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Flow-induced compaction of soft, elastically deformable porous media occurs in
numerous industrial processes. A theoretical study of this problem, and its interplay
with gravitational and mechanical compaction, is presented here in a one-dimensional
configuration. First, it is shown that soft media can be categorised into two ‘types’, based
on their compaction behaviour in the limit of large applied fluid pressure drop. This
behaviour is controlled by the constitutive laws for effective pressure and permeability,
which encode the rheology of the solid matrix, and can be linked to the well-known
poroelastic diffusivity. Next, the interaction of gravitational and flow-induced compaction
is explored, with the resultant asymmetry between upward and downward flow leading to
distinct compaction behaviour. In particular, flow against gravity – upwards – must first
relieve gravitational stresses before any bulk compaction of the medium can occur, so
upward flow may result in compaction of some regions and decompaction of others, such
that the overall depth remains fixed. Finally, the impact of a fixed mechanical load on the
sample is considered: again, it is shown that flow must ‘undo’ this external load before any
bulk compaction of the whole medium can occur in either flow direction. The interplay
of these different compaction mechanisms is explored, and qualitative differences in these
behaviours based on the ‘type’ of the medium are identified.

Key words: porous media

1. Introduction
A saturated, soft porous medium consists of a deformable solid matrix and interconnected
pore space filled with fluid. The study of such deformable media, which constitutes
the field of poromechanics (Coussy 2004), was originally established to understand
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soil mechanics (Biot 1941; Terzaghi 1943) and has expanded to include applications to
biological media (Khaled & Vafai 2003; Boschetti et al. 2004; Fung 2013), geophysics
(Hewitt, Chini & Neufeld 2018) and industrial processes (Fitt et al. 2002). In flow through
rigid porous media, the solid matrix merely acts as a conduit through which the fluid
percolates (Bear 1996). In contrast, in soft porous media, deformation of the solid structure
can drive fluid motion, while fluid motion, in turn, can induce deformation of the solid
matrix. If the deformation is large enough, then this interaction can lead to complex
mechanics, as deformation of the solid can reduce permeability, impeding further fluid
flow. In this paper, we will consider how flow-induced compaction of soft porous media
interacts with gravitational and mechanical compaction.

Mechanical compaction refers to the external application of a load that deforms the
solid matrix, inducing the flow of interstitial fluid. This problem has been the subject of
numerous studies, mainly focused on the transient response to a fixed or varying applied
load. For instance, in a biological context, the periodic loading of porous media is typical
in tissues and is essential for solute transport (Fiori et al. 2023, 2025). Indeed, biological
porous media often respond dynamically to mechanical loading, optimising resource use
and resilience. For example, in bones, regular heavy loading increases bone density, while
disuse leads to significant loss of bone density, which is of medical interest in long-
term bed-rest patients and astronauts in microgravity (Smit 2022). Particular industrial
motivation comes from the dewatering of solid–fluid mixtures (Landman, Sirakoff &
White 1991; Hewitt et al. 2016b; Paterson et al. 2021), known as pressure filtration, which
is utilised in paper production (Fitt et al. 2002) and waste reduction (Wakeman 2007).
There are also applications to geophysical problems, such as the modelling of glaciers and
pressure-driven magma eruptions (Manga & Brodsky 2006; Hewitt et al. 2018).

Flow-induced compaction is markedly different from mechanical compaction. When
a medium is subjected to a steady external load, the solid matrix compacts uniformly
as it is placed under uniform stress. In contrast, flow of interstitial fluid exerts viscous
drag on the matrix and induces deformation that is characteristically non-uniform, since
the gradient of fluid pressure exerts a gradient of stress. This phenomenon was elegantly
illustrated in experiments by Parker, Mehta & Caro (1987), and has been the subject of
various experimental and theoretical studies since then (MacMinn, Dufresne & Wettlaufer
2015; Hewitt et al. 2016a; Paterson et al. 2019). Some recent work has gone beyond the
behaviour in the bulk medium to also explore the influence of the boundary conditions on
the response of the medium to flow, particularly considering an interfacial permeability
that differs from that of the bulk (Feng & Young 2020; Xu et al. 2022, 2024).

The force of gravity arising from the density difference between the deformable medium
and interstitial fluid is often neglected in these studies, where it is assumed to be
much weaker than other driving forces. There are, however, some situations where such
gravitational forces play an important role, such as in the compaction of sedimentary
basins (Smith 1971; Audet & Fowler 1992) and subsurface soil or ice (Head & Wilson
1992; Wilson & Head 1994; Mergny & Schmidt 2024). Gravity also drives industrial
settling problems, known as gravity thickening (Buscall & White 1987; Chu & Lee 2002;
Concha & Bürger 2002; Chu, Lee & Tay 2003), and is an important consideration in the
field of compressive rheology (Landman & White 1994; de Kretser, Boger & Scales 2003;
Stickland & Buscall 2009).

Most of these studies have examined mechanical, flow-induced or gravitational
compaction in isolation, justified by relevant applications where one of these features
is dominant. It is also common to assume that any deformation is small and linear,
which significantly simplifies theoretical modelling (Biot 1941). Here, we will instead
explore the interplay between these three distinct forms of compaction, considering that
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Figure 1. The set-up for §§ 2–4. (a,b) No flow (�p = 0) with (a) �ρ = ρs − ρf = 0, stress-free, and
(b) �ρ > 0, gravity-slumped. (c,d) The subsequent flow-induced compaction set-up, with �ρ > 0, for flow
applied (c) downwards (Q < 0, driven by a negative pressure drop �p < 0) and (d) upwards (Q > 0, driven by
a positive pressure drop �p > 0). The upper and lower walls are permeable to the fluid, but not to the solid.

the stresses from each are of comparable size and allowing for large-scale nonlinear
deformation. Such interaction is particularly common in industrial applications, where
gravitational settling can interact with both external mechanical forcing and fluid flow
through a soft, deformable porous medium to affect its overall compaction. This is the
case in the production of metallic syntactic foam, for example, which involves molten
metal flowing through a solid matrix of hollow mini-spheres (Borovinšek et al. 2016; de la
Muela et al. 2020; Fiedler et al. 2020), or in the production of fibreglass insulation, where
air flows through the soft fibrous medium (Cameron & Rapp 2001); similar interplay is
also encountered in the processing of wet wood pulp (Fitt et al. 2002). Here, we will
approach this problem from a theoretical standpoint, focusing on simple unidirectional
flow either with or against the direction of gravity, and either without or with additional
mechanical confinement. For the latter, we consider the steady application of a uniform
displacement – or ‘pre-strain’ – at the boundary.

After laying out the model framework in § 2, we set the scene in § 3 by reconsidering the
problem in the absence of gravity. We classify media into one of two generic ‘types’, based
on their constitutive laws for permeability and effective pressure. Gravitational stresses are
subsequently included to explore the implication of gravity with downward flows. We then
explicitly consider upward flows in § 4, and quantify the implication of the asymmetry
between upward and downward flows. Finally, in § 5, we introduce pre-straining into the
model, such that the medium is mechanically compressed between two porous plates while
flow is induced. We aim to provide a comprehensive understanding of the interaction
between compaction driven by flow in soft porous media and compaction due to gravity,
or simply due to the application of an external load.

2. Model set-up

2.1. Governing equations and boundary conditions
Consider a fully saturated porous medium, which is initially unstrained in the absence of
flow and gravitational stresses. We let φ denote the solid fraction of the porous medium,
and z denote the vertical axis; in the unstrained state, the medium has uniform stress-free
solid fraction φ(z) = φ0 and occupies depth h0 (see figure 1a). The medium is composed
of solid phase with density ρs and fluid phase with density ρf such that its bulk density is
ρ = ρsφ + ρf (1 − φ). When ρs > ρf , the medium differentially compacts under gravity to
depth hg < h0 with solid fraction profile φg(z); we refer to this state as ‘gravity-slumped’
(see figure 1b).
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Consider now that the gravity-slumped medium is lying between semi-permeable plates
at z = 0 and z = hg , which allow the fluid phase to freely pass through but do not allow
passage of the solid phase. When an excess fluid pressure drop �p is applied across the
sample, fluid flows through the medium with velocity wf (z), which drives deformation of
the medium itself with solid velocity ws(z). We consider unidirectional flow, which may be
generated in either vertical direction, depending on the sign of �p (see figures 1c,d), and
we choose to specify that a positive �p drives upward flow in the positive z direction. As
compaction occurs, the solid fraction profile φ(z) evolves, and the medium compacts to a
depth h = ht − hb, where z = hb, ht are the positions of the bottom and top boundaries of
the medium, respectively. The boundary out of which fluid flows remains fixed in position
as the medium compacts against the relevant semi-permeable plate.

