),
n—>0*

and its asymptotic expansion as v - 0*.

Remark 3.26 The function G, ; from equation (3.34), or its variant from equation
(3.35), is defined as a lattice sum, and would naturally be expressible also via its Fourier
series, which amounts to the Poisson Summation Formula. Indeed, the summed
function g,. ; is differentiable away from 0 with a strongly decaying derivative, making
G, differentiable with respect to w when w # 0. Therefore, the Fourier expansion of
the lattice sum G,,; converges pointwise to it for every w # 0. Since the mth Fourier
coefficient of G ; (for # # 0) is, by simple integration, 5@,;7(%, r]), we obtain that
the Poisson Summation Formula for G, ; is valid for w # 0. In fact, since the one-
sided derivatives of g, ; also exist (provided that g, ;(0) is modified to have the limit
value from the appropriate side), the Fourier series converges also at w = 0 to a value
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that can be described (both Fourier series convergence statements follow, for example,
from the Dirichlet-Dini Criterion). However, it is easier to consider the value at w = 0
in terms of equation (3.44).

For analyzing it, we first need to recall a few familiar functions. Let {B,(w)};2,
(for w € R) be the Bernoulli polynomials defined as

te®t & t4
— = > B,,(w)—', so that in particular  By(w) = w - 1,
el -1 4=0 u!

and then B, := B, (0) are the Bernoulli numbers. Moreover, one defines B, to be the
l-periodic function that coincides with B, on the interval (0,1), and whose value on
the integers is 0 in case y = 1 and B, otherwise. Then B, with y > 2 is continuous on
R (and By is the constant function 1), and we have

(3.36)

. . ple(mw)
BI(O) = O = wh_)n()l+ Bl(a)) + % = wanOl_IBl(w) - % and Bﬂ(w) = —0¢%;Z W:

the latter Fourier expansion being valid for every w € R/Z and 0 < y € N (this is
essentially equations (13)-(15) in Section 1.13 of [EMOT]).
We also recall from Section 1.11 of [EMOT] the function

m
1
mS

M3

(3.37) F(g,s) = for seC and qeC with |gq|<L

1

3
Il

Since we shall use this function only when s = —j for jeN, where F(g,—j) is a
polynomial in q divided by (1 - g)/*!, the analytic continuation to any q € C\[1, o),
and even to any 1# q € C, is immediate. Writing q = e(w) for w € R, the fact that
F(q,0) = ﬁ combines with equation (15) of Section 1.11 of [EMOT] (for j > 1) to
give, for all j € N, the expansion

! _Bjntdjo
(-2mi - w)it! j+1

(3.38) F(e(w),-j) = +0(w).

Another function to recall is the polygamma function, defined for m ¢ N and

zeCas
(3.39)
dm+1 oo 8 1
(m) = logT - _ “1)™m! m,0 _
¥ (2) dzm+l 0gT(2) = =m0+ (-1)"m a;] ( (a+1)m1  (q+z)mH )’

where §,, ¢ is the Kronecker §-symbol again.
Let /(™) be the 1-periodic function that coincides with y(") from equation (3.39)
on (0,1]. Then, for € Z and w € R/Z, we define

B, (w)/, K21,

(340) ()= {_[lp(m(_w) + () gD (@) /20l m <0,
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as well as

F(e(w),k)/|k|! + 84,0/2, K<O0andw ¢ Z,

- (=2mi)"™"
(3.41) Be(w) = - -B1-(0)/(1-k)!, k<landwe€Z,
4 0, otherwise.

Note that, for all x € 2Z, we have the equality

(3.42) D, (1) = CTsa1—r ¢(s).
Recalling the notation H, for the nth harmonic number, we shall also need the
constant
+log2-2H,; + H| log2 |
(3.43) C = 4 g I l1/2] _ y +log2 Z 1
2 2 a=1, 24+a a

We remark that it is easy to see, via the asymptotic H, = logn +y + 0(1) as n > oo,
that C; from equation (3.43) grows as — l°gl +o(1)as ! — oo.
The evaluation of the expression that we need is now carried out as follows.

Proposition 3.27 Takerk €Z,1 €N, neR, v >0, and w € R/Z. Then the value of the
expression G, (w; v) from equation (3.35) is

2m" [P (0) @ (@) + Qi(0)Ex(w)]
{ V2mi"* He,.11(0) + o 2% (1-¢) [v* ), K21,

vkl

V2n5, 0P (0)(logv + Cp) + Oy 1,0 (0%), K <0,

with the O-notation concerning the behavior as v — 0%.

Proof Consider first the case where k > 1. For w # 0, we use the Poisson Summation
Formula (justified by Remark 3.26), and applying Propositions 3.22 and 3.25 gives us

G, (w;v)

1
=v(§%7(°;°>+m > e(mw)@(:';;q))

0+meZ

R+l K
V2wt (He,ﬁl(O) . x He; (0) lim e(mw)v e‘Z””"’/“I‘(g,—Z””'"))

v
VK I I g0, (“2mm)e

VK

_\/ﬁ( el He,ﬁl(o) 41Py(0) Z e(mw )

I 0dmez, (2mim)<

_\/ﬁ( i"*! He,..1(0) PZ(O)UKBK(“}))’

UK I

—27%(1-¢)/v?

via Corollary 3.7 and equation (3.36), up to an error term of 0, ; . (e ). From

the definition, it is also clear that

(3.44) G, (0;0) = linol (Gu,i (@ +Z50) - g1 (V@3 0) ).
w—0*
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Equation (3.24) implies that —lim¢_,¢ g,;(&; 0) vanishes for x > 1, and we have
- Elirg 81,1(£0) = E111%)1(—1)”1}11(5) =1.1,1(0,0) = P (0)\/m/2+ Qi(0)

by Remark 3.24. Substituting these into equation (3.44), and applying equation (3.36)
for x = 1, completes the proof for x > 1.
For k < 0, we will first consider the case where [ =1, in which

8r1(§0) = Eho(8) - € (&) = —§"'g(£); hence Gm,l(w;v):—,7113)1+ Y sx(vén).

