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Abstract
This article introduces a comprehensive framework that effectively combines experience rating and exposure rating
approaches in reinsurance for both short-tail and long-tail businesses. The generic framework applies to all non-
life lines of business and products emphasizing nonproportional treaty business. The approach is based on three
pillars that enable a coherent usage of all available information. The first pillar comprises an exposure-based gen-
erative model that emulates the generative process leading to the observed claims experience. The second pillar
encompasses a standardized reduction procedure that maps each high-dimensional claim object to a few weakly
coupled reduced random variables. The third pillar comprises calibrating the generative model with retrospective
Bayesian inference. The derived calibration parameters are fed back into the generative model, and the reinsurance
contracts covering future cover periods are rated by projecting the calibrated generative model to the cover period
and applying the future contract terms.

1. Introduction
There are two approaches to probability theory: the first is the frequentist interpretation, also known as
standard, orthodox, or classical statistics, and the second is the Bayesian interpretation (Daykin et al.,
1994; Lee, 2012; Gelman, 2013; Klugman et al., 2019; Murphy, 2022, 2023). This distinction also
applies to the various statistical and modeling approaches.

The Bayesian interpretation has multiple advantages, but frequentist approaches are still popular and
widely used for two main reasons. First, they are computationally ‘cheap’ compared to Bayesian meth-
ods, and second, they do not presuppose knowledge regarding priors. Bayesian inference is, nevertheless,
widely applied in various domains of science (Parr et al., 2022; Palmer, 2022; Harrison et al., 2023),
and it has become the foundation of machine learning (Murphy, 2022, 2023). Bayesian approaches are
also gaining popularity in disciplines like insurance and reinsurance, which have traditionally been dom-
inated by frequentist approaches (Bühlmann and Straub, 1970; Bühlmann and Gisler, 2005; Zhang et al.,
2012; Klugman et al., 2019; Goffard et al., 2023).

Reinsurance companies face multiple challenges when using models for assessing the assumed risks
and for taking business decisions like risk selection, transactional pricing, reserving, investing, and
corporate risk management, and they rely on a variety of methods and tools for managing these risks
(Antal, 2009; Albrecher, 2017; Mildenhall, 2022). The actuarial models implemented by a reinsurer are
based on simplified assumptions, and reinsurers know that the underlying assumptions are rarely fulfilled
in the real world. One way to deal with the issue is to complement experience-based rating models with
exposure-based models. The latter can incorporate all relevant features of the generative process that
affect the rating. All such features must be calibrated, which is accomplished with market data. However,
cedent-specific features (hidden variables) must also be reflected in the rating of reinsurance contracts.
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Figure 1. The standard rating framework in reinsurance comprises experience rating, exposure rating,
and expert-based blending. Bottom panel: Experience rating is based on the observed claims reported
by the cedent. The development of these claims with occurrence years o ∈ {−T , . . . , −1} (with T = 10)
results from applying policy conditions §o to the economic loss χo emanating from the generative pro-
cess. The claims experience is projected to the future cover period o = +1 and developed. The statistics
derived from the claims triangle for o = +1 is used to rate the reinsurance contracts. Upper right panel:
Exposure rating combines the cedent’s most recent exposure profiles �−1 with market models �−1 and
underwriting expertise. The profiles and the market models are projected to the cover period and pro-
cessed in the exposure model �1. The rating-relevant statistics for o = +1 are obtained by applying the
anticipated insurance conditions §1.

This is done via an ‘expert-based’ credibility weighting of experience-based rates and exposure-based
rates. One such approach is to evaluate the experience-based rate for a ‘working layer’ and to use this
rate for calibrating the exposure-based rates for high layers (Desmedt et al., 2012).

The framework presented in this article attempts to resolve the calibration issue in an ‘optimal’ way.
This is accomplished by using the claims experience of a cedent and Bayesian inference to adjust the
calibration parameters within the exposure-based generative model. The approach is generic, and it
coherently integrates all available information.

1.1. Motivation
This article claims that the integrated rating framework introduced in the following sections is supe-
rior to standard rating approaches applied by reinsurers (see Figures 1, 2, and Table 1) and that it can
support reinsurers in optimizing their underwriting policy. These two claims are based on the following
considerations:

• Agency, Markov blankets, and minimizing surprise:
Agents use the available information about their external world to continuously update their
internal representation of the external world (perceptual inference). This internal representa-
tion is used to derive an optimal ‘strategy’ for acting on the external world (active inference).
Biological agents apply active inference to minimize surprise (Parr et al., 2022), and this
principle also applies to corporate agents.
The various activities of a reinsurer, particularly the rating and underwriting processes, can be
represented by a hierarchy of Markov blankets (a description of Markov blankets can be found
in Murphy, 2023). At the top of this hierarchy, the reinsurer acts as a corporate agent. It receives
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Figure 2. Integrated rating framework. The exposure-based generative model attempts to emulate the
generative process. The framework uses the market experience�o, the exposure profiles�o, the exposure
models�o, and the policy conditions §o to generate samples with simulated claims for o ∈ {−T , . . . , −1}
(with T = 10). The respective observed claims reported by the cedent for o ∈ {−T , . . . , −1} and
Bayesian inference are used to calibrate the generative model. The calibrated exposure model is
projected to the future cover period o = +1 to derive the statistics for rating the reinsurance contracts.

various kinds of information from the external world and acts on the external world to pursue
its corporate goals. At the bottom of the hierarchy, the pricing actuaries and the underwriters
assess the individual contract’s risk and the expected loss costs by combining the submission
data provided by cedents with market information and expertise. This assessment is combined
with other criteria in the decision process on higher levels within the Markov blanket hierarchy.

• The role of rating in reinsurance:
The net premiums and the loss costs drive the bottom-line result of a reinsurer. A bias of a few
percentage points in the loss-ratio estimates on an aggregate portfolio level can lead to a sub-
stantial systematic adverse development of reserves and erase the bottom-line profit anticipated
when assuming the contracts. Reinsurers are, therefore, using various sources of information
to model the potential future claims activity of the assumed contracts. This assessment is used
for risk selection, setting terms and conditions, initial reserving, investment decisions, and
corporate risk management.
The integrated rating framework introduced in this article attempts to minimize the bias and
uncertainty in the loss-cost estimates on a contract level. This minimization is critical to a
reinsurer’s attempt to implement an optimal underwriting policy.