We consider both the solid and fluid phases to be individually incompressible, and
enforce conservation of mass in each phase, Darcy’s law and total stress balance to give

− ∂φ

∂t
+ ∂

∂z
[(1 − φ)wf ] = 0, (2.1)

∂φ

∂t
+ ∂

∂z
[φws] = 0, (2.2)

(1 − φ)(wf − ws) = − k

μ

(
∂p

∂z
+ ρf g

)
, (2.3)

∂Π

∂z
+ ρg = 0, (2.4)

where k is the permeability of the medium, μ is the fluid viscosity, p is the local pressure
in the fluid, g is the gravitational acceleration, and Π is the total pressure of the two-phase
system. In line with standard poromechanical modelling, we further define the effective
pressure σ = Π − p such that (2.3) and (2.4) become

(1 − φ)(wf − ws) = k

μ

(
∂σ

∂z
+ �ρ gφ

)
, (2.5)

where �ρ = ρs − ρf . The effective pressure σ and permeability k are material constitutive
functions that encode the rheology of the medium. We refine our focus to general elastic
media such that σ depends only on the vertical strain, or equivalently, on the solid
fraction φ (MacMinn, Dufresne & Wettlaufer 2016). The stress-free solid fraction φ0,
introduced above, satisfies σ(φ0) = 0. We similarly assume that the permeability k(φ)

depends only on the current solid fraction of the medium.
We must enforce that solid velocity is zero at the boundary out of which fluid flows.

As such, ws(z = ht ) = 0 in upward flow and ws(z = hb) = 0 in downward flow. The solid
velocity at the opposite boundary is given simply by ws(hb,t ) = ∂hb,t/∂t . At the upper
boundary z = ht , we scale the pore pressure p to zero, thus at the lower boundary p(hb) =
ρf gh + �p, since �p is the applied pressure drop in excess of the background hydrostatic
pressure.

The asymmetry induced by gravity requires the specification of different boundary
conditions for Π in upward and downward flows. We focus first on the case of downward
flow (�p < 0); the boundary conditions for upward flow need more care and are presented
in § 4.

In the absence of flow, the total pressure at the upper boundary is zero, Π(ht ) = 0. The
pressure at the lower boundary follows from (2.4) and consists of the relative weight per
unit area of the overlying solid and fluid. We neglect any additional resistance to flow
coming from the entry conditions to the porous medium (e.g. Xu et al. 2022) and as
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such, the total pressure at the upper boundary remains zero in the presence of downward
flow. These pressure boundary conditions for downward flow can be expressed in terms of
effective pressure σ :

σ |z=ht = 0, (2.6)
σ |z=hb = �ρgh0φ0 + |�p|, (2.7)

where the dependence on φ has been simplified by recognising that conservation of total
solid mass enforces ∫ ht

hb

φ dz = h0φ0. (2.8)

2.2. Non-dimensionalisation
This system of equations is closed by the specification of constitutive laws for the
permeability k and the effective pressure σ . Given such laws, we can extract characteristic
dimensional scales for the elastic modulus σ ∗ and permeability k∗. To remove dimensions
from the problem, we scale lengths with the stress-free depth h0, pressures with σ ∗,
velocity with k∗σ ∗/h0μ, and time with h2

0μ/k∗σ ∗, the poroelastic time scale. Non-
dimensionalisation introduces two dimensionless groups,

G = �ρgh0

σ ∗ , P = �p

σ ∗ , (2.9)

where G is a dimensionless measure of the relative importance of gravitational stress to
elastic stresses, and P is the dimensionless pressure drop. We can also frame the relative
gravity term G in the context of the compaction length scale L = σ ∗/�ρg (Head & Wilson
1992; Wilson & Head 1994; Mergny & Schmidt 2024), such that G = h0/L is a ratio of the
medium’s depth to the depth over which gravitational compaction occurs; when L � h0,
little gravitational compaction is expected.

The material flux Q is defined by

Q ≡ φws + (1 − φ)wf , (2.10)

which, by combining (2.1)–(2.2), is constant in space. Equation (2.3) with all variables
now dimensionless is

(1 − φ)(wf − ws) = k(φ)

(
σ ′ ∂φ

∂z
+ Gφ

)
, (2.11)

using the notation σ ′ = ∂σ/∂φ. The flux can therefore be identified as

Q = ws + k(φ)

(
σ ′ ∂φ

∂z
+ Gφ

)
, (2.12)

and the boundary conditions (2.6)–(2.7) become

σ |z=ht = σ(Φt ) = 0, (2.13)
σ |z=hb = σ(Φb) = Gφ0 + |P|, (2.14)

where we have introduced notation for the solid fraction at the respective boundaries
Φt = φ(z = ht ) and Φb = φ(z = hb). By assuming that the constitutive law σ(φ) is
invertible, we can simply transform (2.13)–(2.14) into conditions on Φt,b. Note simply
that in a downward flow, the upper boundary is stress-free and Φt = φ0.

Our primary concern here is to explore the steady solutions of compaction, but a
brief summary of transient solutions is presented in Appendix A, which also serves as
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a numerical validation of the following steady solutions. In a steady state, it is most
convenient to transform the mass conservation equation (2.8) into an integral over φ using
(2.12) with ws ≡ 0, to yield an implicit equation for the unknown flux Q:∫ Φt

Φb

kσ ′φ
Q − kGφ

dφ = φ0. (2.15)

Having determined Q, the depth h follows from direct integration of (2.12),∫ Φt

Φb

kσ ′

Q − kGφ
dφ = h, (2.16)

while the solid fraction profile φ(z) follows implicitly from integrating only up to z,∫ φ

Φb

kσ ′

Q − kGu
du = z(φ) − hb, (2.17)

where hb ≡ 0 in downward flow.
We can identify the grouping D = kσ ′φ in (2.15) as the dimensionless form of

the poroelastic diffusivity D∗ = kσ ′φ/μ, which is well known to control the essential
behaviour of poroelastic compaction, and is related to the poroelastic time scale h2

0μ/k∗σ ∗
(Landman et al. 1991; Audet & Fowler 1992; Worster, Peppin & Wettlaufer 2021). As we
will see, the dependence on the combination kσ ′, which is the product of the permeability
and the effective stiffness of the medium, reflects the intrinsic interplay of these features
in the mechanics of this problem, and dictates the qualitative behaviour of the deformable
medium under compaction.

2.3. Constitutive laws
The model outlined above is defined for any constitutive laws for permeability k(φ) and
any invertible effective pressure σ(φ) that are functions of solid fraction φ alone. When
considering solutions to the model, we will focus our attention on specific choices for these
laws. Generally, these laws must follow some physically intuitive restrictions. In particular,
the medium cannot be compacted beyond a maximum solid fraction, φm � 1; this identifies
a corresponding minimum solid depth hm = φ0h0/φm at which the medium is uniformly
held at the maximum solid fraction. We choose the permeability to vanish at the maximum
solid fraction φm but to diverge as the solid fraction tends to zero. Similarly, we require
the effective pressure to vanish at the stress-free solid fraction φ0, and we also expect it to
diverge as φ → φm . These effects are captured by simple laws of the general form

k = (φm − φ)δ

φη
, σ = (φ − φ0)

γ

(φm − φ)λ
, (2.18)

for δ, η, γ, λ> 0.
For the purposes of illustrating model results, we set δ = 3, η = 2, γ = 1, and leave λ as

a free parameter. The choices of δ and η are motivated by the widely used Kozeny–Carman
permeability law for the modelling of uniform packed spheres (Carman 1997), while the
choice of γ is made to specify a linear relation between σ and φ for small deformations.
As such, all solutions presented here are governed by the laws

k = (φm − φ)3

φ2 , σ = (φ − φ0)

(φm − φ)λ
, (2.19)

where results will be sensitive to choice of λ. For simplicity, for the rest of this paper we
will set φm = 1 and φ0 = 0.6.
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Figure 2. Steady-state solutions for a medium compacted by a downward flow induced by pressure drop P < 0,
showing (a,d) the flux Q and (b,e) the depth h as functions of pressure drop. (c, f ) Graphs of the scaled solid
fraction profiles φ(z/h). Solutions are presented for media governed by two different effective pressure laws
given by (2.19), with (a–c) λ= 4 and (d–f ) λ= 1.