0+¢eZ+w

Assuming that w # 0, we apply equation (3.35), the Poisson summation formula again,
Lemmas 3.19 and 3.23, and equations (3.11) and equation (3.37) (with its analytic
continuation), which compares G, ; (w; v) with

P k-1 —
_ \,7‘[1( ,}HBL [_1)_K(q,0) + ﬂlir%)lJr Z e 2m1m/UI_1,—;<;(’7> ZTLm)e(mw))

v 0+=meZ

- _JZ_TH(II’N(O’O) + i (Prer(22) + Ow(‘fZHZ(IS)MZ/UZ))me(mw))
_ m (11 (0, o)+mz(7ﬂ) '“'JJ( )F(e(w) ]))+o (e
(3.45)

Now, the summands with j < |«| give O, (v"), and the same applies to the first term
when £ < 1. Since I_1,p(0,0) = \/§ by Remark 3.24, this is indeed the desired value,

since P;(0) = 0. For w = 0, we apply equation (3.44), where we have seen that the
second term there is now +% We expand the term F (e(w) ) from equation
(3.45) as in equation (3.38), and observe that the singularities in w cancel with those of
)w“ ,which is 52 i"P,(0) (vw)***! by equation (3.8)

and Corollary 3.7. Substltutlng into the limit from equation (3.44) yields

m

the Laurent expansion of

1 a0.0) Va5 () B (5,500 1 (O

where again the same terms (and the 1) go into the error term. Since for x = 0 the two
terms cancel, the result follows also in this case.

We now consider the case I = 0, where equations (3.24), (3.34), and (3.35) and the
trick from the proof of Lemma 8.5 of [BFI] evaluate G, o(w; v) as

(3.46)

Z e(vf) __ Z Sgn(f) CT.. 0(v|£|)_s([°°e_w2/zwde7fv\ﬂ E_WZ/ZWde)_

0#¢eZ+w (7‘)5)"‘€|+1 0#éeZ+w ( f)lﬁh—1

[}

Recalling the Hurwitz zeta function {(s,z) := ¥, W’ the first term in equation

26D F( ”1) times

plEl+l+s

(3.46) is the constant term at s = 0 of —
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3 %+ D (;l)f = (5| +1+s,w) + (-)"(|k] +1+s, -0),
glr! o<t &

0<éeZ+w

where +w here means the corresponding representatives in (0,1]. Since {(m + 1+, 2)

(m)
with m € N expands as ~=2 Smo _ M + O(s) (see equation (9) on Section 1.10 of

[EMOT] for m = 0 and Just equatlon (3.39) for m > 0), the Taylor expansion of the
remaining functions and the value —y — 2log2 of 1//( 5 ) produce the constant term

e _1)xUxD
wotf VU (—w) + (F1)F R (w) y +log2 +2logv
—\/2mv ( - 2l = 05,0 5 ,

which is the desired expression since Cy = y+l°g2 by equation (3.43). The second term

in equation (3.46) becomes, after a simple substltution,

1
CT,-o f g(Upli)l ‘dp —CTS:()/ Gi1,1(ws0p)p* "dp.
0#¢cZ+w (Uf 0

For k < -1, our expression for G1,1(w; vp) is O, ((vp)”); hence the integral con-

vergesat s = 0 and is O, (v"). When & = 0, we have Gy 1 (w; vp) = —‘%” - V271E(w)

up to rapidly decreasing functions, so that the integral is —2% (with no constant
vs

term), again plus O(1) = O, (v"*). This proves the result for I = 0 as well.
For general | € N, equation (3.24) and Remark 3.10 allow us to write

o o) - _e(vd) 8(v¢)
Cri(0) = g, SO RO o g, g

ﬁl(“£>0) g(UE)
o¢sezz:+w v (vE)

= PI(O)GH)()((U;U) + QI(O)G,@,l(a); l)) +

where %}"E) is a polynomial in v&. The first two terms now give the desired formula,
up to @PI(O)(CI —Cyp) in case k = 0. When & < -1, it suffices to view the third
term as a linear combination of G;;(w;v) with j > x +1, all of which are O(v/™")
when j <0 and O(%) in case j > 0, since these are all O(v"). For k = 0, we evaluate

Yiziw L (55’0) g(v¢) using the Poisson Summation Formula, where all the Fourier

27 (1-¢) /v*

terms with m # 0 give o; . (e~ ) once again. Finally, 1 times the zeroth

Fourier term is @ E;(0) by equation (3.13), which is precisely the required expression
by Lemma 3.11 and equation (3.43). This completes the proof of the proposition. m

4 Nearly holomorphic modular forms

In this section, we shall prove our result in the most general case, evaluating the
Shintani lift Iy ; (7, f) from equation (2.24) for a nearly holomorphic modular form
feM } (). Each of the Fourier coefficients of the lift is evaluated separately, with the
partition into types as is already seen in [ANS, BFI, DIT] and others, into negative
indices, non-square positive indices, square positive indices, and vanishing indices.
This requires the definition of several types of traces that show up in the calculations.
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The reader who wishes to compare our formulae with those from [ANS] should
consult Remark 2.8, due to the difference in conventions that is explained there.

4.1 Traces and regularizations

Recall that if A € L* satisfies Q(1) < 0, then the stabilizer ) of A in T is finite, and
A is a multiple of Z*(z,) for a unique z, € 3. We then define, for every k € Z and
f € Ay(T), the trace

[— sgn (/\,Zl(z,l))]k

(4.1) 0 () = T

f(z2).