• An integrated rating approach is superior to a standard experience-based rating:
An exposure-based generative model attempts to replicate the relevant features of the genera-
tive processes in the external world by considering the available information coherently. This
includes past and anticipated future developments in the market and in the cedent’s portfo-
lio. The prior (default) generative model is obtained by combining the idiosyncratic exposure
of a cedent with loss models derived from market data. Bayesian inference is applied to the
cedent’s claims experience and prior assumptions to reflect the cedent’s idiosyncratic features
in the calibrated posterior generative model.
Hence, the calibrated generative model coherently reflects all available information about the
respective market, the underlying client portfolio, and the client’s claims experience. Projecting
the claims experience to the future cover period and developing the open claims (as done in
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Table 1. Comparison of the integrated rating framework with the standard framework.

Standard rating framework Integrated

Evaluation criteria Experience Exposure Blending framework
Adequately reflecting all available information + + ++ +++
Reflecting the cedents experience ++ – + +++
Most recent experience in long-tail business + – + ++
Reflecting the broader market experience + ++ + ++
Reflecting changing insurance conditions – + + ++
Adequate application of reinsurance conditions ++ + ++ +++
Adequate for rating higher layers – + + ++
Reflecting changes in the portfolio composition – ++ + +++
Reflecting the future portfolio composition + ++ + ++
Reflecting general trends + – + ++
Decomposition into frequency, severity,
and developments ++ + ++ +++
Providing uncertainty estimates + + + ++
Supporting scenario analysis – + + ++
Applicable for rating and risk management – ++ – ++
Model uncertainty high high high medium

Initial effort n/a n/a n/a high
Update effort medium medium medium medium

experience-based rating) can thus not provide extra information about the claims process to be
expected in the future cover period. An experience-based model lacks the extra information
reflected in the generative model. Trending and developing past claims is not equivalent to the
explicit approach implemented within generative models; therefore, standard experience-based
rating approaches are inferior to an integrated rating framework.

• An integrated rating approach is superior to a standard exposure-based rating:
Standard exposure-based rating approaches combine the most recent cedent exposure (pro-
jected to the cover period) with market loss models, but they do not reflect the cedent’s claims
experience. Standard exposure-based rating relies on the prior generative model, which is
inferior to a calibrated posterior generative model.

• An integrated rating approach is superior to standard blending approaches:
One blending approach (Desmedt et al., 2012) uses the burning-cost rate of a reference layer
(as derived with the help of an experience-based rating model) to calibrate the frequencies
within the exposure-based model. An alternative approach applies a credibility-based blending
of the experience-based and exposure-based rates. No blending approach can, however, over-
come the inherent shortcomings of the underlying experience-based and exposure-based rating
approaches; therefore, the blending of rates is inferior to an integrated rating framework.

• Caveat:
The generic integration framework can be applied to any exposure-based rating model, provided
that the probability distributions for the model features to be calibrated can be extracted (either
analytically, via numerical approximations, or simulation) and that the derived calibration
parameters can be fed back into the generative model.
The integrated approach is only as strong as its weakest link, that is, as the weakest mod-
ule within the exposure-based generative model. Applying the calibration framework to an
exposure-based generative model composed of frequency and severity modules might, for
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example, be appropriate for short-tail business. However, such a simplified model cannot ade-
quately reflect the impact of the development of long-tail claims. An integrated rating approach
relying on an oversimplistic generative model is superior to the respective exposure-based rat-
ing model, but it might be inferior to an experience-based rating approach that reflects the
claims development.

1.2. Plan of the article
This article discusses the coherent integration of the available information in reinsurance rating using
generative models. Section 2 describes the standard rating approaches applied in reinsurance. Section 3
introduces the concept of generative models and discusses how they can be used in an integrated frame-
work. Section 4 covers appropriate statistics, while Section 5 discusses the calibration of the generative
models with Bayesian inference. Finally, Section 6 analyzes the framework in more detail using ‘toy
models’. Technical details are provided in the Online Supplementary Material.

2. Experience and exposure rating in reinsurance
One major challenge for reinsurance companies is the lack of direct access to detailed information related
to the covered portfolios, that is, they have no direct access to large datasets that relate the claim charac-
teristics (frequency, severity, and development patterns) to the respective exposure information (objects
at risk, policyholders, and policy terms), and the risk factors (covered perils and threads). Reinsurers thus
rely on market information Dmarket provided by specialized organizations, for example, Verisk (Verisk,
2024), and on idiosyncratic submission data provided by their cedents. For nonproportional contracts,
the submission data comprise the cedent’s claims experience Dclaims in excess of a threshold and the
cedent’s exposure profilesDexposure.

Reinsurers combine the various data sources when creating models for the claims activity expected
to occur in the cedent portfolio during the future cover period; these models are used to derive the statis-
tics required to rate the reinsurance contractsDcover. Reinsurers use an extensive suite of proprietary and
vendor rating tools that are specifically designed for different markets, different lines of business, differ-
ent perils, and distinct kinds of contracts. The rating is, however, either based on the claims experience
of a cedent (experience rating), on the exposure of a cedent combined with market models (exposure
rating), or on a combination of the two approaches. The ‘standard rating framework’ applied by a rein-
surer is depicted in Figure 1, and a comparison of the various approaches is provided in Table 1. The
integrated approach attempts to overcome the drawbacks of standard rating approaches by coherently
combining all available information. The benefits come, however, at the cost of higher procedural and
computational efforts.

A comprehensive description of rating models is beyond the scope of this article. A variety of
approaches can, however, be found in books (Daykin et al., 1994; Albrecher, 2017; Klugman et al., 2019;
Mildenhall, 2022), articles (Panjer, 1981; Sundt and Jewell, 1981; Schnieper, 1991; Bernegger, 1997;
Riegel, 2010; Desmedt et al., 2012; Zhang et al., 2012), conference papers (White and Mrazek, 2004;
Mata and Verheyen, 2005; Bernegger, 2012; Clark, 2014; Huang, 2014; Devlin, 2018), lecture notes
(Antal, 2009), and technical publications by corporations and professional organizations (Guggisberg,
2004; Billeter and Salghetti-Drioli, 2016; Verisk, 2024; CAS, 2024; CARe, 2024).