Note that in the chosen flow set-up (figure 1), the system can never be in a state
of negative effective pressure (i.e. φ < φ0). In such a state, the constitutive behaviour
would vary significantly depending on whether the medium was cohesive (like a sponge)
or comprised a collection of deformable particles (like a pack of hydrogel beads). For
example, flow upwards through a collection of particles without confinement can lead to
fluidisation (Van Zessen et al. 2005), which is not considered here.

3. Solutions and analysis of model

3.1. Observations when G = 0
We first consider solutions when G = 0, as would be the case if, for example, the porous
medium comprised solid and fluid phases with comparable densities. While this case
has been the focus of previous work (Parker et al. 1987; Paterson et al. 2019), it will
be helpful to interrogate this limit a little further here to set the scene for the remainder of
this work. In this situation, upward and downward flows are identical. Figure 2 illustrates
flux Q, depth h, and profiles of solid fraction φ as a downward flow is induced with
increasing pressure drop |P| across the medium. Flow through the porous medium induces
differential compaction that results in denser packing at the lower boundary, where the
fluid exits, while the medium remains stress-free at the upper boundary, where fluid enters.

Figure 2 highlights two possible behaviours for compaction as |P| increases for two
media with different constitutive laws. The first medium (figure 2a–c) shows a continual
increase in Q with P; this is the standard behaviour for a rigid porous medium, but extends
to deformable media if they remain sufficiently permeable under increasing compaction.
The depth h decreases towards the minimum solid depth hm = 0.6, and φ correspondingly
compacts towards the maximum solid fraction φm = 1, although this limit is not attained
at finite P . The second medium (figure 2d–f ) illustrates the existence of a maximal value
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of Q as |P| increases. As Q approaches this maximum, h approaches a minimum that
is larger than hm , and φ tends towards an asymptotic profile with a curvature different to
that of the profiles in figure 2(c). All of these measures (Q, h, φ) effectively attain their
asymptotic value or profile for P ≈ O(1), and become insensitive to P for larger pressure
drops, in clear contrast to the results in figure 2(a)–2(c). The difference between the media
in this figure is that the second medium has a stiffness with a weaker dependence on φ than
the first; that is, it stiffens less significantly under compaction. Due to its lower stiffness,
the permeability – or more specifically, the loss of permeability – plays a more dominant
role in determining the response of the medium: further compaction or increase in Q is
more strongly opposed by the resistance to flow.

As already noted, there is a marked difference in the curvature of the compacted profiles
φ(z) between the two media as the pressure drop increases. This difference is encapsulated
in the contrasting gradients of solid fraction ∂φ/∂z at the lower boundary. The profiles
in figure 2(c) show ∂φ/∂z tending towards zero at the lower boundary, while the solid
fraction steadily compacts across the depth of the medium as P increases. In contrast,
figure 2( f ) illustrates a limit towards an infinite gradient at the lower boundary as the solid
fraction quickly reduces away from the lower boundary value.

In the next subsection, we will classify how these observed behaviours can be predicted
from the constitutive laws. Some of these ideas were briefly discussed in the appendix of
Hewitt et al. (2016a), and we expand on and formalise those ideas here.

3.2. ‘Types’ of behaviour

3.2.1. Limiting flux
In a steady state and for G = 0, the flux is given explicitly from (2.15) by

Q = 1
φ0

∫ Φt

Φb

kσ ′φ dφ = 1
φ0

∫ Φt

Φb

D dφ. (3.1)

We consider a downward flow in which a negative pressure drop P induces negative flux
Q and has boundary conditions Φb = σ−1(|P|) and Φt = φ0. The derivative of |Q| with
respect to |P| immediately shows

∂|Q|
∂|P| = kσ ′φ

φ0

∣∣∣∣
Φb

∂Φb

∂P = kφ

φ0

∣∣∣∣
Φb

> 0, (3.2)

since ∂Φb/∂|P| = σ ′(Φb)
−1. As such, the magnitude of flux must increase with increasing

pressure drop across the medium. This confirms that either |Q| increases without bound, or
|Q| increases to an asymptotic limit as |P| increases; the two behaviours of flux observed
in figure 2 are the only two possibilities.

In order to deduce for which laws we expect flux to be unbounded or limited with
increasing |P|, we consider the limit |P| → ∞, following Hewitt et al. (2016a). In this
limit, we expect φ → φm at the base, so we can generically express permeability and
effective pressure as power laws of the form

k ≈ (φm − φ)α, σ ≈ (φm − φ)−β, (3.3)

for some α, β � 0. Note that in our chosen constitutive laws, given by (2.19), α = 3 and
β = λ. Considering the effective pressure at the compacted boundary σ(Φb) = |P|, we
identify (φm − Φb) ≈ |P|−1/β , therefore it follows from integration of (3.2) that the flux
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scales like

|Q| ≈ |P||1−α/β| for α < β, (3.4)
|Q| ≈ ln(|P|) for α = β, (3.5)

|Q| ≈ Q∞ + |P|−|1−α/β| for α > β, (3.6)

as |P| → ∞, where Q∞ is a constant. Two types of behaviour can be identified: type 1
(α � β), for which Q is unbounded with increasing |P|; and type 2 (α > β), for which Q is
bounded. This classification can be recast in terms of the diffusivity D = kσ ′φ, with type
1 corresponding to D diverging faster than a simple pole, (φm − φ)D → ∞ as φ → φm .

In summary, for type 1 media, k approaches zero more slowly than σ diverges as |P| is
increased. Physically, this means that as a type 1 medium is steadily compacted towards
the maximum solid fraction φm everywhere, the medium maintains sufficient permeability
for flow. Therefore, like a rigid porous medium, the flux can be increased without bound
simply by increasing the pressure drop. The insensitivity to loss in permeability allows
for further continual compaction towards φm . For type 2 media, in contrast, k tends to
zero quicker than σ diverges as |P| is increased, and consequently the mechanics of
compaction close to the maximum solid fraction are controlled primarily by the loss of
permeability. Microstructural effects enforce that at solid fractions less than the theoretical
maximum φm , the medium becomes increasingly impermeable, continually impeding flow
such that the magnitude of flux |Q| increases asymptotically towards a finite limiting
value Q∞. Since further compaction is limited by the decreased permeability, the depth
tends towards a finite compaction depth h∞ that is larger than the theoretical minimum
solid depth hm .

In general, it is difficult to predict the ‘type’ of a given deformable medium due to
the intrinsic dependence on the combination of permeability and stiffness. However, it is
possible to find examples of constitutive laws corresponding to both ‘types’ in previous
literature. For example, constitutive laws giving type 1 media have been reported for nylon
fibres in glycerine (Hewitt et al. 2016b) and intervertebral discs (Riches et al. 2002).
Reported type 2 media include hydrogel beads (MacMinn et al. 2015), cellulose fibres
(Hewitt et al. 2016b), compacting shale layers (Audet & Fowler 1992) and waste water
treatment sludge (Stickland & Buscall 2009).

3.2.2. Limiting compaction profiles
In a downward flow, the gradient of solid fraction ∂φ/∂z at the lower compacted boundary
is found from rearrangement of (2.12) and is indicative of the overall steady compaction
profile φ(z). With G = 0, the gradient in the limit φ → φm is simply ∂φ/∂z → Q(φm −
φ)1+β−α , which is dependent on the powers α, β and the limiting form of Q as defined
in (3.4)–(3.6). As before, we can express P in terms of the compacted boundary solid
fraction Φb through the effective pressure boundary condition; (φm − Φb) ≈ |P|−1/β .

For type 1 media (α � β), Q is unbounded for increasing |P|, with precise form given
by (3.4)–(3.5). Combined with the limiting expression for |P|, we deduce that at the lower
boundary, ∂φ/∂z → 0 as |P| → ∞.