If Q(A) > 0, then we recall the geodesic ¢, € H and its image ¢(1) € Y from equation
(2.15), and that when A is not split-hyperbolic, i.e., when (1) = 0 in the notation of
equation (2.16), the latter is a closed geodesic inside the open modular curve Y. We
can then define, for every g € A}, (T), the trace

(4.2) Try(g) == 5[’);“) g(z)(A,Z(z))k_ldz

On the other hand, when A is split-hyperbolic, i.e., when (1) =1, the image
c(A) of ¢j in Y is not compact, and if g grows toward the cusps, then the integral
corresponding to that from equation (4.2) does not converge. We shall regularize it
only for nearly holomorphic modular forms, i.e., for g e M’zk(F). Then its Fourier
expansion near the cusp associated with some ¢ € Iso(V) is given, in the coordinates
from equation (2.12), by

(4.3)
&m%@mmm)Z%W)ZZMMW zz““m+uw

¢ 1=0 neZ Y} =0 n<0 }’g

where p is the depth of g, c¢(n,1) =0 for all 0 << p when n « 0, and the latter
decomposition is into the (finite) principal part and the cuspidal part gJ. Recall our
extension of the incomplete Gamma function in (3.2), and the truncated modular
curve Yy from equation (2.13) for any T > 1. We also set for n and « in Z, positive
reals ¢ and T, split-hyperbolic A € V, and g € M 5« (') with expansion as in equation
(4.3) for £ = £, the quantities

[(k,rnT)/(rn)", n=0,

Sn(k, Ts1) :={-T"/k, n=0and k %0, and
(4.4) —log T, n=0and k=0
&%®D—NNMM“ZZ%MW() (zT”)
1=0 neZ ey

Note that when #n =0, ¢ is independent of r, and we can then omit it from the
notation. In addition, assuming that f € M}, (') expands as in equation (4.3), the
weight lowering property of the operator L, implies that for every v € N we can write

(LYf)e(ze) as
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(4.5)

(L2f bt 0020 = 2 fe) = ()" 3 A0y 3 92 S
ne v e

We can now define the trace to be

(4.6)

Tra(g) = lim (f( - g(z)(A’Z(Z))k_ldz+Singl(g, T) + (-1)* Sing_, (g, T)).

We now prove that this is a regularization of the required trace.

Proposition 4.1 The quantity in the limit defining Tr) (g) in equation (4.6) exists and
is independent of the choice of T when it is sufficiently large.

Proof Since c) only intersects the cusps £.,, there exists some R > 1 such that for all
T > R, we find that ¢(1) n Y1 2 ¢y n Hr is contained in Hp U 0'[/13:‘;“ u og_Aff(;f".
We thus obtain

k-1
\Z dz = f 5(2)d f . #2)d
fc()t)ﬁYT g(Z)( (Z)) z canFHg g(Z) £ canog, iTTZA \FHr g(Z) Z

« ¢(z)d
" ./C\AHO(_A S:TZ_)“ \}CR g(Z) z

for every T > R, where we wrote ¢(z) for g(z) ()L, Z(z))kil. The first term is indepen-
dent of T, and if we change, in the integral corresponding to +A, the variable to z; for
¢ = () from equation (2.12), then it becomes

(+)" f gz(Ze) (07" (+1), Z(20)) dze = (+1)*(2/QA)*!

T
X/}; ge(roy +iye)yt dye

via equation (2.17). This expression is a differentiable function of T, and equations
(3.3) and (4.3) show that its derivative is minus that of Sing, (g, T') from equation
(4.4). Hence, the expression from equation (4.6) is independent of T' aslong as T > R,
and in particular Tr (g) exists. This proves the proposition. [ ]

Note that limr_,« ¢, (k, T;7) = 0 for any r > 0 when n > 0, and the integral of the
part ggﬂ from equation (4.3) converges as T — oo. Hence, the regularization from
Proposition 4.1 is essentially only of the integral of the principal part. This regularized
integral can also be viewed as the special value at s = k of an appropriately regularized
L-function of g, as in, e.g., [BFK].

Following [ANS, BFI], we now give an equivalent expression for the regularized
theta lift Iy 1 (7, f) of f from equation (2.24).

Proposition 4.2 For f € 1\71!2,{(1“) with asymptotic expansion at the cusp { as in
equation (4.3), the regularized theta lift Iy 1 (7, f) of f from equation (2.24) can be
written as
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lim (f f(2)0 (1, 2)du(z) + . i* L@ (T)ic (0,1)¢o(k—1 T))
T=eo | JYr kAn A £eI\ Tso(V) VN ot 1=0 e , )

where ¢ is defined in equation (4.4).°

Proof We argue as in Proposition 5.2 of [ANS], focusing on the modifications
required for our statement, and leaving many details out as they are identical. For
fixed T, the constant term in the integral over Y7 is the substitution s = 0, and near a
cusp ¢, Lemma 2.9 expresses O 1 (7, z) as a multiple of ©4 ¢(7) plus decreasing terms,
whose integral vanishes as T' — oo. Here, instead of the first equation on page 2319 of
[ANS], the integral of our nearly holomorphic modular form yields

f f (f Lk o) (ze)yi ™ dezd)/z—“ezcz(o l)[ v dyy = Z LICUN

k-1-s

The same identifications of these constant terms with our functions ¢o(k — I, T') yield

the desired result. This proves the proposition. ]
For k, f € Ay(T), and g € A}, (T) as above and an index m # 0, we can define the
combinations
(4.7)
Trf:)h(f) = > Trf\k)(f) form<0, Truu(g):= Y, Tr(g)form>0.
’ AeT\L 1 A€T\Ly,,p

Note that I'\L,, is finite when m # 0, so that there is no question of convergence
in equation (4.7). On the other hand, when g € M}, (T') has the usual expansion and
Q(A) = m =0, we will define the trace to be

48)  Tron(g):= > —=1(0,h)cr(0,0)(VNBe) Dr(wp,p),

LeT\ Iso(V) \/_
where 1,(m, h), wgp, and @, are defined in equations (2.18), (2.11), and (3.40),
respectively.