2.1. Experience rating
Experience rating in reinsurance uses the claims experienceDclaims

ι
(as reported by the cedent company

ι) to infer a stochastic model Pr (x |Dclaims
ι

) for the expected future claims activity x within the underlying
portfolio. This model is used to evaluate the relevant statisticsE[h(x |Dcover

ι
) |Dclaims

ι
] for the coverDcover

ι

provided to the cedent company ι during the future contractual period. The operator h:xinsured �→ xcover
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projects the insured claim objects xinsured to the covered claim objects xcover by applying the terms defined
inDcover

ι
.

The experience rating process (depicted in the lower part of Figure 1) involves several steps, among
which the projection and the development of past claims are most critical. The claims experience must
be projected (‘trended’) to the future cover period, where the ‘as-if’ claims are used for rating the rein-
surance contracts. This projection must reflect changes in the cedents portfolio and inflationary effects
that impact the claims’ frequency, severity, and development patterns. The development of the claims
reported for past occurrence years is known up to the submission date tsub. This development comprises
the temporal evolution of the cumulative paid amount P(t) := ∑

i pi · 1ti≤t and the incurred loss amount
I(t) := E[U |Dt] = P(t) + O(t), where Dt is all past information prior to time t, pi is the amount paid
at time ti, and O(t) := E[

∑
i pi · 1ti>t] is the best estimate at time t for the outstanding payments. The

ultimate loss amount U := P(t) = I(t) for any t ≥ tclos is thus known for closed claims and estimated for
open claims. The claims triangle is completed by developing P(t) and I(t) either per individual claim or
on a portfolio level (Schnieper, 1991).

The primary strength of experience rating is that it is based on the cedent’s specific claims experience
and that standardized actuarial approaches are applied across markets, lines of business, and products.
There are, however, several weaknesses; some claims have not yet been reported; claims reported for old
years are well developed, but they might no longer be representative; claims reported for the most recent
years are representative, but they are not yet developed; the count of trended claims with an incurred loss
amount exceeding the reporting threshold is often small; and experience rating cannot reflect significant
portfolio changes or new risks covered by the underlying insurance policies.

2.2. Exposure rating
Reinsurers use an extensive suite of exposure-based rating models. These models combine the risk pro-
files provided by the cedent with market statistics, expert knowledge, and, depending on the specific
nature of the model, other modeling features, for example, scientific models emulating natural perils.
There are two kinds of exposure models: the first combines the exposure with probability distributions
(exposure curves), and the second relies on generative models that simulate significant numbers of events
applied to the exposure.

Models of the first kind are computationally cheap as they do not require Monte Carlo simulations.
The models can, however, also be implemented as generative models, and there is no need to distinguish
between the two kinds in the context of this article.

Models of the second kind attempt to replicate the corresponding generative processes in the world,
for example, natural catastrophes, accidents, and defaulting corporations. These models can be used to
rate individual reinsurance contracts (primary scope) and for corporate risk management (secondary
scope). The primary scope is accomplished by exposing a contract to all relevant events and evaluating
the respective loss amounts for the contract. The secondary scope is accomplished by aggregating the
loss amounts of individual events across all contracts.

The strength of exposure-based rating models is that they reflect a cedent’s (projected) future port-
folio; they are aligned with the broader market experience; the same model is used for rating individual
contracts and for corporate risk management. The weaknesses of exposure rating are that: a specific
model is required for each business niche; calibrating the models is challenging; the models do not
reflect the claims experience of a cedent; the models might not adequately reflect recent developments;
and exposure models of the second kind are computationally expensive.

3. Integrated rating approach
3.1. Ensemble modeling
Ensemble forecast is fundamental in predictive science, that is, in attempts to make predictions about
the chaotic world and in understanding and quantifying the uncertainty of such predictions. It is applied
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in astronomy, meteorology, engineering, chemistry, biology, medicine, ecology, economics, conflict
management, etc. (Palmer, 2022). The methodology is also applied in insurance and reinsurance,
particularly to assess risks attributed to natural disasters (see Section 2.2).

3.2. Generic process
The basic idea underlying a fully integrated rating approach is presented in Figure 2. Standard
experience-based rating models require that all claims incurred and reported in prior years (includ-
ing their temporal development till the submission date) are projected to the future cover period. These
‘as-if’ claims are used to derive the required statistics. This projection (see Figure 1) is accomplished
by scaling frequency, severity, and payments by respective exposure metrics and trend factors. This
nontrivial step is completely avoided in the integrated rating approach, where the experience is related
to the respective past exposure-based model. This alternative approach thus permits us to adequately
consider all known (and presupposed) developments in the underlying portfolio and the broader mar-
ket environment. Such developments can encompass portfolio size and composition, terms of insurance
policies, reporting thresholds, court practices, claims inflation, technological developments, reserving
practices, etc.

Hence, the approach requires that such an exposure-based model be available for each past year for
which the claims experience is considered in the rating process. The aim is to use the exposure-based
generative model to produce all the statistics needed to rate the reinsurance contracts that will be enforced
in the future cover period. This process is briefly described in Section 2.2 and shown in the upper right
of Figure 2. However, the generative model must be adequately calibrated before being used for this
rating purpose. This calibration task is performed by running the generative model with the exposure in
each prior year, applying the respective policy and contract terms, and comparing the simulated claims
with the respective observed claims.

Relating the past claims experience to the respective past exposure-based loss model instead of
projecting it to the future cover period is the first key feature of the integrated rating approach.

3.3. Claim generator
The purpose of generative models is to replicate real-world generative processes as closely as required
for the respective scope. In the context of reinsurance rating, a loss model needs to generate all relevant
features of the observed claims provided to the reinsurer via the cedent’s submission data. The format
and content of the submission data vary by market, line of business, product, and cedent. There is, how-
ever, a generic claim format that captures the key features of nonlife insurance claims and the variations
can be mapped to this format. The following features characterize the reported insurance claims:

• A tuple containing static claim features (administrative attributes), for example, policyholder,
inception and expiration dates of the policy, policy ID, claim administrator, claim ID, event ID,
status of the claim, etc.