For type 2 media (α > β), Q tends to a limiting value Q∞, so the limit of the gradient is
determined explicitly by the sign of 1 + β − α, giving the follow options for the gradient
at the lower boundary:

(i) type 2i (β < α < β + 1), D → ∞, ∂φ/∂z → 0
(ii) type 2ii (α = β + 1), D → D∞ (constant), ∂φ/∂z ≈ constant

(iii) type 2iii (α > β + 1), D → 0, ∂φ/∂z → ∞.
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Figure 3. (a) Steady-state profiles for the solid fraction φ for different pressure drops P given in the legend
(black lines). All solutions have G = 0. Constitutive laws are given by (2.19) such that for type 1, λ= 4, for
type 2i , λ= 5/2, for type 2ii, λ= 2, and for type 2iii, λ= 1. The large P limit for each set of laws is illustrated
with red dashed lines. (b) The flux |Q| for each type of medium plotted against applied pressure drop P , with
the limiting flux Q∞ shown by dashed lines for each type 2 medium. (c) The depth h for each type, with the
limiting compaction depth h∞ and minimum depth hm shown by dashed lines.

Figure 3 presents solutions for the solid fraction profile φ, flux Q and depth h as
|P| increases, for each type of medium identified above. Type 1 media are shown to
characteristically compact towards φm everywhere, with ∂φ/∂z → 0 at the lower boundary
where the fluid leaves the domain. Type 2i media have the same zero gradient of φ at the
base, but they instead approach a non-uniform asymptotic φ(z) profile. Similarly, type 2ii
and type 2iii media approach non-uniform asymptotic φ(z) profiles, but are differentiated
by the finite gradient of φ at the base in type 2ii media, and an infinite gradient of φ at
the base in type 2iii. Figures 3(b) and 3(c) illustrate the existence of limiting flux Q∞
and limiting depth h∞ in type 2 media. While the depth of type 1 media is of course also
limited by the minimum solid depth hm = φ0/φm , in type 2 media the limiting depth h∞ is
distinct and larger than this value. We note that the order of |P| at which Q and h approach
these limiting values increases significantly as the relative power of k to σ is decreased in
the constitutive laws.

Note that these observations can be linked to the analysis of Hewitt et al. (2016b) for the
formation of boundary layers under a quick moving piston for the dewatering of soft porous
media. They found that in the limit φ → φm , the boundary layer solutions are determined
by whether D remains finite or diverges. The boundary condition for solid fraction at the
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Figure 4. The gravity-slumped solutions for (a) profiles of solid fraction φg for different relative gravity G as
given in the legend, and (b) depths hg against increasing G. The blue dashed line in (b) represents the minimum
depth hm . The medium is governed by (2.19) with λ= 1, although the illustrated behaviour is independent of
medium ‘type’.

medium-piston interface was found as an output of the model with finite D (type 2ii and
2iii media) corresponding to the solid fraction at this boundary attaining its maximum
value and the pressure on the piston diverging, whereas D → ∞ (type 1 and 2i media)
corresponds to solid fraction approaching but not reaching the maximum.

3.3. Gravity and type interaction
In the absence of flow and with G > 0, the medium non-uniformly compacts due to
gravitational stresses, with denser packing at the lower boundary, and stress-free solid
fraction at the upper boundary. Compaction due to gravitational stresses alone, which we
call gravity-slumping, is unaffected by the permeability, unlike flow-induced compaction,
so inevitably, the gravity-slumped profiles of solid fraction are different to those for flow-
induced compaction (figure 4a). Figure 4(b) shows the no-flow gravity-slumped depth hg
for an example medium for increasing G, illustrating how the medium can slump under
gravity all the way down to the minimum depth hm for sufficiently large G. This behaviour
is independent of the ‘type’ of the medium.

Natural and industrial porous media give rise to a wide range of relative gravity values.
Even supposedly stiff porous media can have large G values if the relevant length scale h0
is large enough. For example, the gravitational compaction of ice over several hundreds of
metres results in G = O(10) (Mergny & Schmidt 2024); notably softer porous media, such
as fibreglass insulation or wool stuffing, may have similar or larger relative gravity G on
much shorter length scales (h0 ≈ 1 m). It is clear from figure 4(b) that such values of G
can result in significant gravity-slumping, although the precise depth is highly dependent
on the constitutive laws for the media.

The extension of the analysis in § 3.2 to the regime G > 0 is more mathematically
involved but draws the same conclusion of classification of types, as outlined in
Appendix B. The plots in figure 5 illustrate how the interaction between gravitational and
flow-induced compaction varies for type 1 and type 2 media. Under a downward flow, type
1 media can compact everywhere towards the maximum solid fraction φm as |P| → ∞.
As such, it is unsurprising that for large enough P , the value of G has a negligible impact
on the profiles of φ (figure 5a). In contrast, the limiting profiles of φ for type 2 media in a
downward flow depend sensitively on the value of G (figure 5b). Indeed, for large enough
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Figure 5. Steady-state solid fraction φ for porous media governed by constitutive laws (2.19) with (a) λ= 4, a
type 1 medium, and (b) λ= 1, a type 2 medium. Solutions are shown for different pressure drops P inducing
downward flow and different relative gravity G, as marked. (c) Plots of both gravity-slumped depth hg (black)
and minimum flow-induced compaction depth h∞ (orange) against relative gravity G for the type 2 medium
in (b). The dashed blue line marks the minimum depth hm . (d) Plots of the same data as in (c), but as relative
strain (hg − h∞)/hg .

G, there is little difference between the gravity-slumped profile for P = 0 (left-hand plot)
and the asymptotic profile as |P| → ∞ (right-hand plot); we deduce here that gravity plays
the dominant role in compaction, and little further deformation by fluid flow is possible.

We can further interrogate type 2 media’s dependency on G by observing the minimum
flow-induced compaction depth h∞ for increasing G. Figure 5(c) overlays h∞ onto the
results of figure 4(b); increasing G decreases both the initial flow-free depth hg and
the limiting depth h∞. However, if we instead inspect the relative change in depth
(hg − h∞)/hg in figure 5(d), which can be considered as the actual flow-induced strain,
then we observe that this induced strain is decreasing as G increases. This is not
surprising: since the initial gravity-slumped state is compacting towards the maximum
solid fraction φm , the medium is under higher initial pressure and is therefore harder to
further compact by flow. As such, we can conclude that increasing relative gravity results
in less flow-induced strain in type 2 media, despite the fact that lower depths are reached.

4. Upward flow
We now extend our work to allow for an upward flow by reconsidering the effective
pressure boundary conditions (2.13)–(2.14). A gravity-slumped medium takes up a non-
uniform gravitational pressure that consists of the relative weight per unit area of the
overlying fluid and solid. The medium compacts to a depth hg with solid fraction profile
φg(z) (figure 6a). We have previously considered downward flow, in which the fluid
enters through the stress-free upper boundary, and drives further compaction. In contrast,
in upward flow, the fluid enters through the gravitationally stressed lower boundary, and
will drive compaction near the upper boundary. In this case, we expect that the stressed
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Figure 6. The set-up for § 4: (a) gravity-slumped (G > 0 and no flow P = 0); and (b,c) an upward flow (Q > 0)
driven by a positive pressure drop (P > 0). In (b), the flow is slow enough such that the entry boundary pressure
is not relieved (σ(Φe) > 0) and the depth is fixed at hg . In (c), P is large enough that the entry boundary
pressure is relieved (σ(Φe) = 0) and the depth h reduces.

lower region will decompact in response to the compaction in the upper region, and the
medium may maintain a fixed depth as internal rearrangement occurs (h = hg; figure 6b).
Eventually, strong enough flow will be able to ‘remove’ all the gravitational pressure,
leaving the lower boundary stress-free, and allowing the depth of the medium to evolve
(h < hg; figure 6c).

4.1. Inclusion in the model
We previously established that for downward flow, the total pressure Π and fluid pressure
p disappear at the upper boundary, which is therefore stress-free. Upward flow, however,
enters through the stressed lower boundary, so the equivalent boundary conditions are
not so straightforward. As discussed above, flow reduces the entry boundary pressure
by an amount that is a priori unknown, since it relies on how the medium rearranges
internally. Given (2.4), we can determine the effective pressure boundary conditions up to a
constant Σ :

σ(Φt ) =P − Σ(P), (4.1)
σ(Φb) = Gφ0 − Σ(P), (4.2)

where the relieved pressure Σ evolves with applied pressure drop P and is bounded by
0 �Σ � Gφ0, enforcing σ > 0 everywhere. Note here that the pressure felt at the upper
boundary due to P is equally reduced as pressure is taken up by the internal rearrangement
of the solid fraction as gravitational compaction is ‘undone’.