The main term of the Shintani lift from Theorem 4.3 will have the traces from
equations (4.7) and (4.8) as coefficients. However, for the terms with ((m) =1, we
need to define some corrections. Recall that when m > 0 and 1¢(m, h) =1, Remark
2.7 implies that the numbers r; for oriented A € L,, j N ¢* are all the same modulo

ﬁ—; \/ %Z. We can thus define, for our element f € ]\7[; «(T') of depth p expanded as in
equation (4.3) near each cusp ¢ € T'\ Iso(V'), the complementary trace

(4.9)
c '———imk- T (m _klm_ &
Fnlfo2) = =C20/m) \/z_zer\%;(v)(e( »h) + (=1) e (m, h))\/ﬁ
x e(m) ! (2””)1kl!Cz(ﬂ,l)_]z(Z\/Zﬂmv)
I=k

0>neZ Qe 7

(I-K)  (2/2mm)
n=0 mod 2e,\/m/N ( ”mv)

>Note that c; (0,1) is well defined for £ € T\ Iso(V) by the modularity of f.
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with J;(#) from equation (3.31). Note that the sum over # in equation (4.9) is finite,
and is empty for all but finitely many values of m.
We also define the complementary trace from constants

W(fov) = =(=2i/m)* > (lg(m, h) + (-1)*1,(m, —h))

£eT\Tso(V)

(4.10) Kea(0.K) L (2v2nmy) - Qr(2v/2nmv)
X K:Cp\ U, >
(2\/ anv)k
where I; and Qj are defined in equation (3.26) and Remark 3.13, respectively. The

name represents the fact that only the constant terms ¢, (0, k) contribute to it.
When m =0, there is only a complementary trace from constants, which is

2l

defined as
(4.11)
Tro v) = 0k,00m,0 z)du(z ! ,hix
(o) = Okadnoy [ f@auE)+ 5w e
og (V2nNv k=g (w
(_ fres(0, k)2 (0) Ez:v])kﬁ)wk +,EP;,Z!%(OJ)QI(O)(\/Nﬂe()va;lk/_Zl( M))’

where Cy and E, are defined in equations (3.43) and (3.41) respectively, and
for f € M}, (T), the regularized integral [;® f(z)du(z) is the (convergent) limit
limr e [y, f(2)du(2).

4.2 Main theorem and proof

We can now state and prove our main theorem. Given k € N and an element
f € M}, (T), we gather the traces from equations (4.7) and (4.8) and define

Lp/2] 2b
(412) zh =y Y maleS)

b=0 0<meZ+Q(h) (47Tv)bb! i

which is a nearly holomorphic function of depth [gJ on K that is bounded at oco.
Using the negative index case of equation (4.7), we also define

(4.13)

Tern(®f)= ) >

0>meZrQ(h) i=k  \/2(4 27r|m|v)l(l—k)!

4k\/_|m| (2 27T|m|V) T (k)h Rék ZIL f)q
m z T2

which resembles the non-holomorphic part of a harmonic weak Maass form with
cuspidal &-image (see also the proof of Proposition 4.5). We also gather the traces
from equations 4.9-4.11, and set

(4.14)
Tern(nf)i= )0 To(fiv)er and T ,(nf)= X Tr(fiv)er,

0<meZ+Q(h) 0<meZ+Q(h)
1(m)=1 1(m)=1
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where the former is a finite sum of increasing terms, and the second one is infinite but
converges.

The main result, which evaluates the regularized Shintani lift of f, now reads as
follows.

Theorem 4.3 Write the vector-valued Shintani lift 3,1 (7, f) of f € My, (T), which
is defined in equation (2.24) and lies in A1 ( Mpz(Z),pL), as Xpep, Ji1,n (75 f)en.
Then the scalar-valued coeﬂﬁcient associated with h € Dy is given by

Ik,n (7 f) = I, L W( )+ jzeLg,h(T’f) + T (5 ) + T n (T ),

where the terms are defined in equations (4.12)-(4.14).

Proof Weapply Proposition 4.2,and expand @y 1 (7, z) and ® ,(7) using equations
(3.21) and (2.23) respectively, which gives

(4.15)
USRACHD)
VL H@ T @ Y pea(Vihe)dut)

meZ+Q(h) ALy

= € P .
ool Y gt Y i —a(@knmhv) Y c(0,1)go(k~1,T)
0<meZ+Q(h) LeT\Iso(V) \/N 1=0
1(m)=1

We may interchange the order of integration and summation as both are absolutely
convergent for fixed T. Propositions 4.10-4.13 now evaluate the coefficient of q7" to be
the one implied by the asserted sum. This proves the theorem. ]

A much simpler but interesting special case is the one where the depth p < k.

Corollary 4.4 Assume that f € ]\71!’317(1“), and that p < k. Then
Ter(n.f) = 3 T (2 en € ML (Mp,(2), p1).
heDy 2

For p = 0, we recover the part of Theorem 6.1 of [ANS] with weakly holomorphic input.

Proof If p <k, then Jneg » and Ji | vanish identically (because both involve sums
over k <[ < p), and equat1ons (4.10) and (4.11) imply that Ji%; , consists only of the
constant term

Tr(c)fh(f)v) = Z lp(O h) Z lICe 0, Z)Ql( )(\/Nﬁé)k_lakfl(wg,h)

£eT\Tso(V) (2mv)!r2

(because c¢(0, k) =0 when p < k). Since k — I >0, the only term E;_;(wg,j,) from
equation (3.41) that may not vanish is when / = k —1 and wy,j, = 0, where it equals
the constant —\/%. However, equation (2.11) shows that the latter equality only
holds when h =0, and thus equation (2.18) yields 1,(0,h) =1 for all ¢, and the
terms involving &, B¢, and /N reduce to ay when [ = k -1 by equation (2.10). This
reduces our expression for Ji°; , to - (u?kk/;% times Y, agc (0, k —1). However,
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the ¢¢(0, k —1)’s are, up to constant multiple that is independent of ¢, the constant
terms of the weakly holomorphic modular form L f € M}(T), and by equation
(2.12), multiplying each by a, yields the residue of the corresponding meromorphic
differential L*~! fdz at the cusp ¢ (again, up to a constant multiple that is independent
of £). Thus, Ji; , is a multiple of the sum of residues of a meromorphic differential on
the compact curve associated with T at all of its poles, which therefore vanishes (this
also explains Remark 1.4). This proves the corollary. ]

When p > k, Corollary 4.4 no longer holds, but one can obtain a nearly holomor-
phic modular form after applying an appropriate weight-changing operator.

Proposition4.5 Forany f € ]\71'2: P(T) for which the constant terms c,(0, k) vanish for
every {, we have

~r<p

Eicaprapet LT (0 f) € ML L (M (2),7,).

Note that, for p < k, the depth is negative, so that the space M 2 s(pp) is
P / 2|-k+3 VL
trivial, and indeed the modular forms that are annihilated by the operator in question
are those lying in ]Vliﬁ/zj (Mp,(Z), p1).