• A tuple containing categorical attributes describing the nature of the claim, for example, line
of business, geo-encoding, type of cover, risk category, kind of event causing the claim, etc.

• Critical dates like the occurrence (accident) date, the reporting date, and – depending on the
status – the closure (settlement) date.

• Incurred pattern, that is, the development of the best estimate for the ultimate amount to be paid
by the cedent company.

• Payment pattern, that is, the development of the aggregate payments (including the breakdown
into components).
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The critical dates and the development patterns (reported, incurred, and paid) matter from the per-
spective of quantitative analysis and model calibration. The reporting pattern is associated with true
IBNR (incurred but not reported) and the incurred pattern with IBNER (incurred but not enough
reserved). In contrast to IBNR, which is adverse, IBNER can either be adverse, adequate, or favor-
able, depending on whether the estimate of the incurred amount turns out to be too low, correct, or too
high. The underlying payment pattern affects the amount and the timing of the payments of the loss
portion covered by the reinsurer. The three development patterns depend on multiple factors (related to
the policyholder, the cedent, and other agents), and they must be modeled and calibrated separately.

4. Reduced statistics
4.1. Challenge
The primary scope of a product-specific generative model used in exposure-based rating is to adequately
emulate the relevant features of the generative process and provide all claim features that might affect the
rating. This implies the generation of significant samples that populate the relevant regions in the sample
space�, and the simulated claims must entail all rating-relevant features. The model must be calibrated,
which is accomplished by running the generative model retrospectively. The simulated claims sets gen-
erated for the past observation period of length T (denoted by the occurrence years o ∈ {−T , . . . , −1}
defined relative to the submission year o = 0) are compared to the observed claims for this period.

The calibration tuple C := (c1, . . . , cM) containing the calibration parameters c� is evaluated outside
of the generative model and fed back into the model. The generative model can, therefore, be treated
as an independent module interacting with the generic calibration framework. The iterative calibration
procedure starts with default calibration parameters c(0)

� = 0 for all features � to be calibrated. The gener-
ative model accepts the calibration tuple C(s) and the simulation count K(s+1) as input, and it applies the
calibration parameters c(s)

� to the respective modules �. The generative model provides K(s+1) sets con-
taining simulated claims for the observation period T as an output. The calibration framework compares
the simulated sets with the observed set and derives an updated calibration tuple C(s+1) (see Section 5.2).

The challenge is to derive adequate statistics that permit the evaluation of the calibration parameters
c�. This challenge is addressed by introducing a generic claim object L that covers the rating needs (see
Figure 4):

L :=
(
D, s, tocc, trep, [tclo], {(Ii, ti)}1≤i≤NI ,

{
(Pj, tj)

}
1≤j≤NP

)
(4.1)

where the tuple D is a descriptor comprising the static claim features (see Section 3.3), s the status of
the claim (‘open’, ‘closed’, or ‘re-opened’), tocc the occurrence (accident) date, trep the reporting date, tclo

the closure date (in the case s = ‘closed’), NI the count of incurred adjustments, Ii the incurred amount
as estimated at time ti, NP the count of payments, and Pj the cumulative paid amount at time t+j . The
claim object L is thus composed of multiple partially interdependent random variables.

Some cedents evaluate the development patterns at discrete points in time (e.g., on an annual basis).
The observation period T is then decomposed into NT discrete subperiods of length�t = T/NT and the
representation of the claims along the timeline is aligned with the time grid {t0, . . . , tNT }. The patterns
I(t) and P(t) are approximated with {(tk, Pk, Ik)}0≤k≤NT where tk = t0 +�t · k, Ik = I(t+k ), and Pk = P(t+k ).

The simulated claims and the observed claims are represented by elements ω within the high-
dimensional sample space�, and the generative model is calibrated if the observed claims are ‘close’ to
the simulated claims, that is, if they are located within the highest density region(s) HDR := {Hi} ⊂�

defined as follows (see also Lee, 2012):

1. The sub-spaces Hi and Hj are disjunct: i 	= j → Hi ∩ Hj = {}.
2. The density within the HDR equals or exceeds the threshold density p0, that is, we have p(ω) ≥

p0 for all ω ∈ HDR and p(ω)< p0 for all ω ∈� \ HDR.
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3. The threshold density p0 is determined by the condition Pr (ω ∈ HDR |ω ∈�)
!= PHDR, for

example, PHDR = 95%.

Identifying the HDR is easy in the case of low-dimensional, uni-modal parametric probability distri-
butions and extremely difficult in the case of high-dimensional, multi-modal, nonparametric probability
distributions. The calibration criterion is formalized with the following sets containing the observed
claims Lobs

o,i and the simulated claims Lsim
o,i,k:

Sk=0 := Sobs :=
{{

Lobs
o,i

}
1≤i≤Nrep

o

}
−T≤o≤−1

Sk>0 := Ssim
k :=

{{
Lsim

o,i,k

}
1≤i≤Nrep

o,k

}
−T≤o≤−1

for k ∈ {1, . . . , K} (4.2)

where Nrep
o is the count of reported claims for the occurrence year o, K is the number of simulations runs,

Nrep
o,k is the count of simulated claims with trep

o,i,k ≤ tsub generated in the kth run for the occurrence year o, and
tsub is the submission date. The generative model is adequately calibrated if the observed set S0 cannot
be identified as an outlier within the set of sets {Sk}0≤k≤K . The challenge is defining appropriate metrics
that permit quantifying this criterion and deriving the calibration tuple C in the case of a mismatch.

4.2. Roadmap for a solution
The n-dimensional sample space � (with n ≈ 2 · NT in the grid representation) must be decomposed,
that is, the high-dimensional tuples describing the patterns I(t) and P(t) must be projected to low-
dimensional objects. This is accomplished by identifying the relevant features of the claims, that is,
the high-dimensional claim objects L (4.1) are projected to low-dimensional tuples Z:

ζ : L �→ Z = (Z1, . . . , ZM)

ζ � : L �→ Z�

This is done with the calibration scope in mind, and this objective leads to the constraint dim (Z)
!=

dim (C) = M � dim (L) = n, where the calibration tuple C = (c1, . . . , cM) contains the calibration
parameters c� to be applied to the features � within the generative model.