While the entry pressure has not been fully relieved (σ(Φb) > 0), the medium is able to
simultaneously compact and decompact, maintaining a fixed depth hg . Once σ(Φb) = 0,
or equivalently Σ = Gφ0, the medium can no longer decompact, and further increase
in P will drive bulk compaction (h < hg). Having non-dimensionalised as in § 2.2, this
mechanism is included in the steady equations (2.15)–(2.16) with the adapted boundary
conditions (4.1)–(4.2), as follows:∫ Φt

Φb

kσ ′φ
Q − kGφ

dφ = φ0, (4.3)

∫ Φt

Φb

kσ ′

Q − kGφ
dφ =

{
hg for σ(Φb) > 0,

h for σ(Φb) = 0.
(4.4)

If σ(Φb) > 0, then the unknowns in (4.3)–(4.4) are Σ and Q, with h = hg known. If,
instead, σ(Φb) = 0, then the two unknowns are h and Q. We denote the value of P that
separates these two cases to be the ‘lift-off’ pressure Plift, found by setting both h = hg
and σ(Φb) = 0 in (4.3)–(4.4).
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Figure 7. Steady solutions for initially gravity-slumped media (black) with G = 5 governed by constitutive laws
(2.19), with (a–d) λ= 3, type 1 medium, and (e–h) λ= 1, type 2 medium. (a,b,e, f ) Solid fraction profiles φ for
media compacted by (a,e) a downward flow (red), and (b, f ) an upward flow (blue). The corresponding depth h
and flux |Q| evolutions are in (c,g) and (d,h), respectively.

4.2. General solutions
Gravity immediately introduces an asymmetry between upward and downward flow. We
present in figure 7 a simple comparison of this asymmetry in both type 1 and type 2
example media. Figures 7(a) and 7(b) compare the profiles of solid fraction under
compaction by downward and upward flow, respectively, in a type 1 medium, highlighting
three key features. First, upward flow acts to ‘undo’ compaction due to gravity: inducing
a downward flow can only compact the medium more, whereas upward flow allows for
some initial decompaction of the medium. Second, in upward flow, there is a range of low
pressure drop in which the depth remains fixed at depth hg . Finally, during this fixed depth
regime, flow-induced compaction can rearrange the internal packing of the medium to a
uniform profile of solid fraction when the applied pressure drop P exactly balances the
gravitational pressure Gφ0 on the lower boundary. This homogenisation of the medium
must occur in the regime of fixed depth, as it requires both boundaries to be somewhat
compacted. Figures 7(e) and 7(f ) illustrate the same ideas in a type 2 medium.

In considering the evolution of depth h and flux Q (figure 7c,g,d,h), we note that upward
flow consistently corresponds to a larger depth (less compacted) and higher flux compared
to downward flow. Upward flow must first ‘undo’ gravitational compaction, and as such,
the pressure is taken up by the rearrangement of internal packing, resulting in a reduced
effective pressure at the boundary out of which flow exits. For any given pressure drop
P , we can expect downward flow to result in greater compaction and more dense packing,
thus lowering the bulk permeability. We consider that the resistivity of the medium to flow
is higher in a downward flow, and as such, flux is impeded. Consequently, the limiting
depths h∞ and flux |Q∞| in type 2 media will always be lower for a downward flow.

Figure 8 presents the lift-off pressure Plift for changing relative gravity G in both type 1
and type 2 media. Increasing G will increase gravitational compaction, so must increase
Plift. While this increase is continual in the type 1 medium, in a type 2 medium it becomes
unbounded at a finite value of G (figure 8b). Beyond this critical G, no such Plift exists:
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Figure 8. Lift-off pressure Plift against relative gravity G for media governed by constitutive laws (2.19) with
(a) λ= 3, a type 1 medium, and (b) λ= 1, a type 2 medium. The dashed line in (b) illustrates the asymptote
of Plift.
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Figure 9. The limiting compaction depth h∞ against relative gravity G for a type 2 medium governed by (2.19)
with λ= 1. Solutions are presented for upward (blue) and downward (red) flow, together with the no-flow
gravity-slumped depth hg (black). The dashed line shows the critical G above which the lift-off pressure for
upward flow is unbounded.

no pressure drop is able to induce bulk compaction in an upward flow, and the depth
remains fixed at hg . The example illustrated in figure 7(g) falls in this range, and h will
remain fixed for any P .

The interaction of type 2 media with gravity is further illustrated in figure 9, which
shows the limiting compaction depth h∞ for upward and downward flow. We have already
observed that increasing G lowers h∞ for downward flow (figure 5c); here, we see the
opposite trend for upward flow for G sufficiently small as h∞ directly increases with G.
However, when the critical G at which Plift → ∞ is exceeded, h∞ becomes fixed at the
gravity-slumped depth hg and thus decreases with further increase in G. In this range, flow-
induced bulk compaction is no longer possible in upward flow, and the depth is controlled
solely by gravity-slumping.

5. Pre-strain
Suppose now that the porous plates that contain the medium are brought closer together
by the application of an external load S0, so that they are separated by a distance
hi < hg (figure 10b). The medium is compressed between the plates and takes up the
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Figure 10. The set-up for § 5, showing (a) an unpre-strained medium with depth hg , (b) the medium pre-
strained to depth hi < hg , and (c,d) the pre-strained medium under different downward flows (Q < 0) driven
by a negative pressure drop (P < 0). In (c), |P| is small enough that the entry boundary pressure is not relieved
(σ(Φe) > 0) and the depth is fixed at hi . In (d), |P| is large enough that the entry boundary pressure is relieved
(σ(Φe) = 0) and the depth h reduces.

uniform external load. We refer to the medium in this configuration as ‘pre-strained’.
If a flow is now induced across the medium by applying an excess fluid pressure drop,
either upwards or downwards, then we expect the viscous flow to rearrange the solid
fraction profile, compacting some regions and decompacting others. As such, if the flow
is weak enough, then it should be possible for the overall depth to remain fixed at hi
(figure 10c), which was only possible for upward flow in the unpre-strained regime.
Alternatively, for stronger flow when the entry boundary pressure is relieved, we expect
that bulk compaction can still occur such that the depth evolves and the medium compacts
(figure 10d).

5.1. Inclusion in the model
As with upward flow in § 4, when the entry boundary is stressed, the internal packing
of the solid fraction can be rearranged, leaving the overall depth fixed at hi (figure 10c).
We denote this entry boundary pressure as σ(Φe), where e = t, b in downward and upward
flow, respectively. Once the entry pressure is relieved (σ(Φe) = 0), bulk compaction occurs
as P is increased further, such that the depth of the medium decreases (h ≤ hi ; figure 10d).

We will again focus on the steady-state solutions; pre-strain is incorporated into the
steady equations (2.15)–(2.16), having appropriately non-dimensionalised as in § 2.2, as
follows: ∫ Φt

Φb

kσ ′φ
Q − kGφ

dφ = φ0, (5.1)

∫ Φt

Φb

kσ ′

Q − kGφ
dφ =

{
hi for σ(Φe) > 0,

h for σ(Φe) = 0,
(5.2)

where e = b or t . The boundary conditions are adapted from (2.13)–(2.14), but now
incorporate the pre-strain pressure:

σ(Φt ) =
{
P + S0 − Σ for P � 0,

S0 − Σ for P � 0,
(5.3)

σ(Φb) =
{
Gφ0 + S0 − Σ for P � 0,

|P| + Gφ0 + S0 − Σ for P � 0,
(5.4)
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Figure 11. Steady solutions for (a) entry boundary pressure σ(Φe), (b) depth h, and (c) flux |Q|, against applied
pressure drop |P| for a medium with G = 5, pre-strained to depth hi = 0.95, such that the pre-strain coefficient
is Δ = 0.008, for upward (blue) or downward (red) flow. The profiles of solid fraction φ are presented in
(d) and (e) for upward and downward flow, respectively, at given values of P denoted by dots in (a–c). Dashed
grey lines in (a–c) illustrate the respective lift-off pressures |Plift|, and dashed coloured lines in (b,c) illustrate
the unpre-strained solutions for depth, which coincide with the pre-strained solutions once σ(Φe) = 0. Dotted
lines in (d) and (e) illustrate the boundaries of the medium hb and ht . The medium is governed by constitutive
laws (2.19) with λ= 4.

where Σ(P) is the relieved pressure. Note that for upward flow, both the pre-strain
pressure and gravitational pressure must be relieved in order to induce bulk compaction
(Σ = Gφ0 + S0), while downward flow need only relieve the pre-strain pressure (Σ = S0).
If σ(Φe) > 0, then the two unknown variables in (5.1)–(5.2) are Q and Σ , with h = hi
known. Alternatively, if σ(Φe) = 0, then the two unknowns are Q and h, and the system
coincides with the compaction of an unpre-strained medium. We again denote the applied
excess pressure at which the entry pressure is fully relieved to be the lift-off pressure Plift,
which is found by solving (5.1)–(5.2) with σ(Φe) = 0 and h = hi .