Proof The fact that fk,zlp/ZJJr%LLTP/ZJJk,L(T,f) lies in Azlp/zj,kJr%(Mpz(Z),ﬁL)
follows from the weight changing properties of L, and &_| /) +1, including the
conjugation of the representation in equation (3.41). For investigating its analytic
properties, we need to evaluate the operation of L, on each of the summands in
Theorem 4.3.

The first summand, from equation (4.12), is nearly holomorphic of depth [%J Every
application of L, reduces the depth by 1, and then the application of the &-operator,

which is again L, composed with a modified complex conjugation, annihilates the

weakly holomorphic expression LLP /2 JJZhL 4 (7, f). Now, the terms from equation

(4.13), as well as those from equation (4. 14) defined in equation (4.9), involve the
expressions % and ]’2—7) respectively, for i = 21/27|m|v and k < I < p, times con-

d
167|m| dn’
Lemma 3.16 and equation (3.32) imply that this effect amounts, up to scalar multiples,

to subtracting 2 from the index . After doing so [ J + 1 times (including the action of
the &-operator), we remain only with indices k — 2[ 2J 2<1<p- 2[ 2J 2, that are
thus negative.

However, equations (3.17) and (3.31), the vanishing of P, and P, via Remark 3.8 and
equation (3.30), and the parity of Q, and Q, imply that for negative [, such expressions

stants times g”. As applying L, = —2iv*95 to a function of 7 is the same as

are odd polynomials in #, of degree at most 4[ J+3 2k multiplied by e*" 2
respectively. Recalling that for the effect of £ 5| /5.1 1 we must conjugate and multiply

by v to the negative half-integral power k — Zlgj -2, and substituting the value

2y/2n|mlv of 5, we indeed obtain a decaying nearly holomorphic expression from
the image of Jllz)ef’ 4 (7, f) for each h € Dy, and a finite increasing nearly holomorphic
expression from the image of J; | , (7, f) for every h. For the depth bound, we need

the lowest power of 7 in the expressions #!"1Q; (1) or #''Q; (%) for negative I in our
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range, which arises from the value p - Zlgj — 2 of I that is minimal in absolute value,
divided by *LP/21+3-2k For odd p, this is | = 1 with 5 multiplied by a constant term,
yielding a denominator of v2#?/21*1=k = P~k ‘and if p is even then I = -2 is multiplied
by a linear polynomial in #, and the denominator is v2lP/21=F = yP=F a5 well,

It remains to consider the constant terms in equation (4.14), defined in equa-
tion (4.11). The first term, appearing only when k = 0, is a multiple of \/v, which
after [ J + 1 operations of L, becomes a multiple of le/ 2143/2  and after conjugating

and multiplying by v~2lP/21=% (with k = 0) y1elds v~1P/2] indeed nearly holomorphic
with the requlred degree bound. Similarly, [ J + lactions of L, and multiplication by

vk=2Lp/2)-3 take the Ith term in the last in equation (4.11) to a multiple of v<~1#/2]-
Since the multiplier Q;(0) restricts I to be odd, and with I < p the maximal value of
ﬂ is [ ] the result here is nearly holomorphic of degree at most p — k. As this covers
all the expressions that are not multiples of the coefficients c,(0, k), this proves the

proposition. ]

l+1

Remark 4.6 A natural question to ask, in view of Proposition 4.5, is what can be
said about the &5 /. [TP/ZJJk,L(T,f) in case the coefficients c¢(0,k) do not

vanish. Following the proof of that proposition, the terms involving M from

hl(’7) o

equation (4.10) inside equation (4.14) behave like those with r L (") (see Lemma

3.21 and equation (3.29)), and as the polynomial Q from Remark 3.13 has degree
k — 2 and parity (~1), the corresponding expression from equation (4.10) is nearly
holomorphic of degree at most [%J and is thus annihilated by LLP /2] Now, we can
express [, for v := k — 2[§J — 2 < 0 via equation (3.29), where using equation (3.8) the
multiplier of I_; becomes a multiple of P_;_,. As one can verify by induction that
the polynomial ), from equation (3.29) equals minus the same multiple of Q_;_,, for
v < 0, this determines I,(#) as a multiple of e"z/zh,l,v(n), and with the powers
of m and v, this evaluates the image of the expression from equation (4.10) under
Ek—ZLP/ZJ% LEP/ Jasa multiple of i Vl‘(ln) q,;" with our #. The term with the scalar and

the logarithm in the constant term from equation (4.11), which shows up only for even

k because of the multiplier P, (0), becomes, after this operator, a constant divided by

v . Recall that the nearly holomorphic part from Proposition 4.5 is annihilated after

applymg & k-[p/2] +%LT , s0 one can apply this operator to the remaining expression.
Using similar considerations once again, and verifying that all the multipliers match
(including the constant terms) shows, via equation (2.23), that the resulting expression
is a constant multiple of the sum ¥ ey 150(vy €£(0, k)®2[p/21-k,¢(7)- In total, for p < k,
the Shintani lift is annihilated by one application of £, L% (by Corollary 4.4), when
p >k and ¢,(0,k) =0 for all 4, it is killed after two applications of such operators,
resembling harmonicity (this is Proposition 4.5), and with the extra term, a third
application is required for sending the lift to 0, which is a type of a sesqui-harmonic

property (because the theta function from equation (2.23) is nearly holomorphic
itself).