Remark 4.1. A calibration parameter c� (a scalar or a low-dimensional vector) is assigned to each
feature � of the generative model, but the actual calibration might be confined to a subset of these
features.

Ideally, Z is defined on an orthogonal basis while preserving the key features of the claim L. The
component Z� then strongly responds to the corresponding calibration parameter c�, and it is insensitive
to all other calibration parameters (i.e., the non-diagonal elements in the Jacobi matrix ∂Zi(C)/∂cj are
insignificant compared to the diagonal elements).

The simulation process implemented in the generative model aims to replicate the generative process
leading to the observed claims. The projection ζ is, therefore, applied to the observed claims Lobs

o,j and the
simulated claims Lsim

o,i,k. The sets containing the observed and the simulated reduced claim components
Z� ,κ := ζ �(Lκ) are used to calibrate the feature � within the generative model (see Section 5.2). Any
distortion in the observed variables is replicated in the simulated variables, and there is no need for the
marginal random variables Z� ,κ to be iid.

4.3. Tuple with reduced random variables
The calibration procedure is used for an overall adjustment of the frequencies, the severities, the lags, and
the pattern counts. The patterns are thus characterized by respective representative statistics as captured
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in the following reduced claim representation Zκ = ζ (Lκ):

Zκ := (
tocc
κ

, (Ninc
κ

, Nrep
κ

, τ rep
κ

), (Nclo
κ

, τ clo
κ

), (NI
κ
, I∗
κ
, τ I

κ
), (NP

κ
, P∗

κ
, τ P

κ
)
)

(4.3)

where the index ‘κ ≡ o, i’ indicates the ith claim in occurrence year o in the case of observed claims and
‘κ ≡ o, i, k’ the ith claim in occurrence year o in the kth simulation run in the case of simulated claims.

All variables Z� ,o,i[,k] are defined in Table 2 on a claim level, aggregated into Z� ,o[,k] on an annual level,
and into Z�[,k] on a period level (Table 2 comprises the extra variable N0

o[,k] indicating claim-free years).

Remark 4.2. The structure of the claim objects Lκ and the constraints determine the structure of the
reduced random variables Zκ . The reduced variables introduced in (4.3) and defined in Table 2 capture
the key features of a claim. Some variables are, however, interdependent (see Section 5.3.1). A subset
is thus chosen for calibration, and the remaining variables are used as test variables.

The relationship between Zκ and Lκ , the temporal evolution of the incurred amount Iκ(t), the cumu-
lative paid amount Pκ(t), and the two reduced random variables τ I

κ
(t) and τ P

κ
(t) are shown in Figures 3

and 4. The incurred lag τ I
κ
(t) evaluated at time t> trep

κ
can either be larger, equal, or smaller than the

reporting lag τ rep
κ

. The three cases correspond to an adverse, adequate, and favorable IBNER develop-
ment, respectively. The paid lag τ P

κ
(t) evaluated at time t> trep

κ
is always larger than the reporting lag

τ rep
κ

(losses are paid post claims being made).

Replacing the detailed patterns of a claim by a tuple containing reduced and weakly coupled
variables is the second key feature of the integrated rating approach.

5. Bayesian inference and model calibration
5.1. Bayesian inference
The Bayesian interpretation combines prior knowledge with observed data when estimating the parame-
ters of parametric probability distributions. It distinguishes between the intrinsic uncertainty stemming
from the stochastic process and the epistemic uncertainty stemming from the uncertainty in the param-
eter estimates (see Figures 6 and 7). This so-called Bayesian inference is particularly convenient when
applied to conjugate priors (Fink, 1997; Gelman, 2013; Klugman et al., 2019; Parr et al., 2022; Palmer,
2022; Murphy, 2023). Depending on the kind of distributions, a closed form might be available for the
posterior predictive distribution (Fink, 1997). However, Bayesian inference is also applicable in situa-
tions that deviate from the ideal case, that is, when the observed random variables are not iid or when
dealing with nonparametric probability distributions (Parr et al., 2022; Palmer, 2022; Murphy, 2023).

The observed random variables Lobs
κ

are complex objects emanating from real-world generative pro-
cesses that evolve over time. They cannot be used directly for evaluating the calibration tuple C to be
applied to the exposure-based generative model; the model is, therefore, calibrated with reduced random
variables Zobs

κ
(see Section 4.3 and Table 2).

Applying Bayesian inference requires that the ‘conditional distributions’ and the respective ‘prior
distributions’ are represented (or approximated) by parametric distributions. The parameters to be cal-
ibrated are identified, the respective prior distributions are specified, and the posterior estimates are
fed back into the generative model. This is accomplished with scaling factors applied to corresponding
parameters that determine the frequency, the severity, and the development patterns. The incurred lag
is, however, either positive or negative; thus, a ‘translate’ parameter is used to calibrate the incurred
pattern.

A Monte Carlo simulation generates claim objects Lsim
κ

that replicate all relevant features of the
observed claims Lobs

κ
. The simulated claims and the observed claims are reduced and denoted Xκ :=

ζ (Lsim
κ

) and Yκ := ζ (Lobs
κ

), respectively. Data slices X�,o and Y�,o containing the simulated random
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Table 2. Comprehensive list with reduced random variables Z on a claim level, an annual level, and a period level.