The initial pre-strain depth hi and the corresponding initial pre-strain pressure S0 are
related by the solution of (5.2)–(5.4) with Q = 0, such that (5.2) is simply

hi =
∫ Φt

Φb

−σ ′

Gφ
dφ, (5.5)

with Φt = σ−1(S0) and Φb = σ−1(S0 + Gφ0).

5.2. Solutions
Figure 11 illustrates the behaviour of flow-induced compaction for a pre-strained medium.
If the applied pressure drop is less than the lift-off pressure, |P|�Plift, then the entry
pressure σ(Φe) is reduced but not relieved, the depth h is unchanged from hi , and the
profile of solid fraction φ rearranges, simultaneously compacting and decompacting in
different regions. Alternatively, if |P|�Plift, then the entry boundary is stress-free, h is
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Figure 12. Lift-off pressure Plift against the amount of pre-strain Δ = (hg − hi )/hg for compaction induced by
a downward flow (red) and upward flow (blue) with G = 0.5. The media are governed by constitutive laws (2.19)
with (a) λ= 3, a type 1 medium, and (b) λ= 1, a type 2 medium. Black dotted asymptotes in (b) correspond
to Δ = (hg − h∞)/hg , where h∞ is the limiting compaction depth for an unpre-strained system.

reduced from hi , and the medium can no longer decompact with φ strictly increasing.
Figure 11(a) highlights the difference in lift-off pressure due to the orientation of flow:
downward flow has a much lower lift-off pressure Plift. As before, upward flow admits
the possibility of homogenising the medium as increasing applied pressure drop passes
through P = Gφ0 and the gradient of solid fraction changes sign (figure 11d).

Figure 11(b) compares the pre-strained evolution of h as |P| increases with the unpre-
strained evolution of h, and illustrates how, once σ(Φe) is relieved, the pre-strained depth
exactly coincides with the unpre-strained depth. The steady solutions of the pre-strained
medium see no history of being mechanically compressed once |P|�Plift. By corollary,
we deduce that Plift is exactly the applied pressure drop required to compact the unpre-
strained medium to the pre-strain depth hi . Similarly, Q in figure 11(c) is identical to the
unpre-strained solution once |P|�Plift, and as before, flux is higher in the upward flow
than the downward flow.

In order to measure the relative strain from the no-flow state, we introduce the parameter
Δ = (hg − hi )/hg , which quantifies the amount of pre-strain relative to the gravity-
slumped depth hg . Figure 12 presents the lift-off pressure Plift for increasing Δ. The
solutions contrast upward and downward flow, and type 1 and type 2 media. These
graphs have some analogy with figure 8, which illustrated how increasing G directly
increased Plift. Much like gravitational compaction, mechanical pre-strain increases the
solid fraction throughout the medium towards the maximum solid fraction φm , increasing
the effective pressure and decreasing the permeability; consequently, Plift increases
with Δ. We note that in both types of media in figure 12, Plift is non-zero at zero strain Δ

for upward flow corresponding to the gravitational lift-off pressure that is characteristic of
upward flows.

The behaviour discussed thus far is independent of the ‘type’ of the medium. However,
there is some difference between the two types as we increase Δ. Since Plift is exactly the
pressure required to compact an unpre-strained medium to the pre-strained depth hi , there
is no lift-off pressure in type 2 media if they are sufficiently pre-strained. More specifically,
this occurs if the medium is mechanically compacted beyond the limiting flow-induced
compaction depth h∞. Since flow-induced compaction cannot induce sufficient force to
reach depths hi � h∞ in the unpre-strained regime, it also cannot relieve the associated
pre-strain pressure exerted by mechanical compaction of the medium to this depth.
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This feature is illustrated in figure 12(b) by the asymptotes for Plift at values of the pre-
strain coefficient Δ(hi = h∞). In contrast, in a type 1 medium, Plift exists for all attainable
pre-strain depths hi > hm (figure 12a).

6. Discussion
In this paper, we have extended two-phase modelling for the flow-induced compaction
of soft porous media to consider its interaction with gravitational forces and compaction
by an external load. We presented and interpreted theoretical solutions for a steady one-
dimensional system in which a flow is induced either upwards or downwards across the
medium, with the possibility of pre-straining. We considered general (nonlinearly) elastic
media characterised by constitutive laws for permeability k(φ) and effective pressure σ(φ).

The behaviour of the medium in response to flow can be broadly categorised
based on the relative interplay of the effective pressure and the permeability as the
solid fraction approaches its limiting value; this, in turn, can be characterised by the
poroelastic diffusivity function D = kφ ∂σ/∂φ. In ‘type 1’ media (relatively more rigid:
(φm − φ)D → ∞ as φ → φm), the flux increases without bound as the applied pressure
drop is increased. In contrast, in ‘type 2’ media (relatively softer: (φm − φ)D bounded
as φ → φm), flux increases up to an asymptotic value as the applied pressure drop
increases, such that the medium becomes effectively insensitive to applied pressure
changes; there are also corresponding asymptotic compaction depths and solid fraction
profiles. Type 2 media may be further categorised into three subgroups based on their
asymptotic solid fraction profiles.

The influence of gravitational compaction is characterised by the gravity term
G = �ρ gh0/σ

∗, analogous to the ratio of the medium’s depth to its natural compaction
length scale σ ∗/�ρ g. Soft porous media naturally ‘gravity-slump’ and compact to a non-
uniform profile of solid fraction that enforces a difference between upward and downward
flow. While downward flow can only compact the medium, upward flow, for low applied
pressure drop, simultaneously compacts and decompacts the medium, maintaining a fixed
depth; the gravitational pressure on the lower boundary must first be relieved before bulk
compaction occurs. We found that for sufficiently large G, bulk compaction in upward
flow cannot occur in type 2 media, as flow is unable to induce sufficient compaction to
fully ‘undo’ gravitational compaction. For a given excess applied pressure drop, downward
flow induces greater bulk compaction, reducing the bulk permeability and increasing
the medium’s resistivity to flow, thus resulting in a reduced flux compared to upward
flow.

We further considered the case in which the medium is confined between porous plates
at a depth less than its rest-state depth, which we refer to as ‘pre-strained’. Pre-straining
places the medium under a uniform pre-strain pressure, which can be reduced by flow-
induced compaction and decompaction. Much like unpre-strained upward flow, the entry
boundary pressure must be relieved for bulk compaction to occur. The applied pressure at
which the depth begins to evolve, the lift-off pressure, is identically the applied pressure
drop required to induce sufficient compaction on an equivalent unpre-strained medium to
reach the pre-strained depth. Therefore, the lift-off pressure is dependent on the medium
type, the amount of pre-strain compaction, the relative strength of gravity and the flow
direction. These dependencies imply first, that the lift-off pressure is lower for downward
flow than for upward flow, and second, that if a type 2 medium is pre-strained beyond its
characteristic asymptotic depth, then no such lift-off pressure exists. Practically, we can
use knowledge of the unpre-strained case to inform understanding of the pre-strained case,
specifically to control if and when the pre-strain pressure is relieved.
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Figure 13. Transient solutions for (a,b) profiles of solid fraction φ and (c) the depth h for media compacted
by a downward flow with a step increase from P = 0 at t = 0 to P = −10, evolving until t = 3 with G = 0.
The respective steady solutions are overlaid in dashed lines on each plot. The media are governed by effective
pressure law (2.19) with (a) λ= 4, a type 1 medium (blue lines), (b) λ= 1, a type 2 medium (orange lines).

Although the effects of pre-strain and gravity-slumping are expected intuitively and
observed industrially, the results outlined here are yet to be quantified experimentally.
There is scope for simple experimental validation of the results. The most easily measured
quantity might be the lift-off pressure, which we showed has significantly different values
in upward and downward flow when there is notable gravity-slumping. For example,
flow-induced compaction of hydrogel beads, a type 2 medium, is experimentally well
established (MacMinn et al. 2015; Hewitt et al. 2016a) and would be a suitable candidate
for comparing unpre-strained and pre-strained compaction to determine lift-off pressure.