We can now deduce the theorems mentioned in the Introduction.
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Proof of Theorem 1.1 'We apply Theorem 4.3 to the scaled lattice L := AL for L from
equation (2.8), with Q = —%. Then L} = L* and it is well known (see [GKZ] or [AE])

that if g € A% ( Mpz(Z),pLA) and T := PSL,(Z), then
2

(@) = g T @) <4 (fo@),

where y, is the character from equation (1.1) and Ty (4) € Mp,(Z) is the metaplectic
cover of Iy(4). Moreover, it is in the Kohnen plus space. We denote T} (z, f) :=
YA(-(JT,LA (z,f)) for * € {nh,neg,c,cc}. When f=J-E;, we have k=p=1, and
only nonzero coefficients of the principal part are cy(A,0) =1, co(A,1) = —%, and
c¢(0,0) = —24 for any £ € Iso(V'). The fact that c,(0,1) = 0 and Qo = 0 implies that
IS (z, f) = 0, and we have

(4.16)
I\Qa:2 = I{[0,|A, C]|C € Z/AZ}, Try00\loo = I1,,00{[0,0,C]|C € Z/AZ},

with the value ya([0,]A],C]) = xa([0,0,C]) = (%), the real part r(oa|,c] = —ﬁ,
and By (wy__ [0,0,c]) = Bl(ﬁ) = ﬁ -3 for 0 < C<|[A]. Since L f = 2], xa is anti-
symmetric, and the sign from equation (4.1) is that of —A from A as in equation (2.8),
we have

J'Aleg(z,f) - —12 Z ( Z XA(A)](ZA)) h1(2 Z”DJ’) q—D

V27 0pez \ o<acmion, 1Tl 2\/2nDy

as well as

TN (2. f) = 48|A[H(-A) + ( > XA(/\)TYA(f))q_D,

0>DeZ \ AeT'\Qap

where for the latter constant we use equation (4.16) and the equality

|A]-1 1 1 |A]-1 A
3 (C)(C - ) -y c(c) - LL((X)J) = 2H(-A).
ca \AJ\IA] 2 Al &z \A T
Moreover, the congruence from equation (4.9) gives a|A, the fundamentality of A
leaves only a = |A| after Y, and then equation (4.16) and a standard Gauss sum
e h2v/2n]Aly

evaluation yield J§ (2, f) = i |A|- (ZTM\}/) 1Al

Now, let f A (z) denote the holomorphic part J3%(z, f), which has the required
expansion. Since Lemma 3.16 and equation (3.32) imply that & s takes the functions

12

h(2\/27Dy) _p 11(2 ZH\AI,‘V) A q° q° .

vy 1 and —————= T, q~ to - —— and +- T respectively, the com-
plement J,°%(z, f) + I (2, f) of f-a(2) is indeed harmonic, with the asserted §s-
image 5= f_. This completes the proof of the theorem. ]
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Proof of Theorem 1.2 'We apply Theorem 4.3 to the lattice L in equation (2.8), where
for which the parameters are N = ay = 8y = &, = 1, combined with the isomorphism
from [K] to scalar-valued modular forms. The vanishing of ¢(0, k) implies the van-
ishing of the main terms of J;; . As equations (3.10) and (3.41) evaluate the remaining
term from equation (4.11) to be the asserted one, and the first term in equation (4.11)
produces the one mentioned in Remark 1.3, this proves the first claim of the (extended)
theorem. The remaining two claims follow directly from Corollary 4.4 (there exists
only one cusp, so ¢(0,k —1) =0 in this case) and Proposition 4.5. This proves the
theorem. [ ]

Remark 4.7 Using [Ze3, Ze7], the sum Y. Lp / 2l _1 _jag k,L(7, f) is a (vector-valued)

vaal -r
quasi-modular form of weight k + 5 and depth [2 J, and one checks that the contri-
bution of jZflL,h(T’f) is just Yocmez+q(n) Trm,n(f)q7 for every h € Dy. Moreover,
Lemmas 3.16 and 3.21 and equation (3.32) show that applying this combination to
Tetn(Tf)s 35 (7. f), and TS, (7, f) amounts to replacing h; from equation
(4.13), J; in equation (4.9), and Iy appearing in equation (4.10) by 3, h;_5,(-2)%al,
Yo J1-242%al, and Y Ix_»,2%al, respectively. Moreover, after substituting equations
(3.17), (3.31), and (3.29), the respective coeflicient of hy, Jo, and Iy in these com-
binations is just the corresponding denominator 5’ or #*. It would be interesting
to investigate these functions further. We also note that as long as 2a < k, the term
L2y (7, f) is easily verified to be i 4 G times the Shintani lift Jx_5, 1 (7, L2 f).

4.3 Orbital integrals

In order to prove Theorem 4.3, we need to evaluate equation (4.15), which we can do
for every m € Z + Q(h) separately. Moreover, the integral over Y can be replaced by
an integral over J from equation (2.14), and integrals over (nice) regions in I can
be expressed using the following lemma.

Lemma4.8 Letde Vyandf e ]\A/I;k (T) of some depth p be given, and take a connected
domain R € H with a piecewise smooth positively oriented boundary oR. Then we have

p
S S @0 (VA2)an() = 3§ (1N @u(Vh2)de

Proof We apply Lemma 2.3 repeatedly, where in the vth step f is replaced by
L!f and g(2) = @x—y,»-1(v/V1,2). Then Proposition 3.18 allows us to take G(z) =

§0k—v—1,v(\/1_’)\’ z), and the sum ends after v = p since L*' f = 0 by assumption. This
proves the lemma. [ ]

In view of equation (4.12), we will need the following lemma later.

Lemma4.9 LetAeV withi(A)=1v>0,and f € My, (T) of some depth p be given,
and denote n = 2/2nQ(A)v. Then we have the equality

Lp/2] Sing (Lbe)

z _.k nry, Hel(l’])
(4:,‘,)%! = i*(2v/Qm)" Z%lz(:)%(n l)e( ) (lea) S

b=0 Ly n
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Proof As Corollary 3.7 presents the coefficient in front of Sing,(Lff) on the

left-hand side of the first equality as (ZP 7’1‘5;] 3 77> substituting equation (4.5), with the

summation index [ replacing I — y, into equation (4.4), expresses the left-hand side

of the first equality as

p n, nr,

> P(O),z""(ZM)"’“ZZZ%( f)( *)m((k W= (I-p).T; )
4=0 (2mv)¥ I=p neZ u“) &ey

. k-1 co. (m el ™ B 2 1P, (0)
VA S T e 1)( )¢( LT h)ﬂzo(l_y)l(% T

j=0 nezZ
Equation (3.11) and Corollary 3.7 now express the sum over y as LR _ Hei(n) o
’ ’ (in)! nt
desired. This proves the lemma. [ ]

Now, the coefficient of g™ in equation (4.15) is evaluated for m <0, m >0
with ((m) =0, m >0 with ((m) =1, and m = 0 respectively, in the following four
propositions.