Claim feature � claim level: Z� ,o,i[,k] annual level: Z� ,o[,k] mean: Ẑ� ,o[,k] period level: Z�[,k] mean: Ẑ�[,k]

Claim-free N0
o := 1Nrep

o =0 N0 := ∑
o N0

o λ̂0 := N0

T

Occurrence tocc
o,i o := �tocc

o,i − tsub� − 1

Incurred count Ninc
o,i := 1 Ninc

o := ∑
i Ninc

o,i Ninc := ∑
o Ninc

o λ̂inc := Ninc

T

Reported count Nrep
o,i := 1trep

o,i ≤tsub Nrep
o := ∑

i Nrep
o,i Nrep := ∑

o Nrep
o λ̂rep := Nrep

T

Reporting lag τ
rep
o,i := trep

o,i − tocc
o,i τ rep

o := ∑
i τ

rep
o,i · I∗o,i

I∗o
τ rep := ∑

o τ
rep
o · I∗o

I∗

Closed count Nclo
o,i := 1tclo

o,i ≤tsub Nclo
o := ∑

i Nclo
o,i Nclo := ∑

o Nclo
o λ̂clo := Nclo

T

Closure lag τ clo
o,i := tclo

o,i − tocc
o,i τ clo

o := ∑
i τ

clo
o,i · I∗o,i

I∗o
τ clo := ∑

o τ
clo
o · I∗o

I∗

Incurred adj. NI
o,i NI

o := ∑
i NI

o,i n̂I
o := NI

o
Nrep

o
NI := ∑

o NI
o n̂I := NI

Nrep

Incurred I∗
o,i := Io,i(tsub) I∗

o := ∑
i I∗

o,i Î∗
o := I∗o

Nrep
o

I∗ := ∑
o I∗

o Î∗ := I∗
Nrep

Incurred lag τ I
o,i := ∫ tsub

tocc
o,i

(
1 − Io,i(t)

I∗o,i

)
dt τ I

o := ∑
i τ

I
o,i · I∗o,i

I∗o
τ I := ∑

o τ
I
o · I∗o

I∗

Payments NP
o,i NP

o := ∑
i NP

o,i n̂P
o := NP

o
Nrep

o
NP := ∑

o NP
o n̂P := NP

Nrep

Paid P∗
o,i := Po,i(tsub) P∗

o := ∑
i P∗

o,i P̂∗
o := P∗

o
Nrep

o
P∗ := ∑

o P∗
o P̂∗ := P∗

Nrep

Paid lag τ P
o,i := ∫ tsub

tocc
o,i

(
1 − Po,i(t)

I∗o,i

)
dt τ P

o := ∑
i τ

P
o,i · I∗o,i

I∗o
τ P := ∑

o τ
P
o · I∗o

I∗
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(a) (b)

Figure 3. Claim representation and reduced variables (‘κ ≡ o, i’ or ‘κ ≡ o, i, k’). The available infor-
mation, that is, the occurrence date tocc

κ
, the reporting date trep

κ
, the submission date tsub, the incurred

pattern Iκ(t) (a), and the paid pattern Pκ(t) (b) are shown in black. The derived reduced variables, that
is, the reporting lag τ rep

κ
, the incurred amount I∗

κ
, the incurred lag τ I

κ
, the count of incurred adjustments

NI
κ
, the cumulative paid amount P∗

κ
, the paid lag τ P

κ
, and the count of payments NP

κ
are shown in gray

(see definitions in Table 2). The temporal development is taken from the ‘increase’ case shown in Figure
4 by evaluating the patterns at time t = 75 [months].

(a) (c)

(b) (d)

Figure 4. Patterns and lags as defined in Table 2 and Figure 3 (t in months [mos.] since tocc and
‘κ ≡ o, i’ or ‘κ ≡ o, i, k’). (a) The solid gray curve shows the temporal evolution of the cumulative paid
amount Pκ(t). The other curves depict five examples for the development of the incurred amount Iκ(t).
Two adverse cases are represented by ‘dash-dotted’ lines, the adequate case by a ‘solid’ line, and two
favorable cases by ’dashed’ lines. (b) Temporal evolution of the respective incurred lags τ I

κ
(t). The

incurred lags are initially equal to the reporting lag τ rep
κ

= 15 [months], and they subsequently increase
in the ‘adverse’ cases, remain stable in the ‘adequate’ case, and decrease in the ‘favorable’ cases. (c)
Temporal evolution of the respective paid-over-incurred ratios Pκ(t)/Iκ(t). (d) Temporal evolution of the
paid lags τ P

κ
(t) for the five cases of incurred patterns.

variables X� ,o,i,k and the observed random variables Y� ,o,j on a claim level, respectively, are extracted
for the feature � and the occurrence year o.

Marginal probability distributions f�,o(x | c�) := f�(x; θ �,o(c�)) are derived by fitting the parametric dis-
tributions f�(x; θ 0

�,o) to the simulated distributions g(x |X�,o) and by linking the parameter tuple θ �,o to the
calibration parameter c� (see Section 5.2). Applying Bayesian inference permits us to derive posterior
distributions p(c�) and maximum a posteriori (MAP) estimates for the parameters c� given the observa-
tions Y�,o. The calibration is either performed with calibration scalars c� or with calibration vectors, for
example, c� := (a�, b�) in the case of a linear-trend calibration. Analogous procedures are applied if the
calibration is performed on an annual level or a period level.
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(a) (b)

(c) (d)

Figure 5. Calibration of the annual ‘observations’ No (depicted by diamonds). The pmfs of the models
for the occurrence years o ∈ {−T , . . . , −1} (with T = 12), the resulting pmf of the average over the
period (plotted at o = 0), and the projection (plotted at o = +1) are shown in the upper part of the
four charts. The fitted logN distributions are shown in the lower part, and ticks indicate the means and
standard deviations. The distributions shown in (c) and (d) are obtained by rerunning the, respectively,
calibrated models.

Assigning one or two calibration parameters to each of the relevant reduced variables and applying
Bayesian inference to evaluate MAP estimates for the calibration parameters is the third key feature
of the integrated rating approach.