Further considerations may include extending beyond the context of elastic media;
open questions remain about how mechanical or gravitational compaction interact with
flow-induced compaction of media governed by other constitutive laws. For example,
how does the non-recoverable compaction of plastic media affect our understanding of
gravity slumping or pre-straining? Beyond just the rheological behaviour of the medium,
most geophysical, biological and industrial media are rather more complicated than the
one-dimensional, homogeneous medium explored here. In particular, industrial products
often contain defects that introduce significant spatial dependency of the reference stress-
free solid fraction. It would be interesting to explore how flow-induced compaction
interacts with inhomogeneities in two- and three-dimensional settings, especially in the
development of preferential flow paths.

Funding. E.R.B. acknowledges the support of Saint-Gobain.

Declaration of interests. The authors report no conflict of interest.

Appendix A. Transient solutions
The transient model is governed by (2.1)–(2.4), which can be manipulated to form a
nonlinear advection–diffusion equation for solid fraction and solved numerically with a
second-order finite difference method and a semi-implicit adaptive time-stepping scheme.

Figure 13 presents the transient evolution of solid fraction φ and depth h, which each
clearly reach their steady values. When a pressure drop is applied, the solid fraction at the
boundary out of which fluid flows instantaneously adopts a higher solid fraction. The rest
of the medium subsequently compacts, initially in a localised layer at the boundary, and
gradually spreading across the depth of the medium until the steady solution is reached.
Note that the evident difference in time scale for each medium to reach the steady state
in figure 13 originates from the choice of constitutive laws. For the same applied P , the
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Figure 14. Transient solutions for (a,b) profiles of solid fraction φ and (c) the depth h for media compacted by
flow (a) downwards (red lines) and (b) upwards (blue lines) induced by a step increase from P = 0 at t = 0 to
|P| = 1, evolving until t = 3 with G = 0.5. The respective steady solutions are overlaid in dashed lines on each
plot. The medium is governed by effective pressure law (2.19) with λ= 1, a type 2 medium.

type 2 medium in figure 13(c) is compacted to a higher solid fraction, thus has a reduced
permeability, increasing the time taken to squeeze fluid out and adjust towards the steady
state.

We can similarly model the transient evolution of compaction with gravitational stresses
(G > 0) and pre-strain S0 > 0. In this case, when a flow is instantaneously applied,
the relieved pressure Σ(P) is instantaneously reduced to the steady value as pressure
is exerted on the solid matrix by the fluid. Figure 14 illustrates the compaction of a
gravity-slumped medium (without pre-strain) with applied pressure drop |P| above the
gravitational lift-off pressure. Much like in the G = 0 example in figure 13, changes in solid
fraction are initially localised to the boundaries and subsequently spread across the depth
of the medium, evolving towards the steady profiles (figure 14a,b). With upward flow,
the lower boundary immediately becomes stress-free and the upper boundary compacts,
such that we observe the simultaneous compaction and decompaction of the medium as
gravitational compaction is ‘undone’. We note that there is an immediate decrease and
evolution of depth (figure 14c); lift-off is instantaneous when a pressure drop above the
lift-off pressure is applied. The overall adjustment time scale is larger for downward flow,
again because the solid fraction is pushed to higher values than in upward flow, which
lowers the permeability and slows the evolution. The pre-strained transient solutions are
qualitatively the same.

Appendix B. ‘Types’ of behaviour with G > 0
The separation of porous media into types based on constitutive laws was analysed in § 3.2
for G = 0. We present here the extension to G > 0.

Since G > 0, upward and downward flow analysis must be conducted independently. An
expression for ∂ Q/∂|P| in downward flow is found from differentiation of (2.15) with
respect to |P|:

− kσ ′φ
Q − kGφ

∣∣∣∣
Φb

∂Φb

∂|P| −
∫ Φt

Φb

kσ ′φ
(Q − kGφ)2

∂ Q

∂|P| dφ = 0, (B1)

=⇒ ∂ Q

∂|P| = −
kφ

Q − kGφ

∣∣∣∣
Φb∫ Φt

Φb

kσ ′φ
(Q − kGφ)2 dφ

, (B2)
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with ∂Φb/∂|P| = 1/σ ′(Φb). We assume that σ ′ > 0 such that increasing the solid fraction
increases the effective pressure. For downward flow, Q < 0 and Φb �Φt , so by simple
inspection, ∂ Q/∂|P| < 0 or equivalently ∂|Q|/∂|P| > 0.

For upward flow with Q > 0, the same differentiation of (2.15) is considered, and we
reach an expression similar to (B2):

∂ Q

∂P = 1∫ Φt

Φb

kσ ′φ
(Q − kGφ)2 dφ

(
∂Φt

∂P
kσ ′φ

Q − kGφ

∣∣∣∣
Φt

− ∂Φb

∂P
kσ ′φ

Q − kGφ

∣∣∣∣
Φb

)
, (B3)

where boundary conditions give

Φt = σ−1(P − Σ(P)) =⇒ ∂Φt

∂P =
(

1 − ∂Σ

∂P
)

1
σ ′ > 0, since Σ <P, (B4)

Φb = σ−1(Gφ0 − Σ(P)) =⇒ ∂Φt

∂P = −∂Σ

∂P
1
σ ′ < 0, since Σ > 0, (B5)

with inequalities following from bounds on the relieved pressure, which ensure that
effective pressure is everywhere positive. The prefactor in (B3) is negative if Φt < Φb
(or equivalently, P < Gφ0) and positive if Φt > Φb (or P > Gφ0). Since this directly
corresponds to Q ≶ kGφ for all φ ∈ [Φb, Φt ], we can conclude that ∂ Q/∂P > 0.
Therefore, it holds true for all flows that Q may either increase without bound or increase
up to an asymptotic limit as φ increases.

To consider the separation of porous media into two types with G > 0, we cannot
consider directly the integration of (B2)–(B3) as they are dependent on Q. Instead, we
return to the implicit integral definition of Q in (2.15) in the limit P → ∞. The integral
domain may be split into a region near to the compacted boundary solid fraction (e.g. Φb
in downward flow) and the remaining domain. In the larger domain, there is an O(1)

contribution from the integrand, therefore the large-φ behaviour of Q is determined up to
a constant by the compacted boundary domain. In this domain, φ → φm , and as defined in
(3.3), we can again substitute generic power law behaviour for permeability and effective
stress. Since we have already determined that Q is either unbounded or tends to a constant,
Q is dominant in the denominator as G(φm − φ)αφ → 0; this contribution is effectively
independent of gravity, therefore so is the separation into bounded or unbounded flux
behaviour. As before, in (3.4)–(3.6), flux is unbounded as φ increases for α � β, type 1
media, and flux increases to an asymptotic limit for α > β, type 2 media.

The gradient of solid fraction ∂φ/∂z at the compacted boundary is found from the
definition of flux in (2.12). In the limit φ → φm , this is expressed as

∂φ

∂z
≈ − 1

β
Q(φm − φ)1+β−α + 1

β
Gφ(φm − φ)β+1 as φ → φm, (B6)

which differs from the G = 0 analysis by the addition of the second gravity-dependent
term. This additional term disappears as φ → φm , so the separation of type 2 media into
types 2i , 2ii, 2iii based on the limit of the gradient is the same as in the G = 0 case.

REFERENCES

AUDET, D.M. & FOWLER, A.C. 1992 A mathematical model for compaction in sedimentary basins. Geophys.
J. Intl 110 (3), 577–590.

BEAR, J. 1996 Modeling transport phenomena in porous media. In Environmental Studies (ed. M.F. Wheeler),
pp. 27–63, Springer.

BIOT, M.A. 1941 General theory of three-dimensional consolidation. J. Appl. Phys. 12 (2), 155–164.

1018 A26-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
51

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10511


Journal of Fluid Mechanics

BOROVINŠEK, M., TAHERISHARGH, M., VESENJAK, M., REN, Z. & FIEDLER, T. 2016 Geometrical
characterization of perlite-metal syntactic foam. Mater. Charact. 119, 209–215.

BOSCHETTI, F., PENNATI, G., GERVASO, F., PERETTI, G.M. & DUBINI, G. 2004 Biomechanical properties
of human articular cartilage under compressive loads. Biorheology: Official J. Intl Soc. Biorheol. 41 (3–4),
159–166.