Proposition 4.10  For every h € Dy, and 0 > m € Z + Q(h), we have the equality

hmv 2 /f(Z) > or-1(VVA, z)du(z)
ALy

A /) TR (R L)
I=k V2(4\/2nm|v)1 (1 - k)!

Proof The proof is similar to that of Proposition 3.9 of [BFIL]. Remark 3.15 gives
us the strong decay of ¢ ,(1/V1,2), so that we can take the integral over z € Y.
Unfolding, cutting out a small neighborhood B, (z,) for each A € I'\L,, 5, and apply-
ing Lemma 4.8 yields

[ 1@ T pena(Virz)ducz)

A€Lyp

_l1m |F,1| Z}Q\B o) zf Z)q)k - 11(\/_A Z)

AEF\L o

Substituting equations (2.6) and (3.18) (with { = o+/|m| for o := —sgn (/\, Zl(z,l))),

and multiplying by v'T", shows that the desired left-hand side is the sum over A and
lof

s ooy PR LC G )

\i2. B @) ORI 0 T (1_AZA(Z))2k—21—2

Evaluating this limit via Corollary 2.2, using the parity from Proposition 3.14, and
applying equations (4.1) and (4.7) yields the desired right-hand side. This proves the
proposition. u
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Proposition 4.11 Ifh € Dy and 0 < m € Z + Q(h) with 1(m) = 0, then we have

—k

Lo/2] 1y 2b
v'E 1m f f(z) @k,_l(ﬁl,z)dy(z): Z M

AELmh b=0 (47‘[V)bbl

Proof An element A € L,, ; is not perpendicular to ¢ for any ¢ € Iso(V), and its
stabilizer Iy is infinite cyclic by Lemma 2.5. Therefore, the functions <p,m(\/§/1, z)
again decay strongly, via Remark 3.15, toward any cusp £. We combine this with the
usual unfolding argument to express our left-hand side as

-k

v'T lim f f(2)pr1 (Vv 2)du(z)

e ®° AeT\L,, h

=y f f(2)er, 1\/_A Z)dﬂ( ),

AEF\L o

where ) isa fundamental domain for the action of T, on H and F) 1 := F) n Hr (this
is well defined modulo I' by equation (3.20) and the modularity of f). We now remove
an e-neighborhood of the geodesic ¢) from F, for applying Lemma 4.8, substitute
the value of each ¢y_,_;,, from equation (3.18), and gather powers of v to write our
expression as

P limg o+ (hy(€) — hy(—¢ l
(275’)(1/5-1))/21;1//2( ) fcm%(L;f)(z)()t,z(z))k—v— dz.

>

Ael\L,, , v=0

However, the integral is Try (L} f) from equation (4.2), summing over A replaces
it by Trp,,»(LLf) from equation (4.7), and we have lim,_ o+ (hv(s) - hv(—s)) =
—\/27P,(0) by Proposition 3.14. The desired formula now follows from Corollary 3.7.
This proves the proposition. ]

When i(m) =1, the coeflicient a(® ¢, m, h,v) from (2.23), as well as the traces
from equations (4.9) and (4.10), may be nonzero. Recalling the functions ¢, from
equation (4.4), the limit of the corresponding coeflicient from equation (4.15) is
evaluated as follows.

Proposition 4.12 Let h € Dy and 0 < m € Z + Q(h) with 1(m) = 1 be given. Then, for
large T > 1, we have

v 2b
6 T gl due - S D )

ALy iz (4nv)bb!

p
&€ l
T, () - Y E—a(@kem, ) Zcz(0,1)¢o(k—l,T)+O(%).
£eT\Iso(V) \/_ 1=0

Proof ForAce€ L, , weset H, r:= %\(BS(E,\) u Bs(f,,l)) for e = e7#*T. The usual
unfolding argument, the fact that the stabilizer of A € L,, j, is trivial by Lemma 2.5,
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and the decay from Remark 3.15 allow us to replace, as in Lemma 5.2 of [BF2], the
left-hand side by

vE S [ f@ea(Vih)du()

AT\ L T

S [ f@eka(vihz)du) + O(F)

AeT\L,,,~ Har

(the error term here is, in fact, much better). The argument from the proof of
Proposition 4.11 expresses the term associated with A € T\L,, ; as

1) L[ @)
' = (4mv)bbl Je(ynyr = N2z ‘

14 1-k
2T [ D@ (V)i

Next, 0H, 1t = dB:(£)) U0B:(¢_,) for this ¢ both with the opposite orientation.
In the integral along the first part, as g, takes 9B.({,) to R + iT, equation (2.17)
expresses the corresponding term in equation (4.17) as

P o,
- Z f vz (L;/f‘Zk—ZVU‘gA)(xZA + iT)gok—V—l)v( V' N ((1) 2 ) Xe, + IT)dfo
y=0 <

Equation (3.19) thus implies that the integral along 0B, (¢_, ) is evaluated in the same
manner, with A replaced by —A, and multiplied by (-1)*.

Applying equation (3.18), noting that the pairings with Z(xg, +iT) and
Z*(xg, +iT) are 2/mv(xy, +iT —r)) and z‘ém(xh —r)) respectively, we substi-
tute 7 := 2¢/2nmv and & := (ng ra) and use equations (4.5) and (3.24) and the
definition of the Fourier transform to present the latter expression as

1k P 1)"Ilc nl —2anT/a nx Tk_v_l . —y—
zk Z/ Me 2nnT/ag, e( h) (£+”7)k lhv(f)dx@

neZl ” v)'Tl v ag, (271)"/2

l'Cf (I’l Z)T —2nnT/a °° nxyg
e e [

neZ1=0
% ey (7’1 Z)T —2anT/a nr nT .
R L A ]

Propositions 3.22 and 3.25 show, via equation (4.4), that the contribution of fixed nand
-k k-1
I to the latter expression is (zﬂzvfw(:@ (n,1)e( %) = ik (2\/7}’1) ce, (m, l)e( nry )