5.2. Generic calibration process
5.2.1. Overview
Bayesian inference presupposes parametric probability distributions for the observed random variables
and prior distributions for the calibration parameters. The probability distributions implemented within a
generative model (considered an independent module) are not directly accessible by the generic calibra-
tion framework. The calibration framework furthermore involves probability distributions for multiple
occurrence years o. Hence, the calibration is performed with the help of proxy distributions f�(x; θ �,o)
fitted to the simulated probability distributions g(x |Xc

�,o) derived from the sets Xc
�,o containing the sim-

ulated claim-level random variables (respective probability distributions can be derived in an analogous
way from annual-level sets Xa

�,o or from the period-level sets Xp
�
):

g(x |Xc
�,o) := Pr (X = x |Xc

�,o) = 1∑K
k=1 Nrep

o,k

·
K∑

k=1

Nrep
o,k∑

i=1

1x=X� ,o,i,k
(5.1)
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Figure 6. Conditional calibration statistics. The calibration of the sample model presented in Figure
5 is run 100 times, conditional on the given set of observations {No}−T≤o≤−1. The simulated differential
cdfs F(�X) (with �X(m) := X(m) −E[X]) are depicted in the four panels. Top: Deviation statistics for
the scale-only calibration. Bottom: Deviation statistics for the linear-trend calibration. Left: Deviation
statistics for the scale parameters a and c, and the trend parameter b∗ = b · (T − 1), respectively. Right:
Resulting deviation statistics for the overall mean μ̂, the calibrated means at o = −T and o = −1, and
the projected mean at o = +1.

Figure 7. Unconditional calibration statistics. Deviation statistics as shown in Figure 6 (note the dif-
ferent scales), but without conditioning on {No}−T≤o≤−1, that is, a new set of observations {No

(m)}−T≤o≤−1

is drawn for each simulation run m ∈ {1, . . . , 100}.

Conditional annual probability distributions f�,o(x | c�) := f�(x; θ �,o(c�)) are obtained by linking the
parameter tuples θ �,o to the calibration parameter c�.

Remark 5.1. The selection of appropriate distribution families f�() for the model features � depends on
the variables Z� ,κ = ζ �(Lκ) being discrete or continuous, the support, the shape, the number of modes,
and the tail behavior. The calibration is, however, determined by the HDR (see definition in Section 4.1)
of the probability distribution. In the case of uni-modal distributions, it is thus not overly sensitive to
the selection if the support and the first few moments are preserved (see Sections 6.3 and 6.6).

The calibration is performed for each feature � with the respective observed random variables Y� ,o,j,
the simulated random variables X� ,o,i,k, and the priors π (c�):
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1. Annual data slices Y�,o := {Y� ,o,j}1≤j≤Nobs
o

and X�,o := {X� ,o,i,k}1≤i≤Nsim
o,k ,1≤k≤K containing the

observed reduced components Y� ,o,j = ζ �(Lobs
o,j ) and the simulated reduced components X� ,o,i,k =

ζ �(Lsim
o,i,k), respectively, are extracted for the feature �.

2. A parametric probability distribution family f�() is used to specify conditional annual proba-
bility distributions f�,o(x | c�) := f�(x; θ �,o(c�)).

3. Annual prior parameters θ
0
�,o are obtained by fitting the distributions f�(x; θ 0

�,o) to the simulated
marginal distributions g(x |X�,o) (5.1).

Bayesian inference applied to the set of observations Y� := {Y�,o}−T≤o≤−1 is used to update the prior
distribution π (c�) for the calibration parameter c�, that is, to derive the conditional posterior distribution
p(c� |Y�). This is accomplished by postulating Eπ [c�]

!= 0 and linking the calibration parameter c� to
the parameters θ �,o with the condition θ �,o(c� = 0)

!= θ
0
�,o for all o (see Section 5.2.4). The tuple θ �,o =

(ϑ�,o, [ϕ�,o, ς�,o, ��,o, . . . ]) is assumed to comprise only one parameter ϑ�,o that is linked to the calibration
parameter c�, that is, θ �,o(c�) = (ϑ�,o(c�), [ϕ0

�,o, ς
0
�,o, �

0
�,o, . . . ]) with ϑ�,o(c� = 0)

!= ϑ 0
�,o.

A scalar calibration parameter c� is used to jointly adjust the scale (or location) across all occurrence
years o via conditional parameters ϑ�,o(c�) (see Section 5.2.4). A two-dimensional calibration vector
c� = (a�, b�) is alternatively used to adjust the parameters ϑ�,o(c� ,o) by postulating a linear trend c� ,o =
a� + b� · (o − o0) (see Section 5.2.8).

Remark 5.2. The procedure can – in principle – calibrate temporal developments that involve more than
two parameters, for example, nonlinear trends or periodic processes. This is, however, rarely feasible in
practice due to the scarcity of data and low signal-to-noise ratios.

The generic calibration procedure can be applied independently to each feature � of the generative
model (i.e., to the frequency generator, the severity generator, and the pattern generators) if the following
conditions are (nearly) fulfilled:

C1: The features �1 and �2 of a claim are independent: �1 	= �2 → Y�1,o,j1 ⊥⊥ Y�2,o,j2 .
C2: The occurrence years o1 and o2 are independent: o1 	= o2 → Y� ,o1,j1 ⊥⊥ Y� ,o2,j2 .
C3: The Nrep

o claims reported for the occurrence year o are iid: Y� ,o,j

iid∼ f�(θ �,o).

The conditional marginal probability distributions f�,o(x | c�) can be used to calibrate the distinctive
features � of the generative model (C1), probability distributions f�(x; θ 0

�,o) can be fitted to the simu-
lated distributions g(x |X�,o) derived for the occurrence years o (C2), and the conditional likelihood for
observing the random variables in the sets Y�,o can be evaluated (C3).

Remark 5.3. Modified calibration procedures are applied in cases where these conditions are not
fulfilled (see Section 5.3).

5.2.2. Calibration in three steps
The generic calibration procedure is first described for random variables defined on a claim level and
then adapted to the annual and period levels (see definitions in Table 2).