BUSCALL, R. & WHITE, L.R. 1987 The consolidation of concentrated suspensions. Part 1. The theory of
sedimentation. J. Chem. Soc. Faraday. Trans. 1: Phys. Chem. Condens. Phase 83 (3), 873–891.

CARMAN, P.C. 1997 Fluid flow through granular beds. Chem. Engng Res. Des. 75, S32–S48.
CAMERON, N.M. & RAPP, C.F. 2001 Fiberglass. In Encyclopedia of Materials: Science and Technology, pp.

3142–3146. Elsevier.
CHU, C.P. & LEE, D.J. 2002 Dewatering of waste activated sludge via centrifugal field. Dry. Technol.

20 (4–5), 953–966.
CHU, C.P., LEE, D.J. & TAY, J.H. 2003 Gravitational sedimentation of flocculated waste activated sludge.

Water Res. 37 (1), 155–163.
CONCHA, F. & BÜRGER, R. 2002 A century of research in sedimentation and thickening. KONA Powder

Particle J. 20 (0), 38–70.
COUSSY, O. 2004 Poromechanics. John Wiley & Sons.
FENG, J.J. & YOUNG, Y.-N. 2020 Boundary conditions at a gel–fluid interface. Phys. Rev. Fluids 5 (12),

124304.
FIEDLER, T., MOVAHEDI, N., YORK, L. & BROXTERMANN, S. 2020 Functionally-graded metallic syntactic

foams produced via particle pre-compaction. Metals 10 (3), 314.
FIORI, M., PRAMANIK, S. & MACMINN, C.W. 2023 Flow and deformation due to periodic loading in a soft

porous material. J. Fluid Mech. 974, A2.
FIORI, M., PRAMANIK, S. & MACMINN, C.W. 2025 Solute transport due to periodic loading in a soft porous

material. J. Fluid Mech. 1009, A15.
FITT, A.D., HOWELL, P.D., KING, J.R., PLEASE, C.P. & SCHWENDEMAN, D.W. 2002 Multiphase flow in

a roll press nip. Eur. J. Appl. Maths 13 (3), 225–259.
FUNG, Y.C. 2013 Biomechanics: Mechanical Properties of Living Tissues. Springer Science & Business.
HEAD, J.W. & WILSON, L. 1992 Magma reservoirs and neutral buoyancy zones on Venus: implications for

the formation and evolution of volcanic landforms. J. Geophys. Res.: Planets 97 (E3), 3877–3903.
HEWITT, D.R., CHINI, G.P. & NEUFELD, J.A. 2018 The influence of a poroelastic till on rapid subglacial

flooding and cavity formation. J. Fluid Mech. 855, 1170–1207.
HEWITT, D.R., NIJJER, J.S., WORSTER, M.G. & NEUFELD, J.A. 2016a Flow-induced compaction of a

deformable porous medium. Phys. Rev. E 93 (2), 023116.
HEWITT, D.R., PATERSON, D.T., BALMFORTH, N.J. & MARTINEZ, D.M. 2016b Dewatering of fibre

suspensions by pressure filtration. Phys. Fluids 28 (6), 063304.
KHALED, A.R.A. & VAFAI, K. 2003 The role of porous media in modeling flow and heat transfer in biological

tissues. Intl J. Heat Mass Transfer 46 (26), 4989–5003.
DE KRETSER, R.G., BOGER, D.V. & SCALES, P.J. 2003 Compressive rheology: an overview. In Rheology

Reviews, pp. 125–165. British Society of Rheology.
LANDMAN, K.A., SIRAKOFF, C. & WHITE, L.R. 1991 Dewatering of flocculated suspensions by pressure

filtration. Phys. Fluids A: Fluid Dyn. 3 (6), 1495–1509.
LANDMAN, K.A. & WHITE, L.R. 1994 Solid/liquid separation of flocculated suspensions. Adv. Colloid

Interface Sci. 51, 175–246.
MACMINN, C.W., DUFRESNE, E.R. & WETTLAUFER, J.S. 2015 Fluid-driven deformation of a soft granular

material. Phys. Rev. X 5 (1), 011020.
MACMINN, C.W., DUFRESNE, E.R. & WETTLAUFER, J.S. 2016 Large deformations of a soft porous

material. Phys. Rev. Appl. 5 (4), 044020.
MANGA, M. & BRODSKY, E. 2006 Seismic triggering of eruptions in the far field: volcanoes and geysers.

Annu. Rev. Earth Planet. Sci. 34, 263–291.
MERGNY, C. & SCHMIDT, F. 2024 Gravity-induced ice compaction and subsurface porosity on icy moons.

Icarus 413, 116008.
S.-D.E-LA MUELA, A.M., CAMBRONERO, L.E.G. & RUIZ-ROMÁN, J.M. 2020 Molten metal infiltration

methods to process metal matrix syntactic foams. Metals 10 (1), 149.
PARKER, K.H., MEHTA, R.V. & CARO, C.G. 1987 Steady flow in porous, elastically deformable materials.

J. Appl. Mech. 54 (4), 794–800.
PATERSON, D.T., EAVES, T.S., HEWITT, D.R., BALMFORTH, N.J. & MARTINEZ, D.M. 2019 Flow-driven

compaction of a fibrous porous medium. Phys. Rev. Fluids 4 (7), 074306.

1018 A26-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
51

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10511


E.R. Bouckley, B. Sourcis and D.R. Hewitt

PATERSON, D.T., EAVES, T.S., HEWITT, D.R., BALMFORTH, N.J. & MARTINEZ, D.M. 2021 On two-phase
modeling of dewatering pulp suspensions. AIChE J. 67 (9), e17277.

RICHES, P.E., DHILLON, N., LOTZ, J., WOODS, A.W. & MCNALLY, D.S. 2002 The internal mechanics of
the intervertebral disc under cyclic loading. J. Biomech. 35 (9), 1263–1271.

SMIT, T.H. 2022 Finite element models of osteocytes and their load-induced activation. Curr. Osteoporosis
Rep. 20 (2), 127–140.

SMITH, J.E. 1971 The dynamics of shale compaction and evolution of pore–fluid pressures. J. Intl Assoc. Math.
Geol. 3 (3), 239–263.

STICKLAND, A.D. & BUSCALL, R. 2009 Whither compressional rheology? J. Non-Newtonian Fluid Mech.
157 (3), 151–157.

TERZAGHI, K. 1943 Theoretical Soil Mechanics. John Wiley and Sons, Inc.
VAN ZESSEN, E., TRAMPER, J., RINZEMA, A. & BEEFTINK, H.H. 2005 Fluidized-bed and packed-bed

characteristics of gel beads. Chem. Engng J. 115 (1–2), 103–111.
WAKEMAN, R.J. 2007 Separation technologies for sludge dewatering. J. Hazard. Mater. 144 (3), 614–619.
WILSON, L. & HEAD, J.W. 1994 Mars: review and analysis of volcanic eruption theory and relationships to

observed landforms. Rev. Geophys. 32 (3), 221–263.
WORSTER, M.G., PEPPIN, S.S.L. & WETTLAUFER, J.S. 2021 Colloidal mushy layers. J. Fluid Mech.

914, A28.
XU, Z., YUE, P. & FENG, J.J. 2024 Estimating the interfacial permeability for flow into a poroelastic medium.

Soft Matt. 20 (37), 7357–7361.
XU, Z., ZHANG, J., YOUNG, Y.-N., YUE, P. & FENG, J.J. 2022 Comparison of four boundary conditions for

the fluid–hydrogel interface. Phys. Rev. Fluids 7 (9), 093301.

1018 A26-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
51

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10511

	1. Introduction
	2. Model set-up
	2.1. Governing equations and boundary conditions
	2.2. Non-dimensionalisation
	2.3. Constitutive laws

	3. Solutions and analysis of model
	3.1. Observations when
	3.2. "2018`̃Types"2019`̃ of behaviour
	3.2.1. Limiting flux
	3.2.2. Limiting compaction profiles

	3.3. Gravity and type interaction

	4. Upward flow
	4.1. Inclusion in the model
	4.2. General solutions

	5. Pre-strain
	5.1. Inclusion in the model
	5.2. Solutions

	6. Discussion
	Appendix A. Transient solutions
	Appendix B. `Types' of behaviour with G > 0
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages true
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