)gk—l,l(& n)dxg,

times
He};f")%(k—LT;jTﬂ)’ n>0orn<0and! >k,
A
He, (1) L AYARY 2mn\I7k 0 ni(yp)
#‘Pn(k -LT; ocq) (-D*V2n( ag, ) (=) In’ » n<Oandlzk,
(H€’17$'7)_Hek('7))¢ (k-1,T), n=0and! # k,
(He’;Er;) Hek(n))¢ (k I, T) (=n* k'(Ik(ﬂ) Qk(”l)) n=0and! =k,
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where the error terms from the former proposition go into O(%) and the first term
with [ = k trivially vanishes.
Now, since Q(1) = m for our A, Lemma 4.9 shows that the sum over n and [ of

P/2 Sing, (L2 f)
Z (47:v)hb'

from the integral along aB ¢(£_)), and the first term from equation (4.17) combine,

via equation (4.6), to X, p/z T&Ef)bg,),
get the first asserted term by equation (4.7). Now, fix £ € '\ Iso(V), and equation
(2.18) implies that in the sum of the remaining terms over A € T\L,, 5, we only get
contributions to the integral along 0B, (¢, ) when i;(m, h) =1, and to the one over
0B (0_,) if 1y(m, —h) = 1, with the sign (~1)¥. Lemma 2.6 and Remark 2.7 now imply

nr . _ B m [ nr. .
that, for such /¢, the sum of e(ﬁ) over A with ¢) = ¢ gives 2¢p /Ne(fgi) in case

2e¢\/%; divides n and 0 otherwise. The resulting sums thus produce the remaining
required terms by equations (4.9), (4.10), and (2.23) and the value of #. This completes
the proof of the proposition. [ ]

the first terms gives Hence, these terms, the corresponding ones

and after summing over all A € T\L,, , we

The proof of Proposition 4.12 also shows that the regularized traces that show up in
that proposition, interpreted as regularized L-values, are not those of L2? f but rather
of its image under the Hecke U-operator of index 2¢y \/% .

We can now state and prove the analog of Propositions 4.10-4.12 for m = 0, again
using the expressions from equations (2.23) and (4.4), and with the trace from
equation (4.11).

Proposition 4.13  For an isotropic element h € Dy and large T > 1, we have

1=k 2] To,
LS (i) = 5 D g 1)

AeLys o (4

a~]

S (@0, kv Z (0,1)¢o(k=1,T)+0(+).
LeT\Iso(V) \/_ 1=0
Proof Itiseasy tosee that Lo,4\{0} = Ugserso(v)| e, (0,n)=13[(L + k) N £], a union that
respects the I'-action. The same unfolding argument from the proofs of Propositions
4.11 and 4.12 allows us to write this part of the left-hand side as

v fz) > §0k,—1(\/;/\az)d#(z)>
{£eT\ Tso (V) | 1¢(0,h)=1} TAHr Ae(Lh)nt
and Remark 3.15 implies that replacing [,\J{r by Ty\Fp, 1, for Hy, 1 := FH1\B.(£), pro-
duces an error term that is much smaller that O( % )6. As ¢ is perpendicular to neither

Z(z) nor Z*(z) for any z € H, when we invoke Lemma 4.8 as the proof of Proposition
4.12, only the (negatively oriented) integral along the boundary I'y\0B.(¢) remains.
Now, since equation (2.9) shows that the latter maps under o;" onto (R/ayZ) +iT,

6 Also here, we actually work with representatives for I'\ Iso( V'), but we again allow this abuse of
notation.
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equation (2.11) expresses the summand associated with ¢ as

P
Z Tk// Z(L;’f ‘2k—2v Gg)(xg+iT) Z (pk_l_v)v(\/l_/(gﬁgz),xg+iT)dxg+O(%).
v=0 ap

0+8eZ+wy

Here, after applying equation (3.18), the pairings with Z(xg, +iT) and Z*(x,, +

iT) are just V Nvf3,& and % respectively. Setting v := 7‘2”;\7"132, equations (3.24),

(3.34), (3.35), and (4.5) and simple Fourier integration evaluate the main term as

Pk P k-1-v
—Z:;)VT fR ZZ( 1) lee(n, l)e*ZMT/“z ( ‘xl)o 5; (Tvd) —hy(vE)dx,

[apZ neZ l=v (l - v)'Tl v 4 (zn)k/Z
P 1ee(0,1) ko1 lCe(O D ko1
== aT gi-1,1(vE0)=—/v o T Gi-1,1(we,n; v).
g (2mv)k/2 0#592242(0/,, Z ACLLEN

We apply Proposition 3.27 and substitute the value of v, equation (2.10), and Corol-
lary 3.7 for P (0), and after summing over ¢, our part of the left-hand side takes the

form
P Deg(0,1 k—1-1 -
(2711})(712/2/3@8@(\/ 2nNvBe) T PL(0) Dkt (@i n) + Qi (0) Bkt (o)
LeT\Iso(V) I=0
Z(o,h)=1
ik Hek(O) Beee k-1 AN
el _Peee co(0, )T~ ¢0(0,k) (log YZNEe 4 ¢ ) |ro(L).
(2mv) (k=172 Ler\Tso(v) V27NV ogzlip kot ( r ) (T)
10(0,h)=1 Lk

Note that the latter terms with [/ > k do not arise through this argument, but as they
decay like our error term, the expression is unaffected by adding them.

After canceling, writing 1,(0, h) as a multiplier, and evaluating P;(0) using Corol-
lary 3.7, equation (4.5) shows that the first terms combine to the desired combination
of the traces from equation (4.8). Equation (4.4) then expresses the remaining expres-
sion as the main term from equation (4.11) plus

&
_i"Hex(0) S (0, h) e i ce(0, 1) (k = 1,T),

2mv)*2 iy N i

which is the last asserted term by equation (2.23). This gives the desired right-hand
side when h # 0, and for k = 0, there is also the integral involving (pk,,l(O, z) from
0 € Lo,o. However, equation (3.18) evaluates it as 0¥h_;(0) = 8¢, and since in weight
0 we have, by equation (4.3), the bound

[ f@aua- [ r@du@ = ¥ [Ta ZC“(?J)— (),

LeT\Iso(V)

we indeed get the remaining term from equation (4.11). This proves the
proposition. n
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