1st step: A Monte Carlo simulation is run K times, and in run k the generative model draws the random
counts Ninc

o,k , and it generates the random claims Lsim
o,j,k for j ∈ {1, . . . , Ninc

o,k } and o ∈ {−T , . . . , −1}.
The Nrep

o,k reported claims Lsim
o,i,k (characterized by trep

o,i,k ≤ tsub) are projected to the reduced random
tuples Xo,i,k := (X1,o,i,k, . . . , X� ,o,i,k, . . . , XM,o,i,k) (a refined calibration approach that involves the
incurred claims instead of the reported claims is described in Section 5.3.1). Following data
slices Xc

�,o containing the simulated random variables X� ,o,i,k for the feature � ∈ {1, . . . , M} in
occurrence year o ∈ {−T , . . . , −1} are extracted:
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Xc
�,o :=

{{
X� ,o,i,k

}
1≤i≤Nrep

o,k

}
1≤k≤K

(5.2)

Respective data slices Xa
�,o and Xp

�
containing the aggregated random variables X� ,o,k and X� ,k

can be extracted on an annual and a period level, respectively.
2nd step: A parametric distribution family f�(x; θ �) is selected for each model feature �. Parametric

probability distributions f 0
�,o(x) := f�(x; θ 0

�,o) are fitted to the respective simulated distribu-
tions g�,o(x) := g(x |X�,o) derived with (5.1) from the simulated sets X�,o. The parameters
θ

0
�,o = (ϑ 0

�,o, [ϕ0
�,o, ς

0
�,o, �0

�,o, . . . ]) are obtained with, for example, the method of moments (MM)
fit or the maximum likelihood estimator (MLE) fit (see Example 6.1).

3rd step: Conditional parameters θ �,o(c�) = (
ϑ�,o(c�), [ϕ0

�,o, ς
0
�,o, �0

�,o, . . . ]
)

are linked to the calibration
parameter c� with the constraint ϑ�,o(c� = 0)

!= ϑ 0
�,o. The conditional probability distributions

f�,o(x | c�) := f�
(
x; ϑ�,o(c�), [ϕ0

�,o, ς
0
�,o, �0

�,o, . . . ]
)

(5.3)

derived for the occurrence years o ∈ {−T , . . . , −1} are jointly representing the model feature
� to be calibrated with the parameter c�. The conditional probability distributions f�,o(x | c�) are
used as a proxy for determining the probabilities of the observations Y� ,o,i.

Bayes’ theorem is used to evaluate the conditional likelihood of c� given the prior distribu-
tion π (c�) and the set Y� containing the observations, to derive the MAP estimate c�,MAP, and
the posterior distribution p(c�).

A straightforward approach is to calibrate the scale (or the location) of the distributions f�,o(x | c�) with
a scalar parameter c� ∈R. A two-dimensional calibration vector c� = (a�, b�) ∈R2 is used in the case of
a linear-trend calibration (see Remark 5.2). The T conditional annual distributions f�,o(x | c� ,o) are thus
interlinked via c� ,o = c� in the case of a scale (or location) calibration and via c� ,o = a� + b� · (o − o0) in
the case of a linear-trend calibration (see Section 5.2.8).

5.2.3. Calibration levels and iteration
A scale (or translate) calibration scalar c� can be derived from the set Yc

�
containing all claim-level

observations Y� ,o,j, or from the setYa
�

containing the observations Y� ,o aggregated on an annual level, or
from the setYp

�
containing the single observation Y� aggregated on the period level. A trend calibration

vector c� = (a�, b�) can be derived either from Yc
�

or from Ya
�
.

The generative model is supposed to accept the calibration tuple C(s) and the simulation count K(s+1) as
an input for the iteration s + 1 (with s ≥ 0) and to provide the simulated set of sets {Ssim

k

(s+1) | C(s)}1≤k≤K(s+1)

(4.2) as an output. The calibration framework uses the derived setsX�(s+1) (5.2) containing the simulated
reduced random variables and the setY� containing the respective observations to derive the calibration
parameters c(s+1)

� for the model features � ∈ {1, . . . , M}. The generative model is adjusted by feeding the
calibration tuple C(s+1) back into the generative model where the calibration parameter c(s+1)

� is applied
to the generator(s) of the feature �.

Remark 5.4. The generic iterative calibration framework can interact with the generative model via
standardized interfaces. The generative model can thus be considered an independent module from the
perspective of the calibration framework. The reverse is also the case; hence, the generic calibration
framework can be implemented as a service that can be called by any exposure-based generative model
capable of simulating claims for the observation period.

5.2.4. Link function
The calibration of the scale (or the location) of the annual probability distributions fκ(x | c�) with the
scalar c� is accomplished by combining a normal prior π�(c�) := N(c�; 0, σc� ) with a link function
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ψ�:(c�, ϑ 0
κ
) �→ ϑκ(c�) that maps the set {ϑ 0

κ
} containing the prior parameters to the set {ϑκ(c�)} contain-

ing the adjusted parameters (the superscripts and subscripts indicated by κ ∈ {c
�,o,

a
�,o,

p
�} depend on the

calibration level). The prior distributions of the annual parameters ϑκ are thus decomposed into a joint
(normal) prior π�(c�) and annual link functions ψκ(c�) := ψ�(c�, ϑ 0

κ
). The reasons for this decomposi-

tion are the need to jointly calibrate the annual distributions fκ(x | c�), the need to feed the calibration
parameters c� back into the generative model, and parsimony.

The decomposition permits us to choose normal priors π�(c�) =N(c�; 0, σ 2
c�

), provided that the link
functionψ� adequately maps the range of validityR of the calibration parameter c� to the range of validity
of the respective model parameters ϑκ . Depending on the constraints on ϑκ , either a linear linking, an
exponential linking, or a logistic (sigmoid) linking is applied (see examples in Section 6):

ϑκ(c) := ψ�(c, ϑ 0
κ
) :=

⎧⎪⎪⎨
⎪⎪⎩

ϑ 0
κ
+ c : linear ψ� : R→R

ϑ 0
κ
· ec : exponential ψ� : R→R+ for all ϑ 0

κ
∈R+

ϑ0
κ ·ec

ϑ0
κ ·ec+(1−ϑ0

κ )·e−c : logistic ψ� : R→ [0, 1] for all ϑ 0
κ
∈ [0, 1]

(5.4)

5.2.5. Claim-level observations and Bayes
The MAP estimate c�c

,MAP := argmax
c∈R

Pr (c |Yc
�
) derived from the set containing the claim-level (‘c’)

observations Yc
�

is obtained by applying Bayes’ theorem and maximizing the log-likelihood function
Lc(c):

Pr (c |Yc
�
) = Pr (Yc

�
| c) · Pr (c)

Pr (Yc
�)

∝ ∏
o,i f c

�,o(Y� ,o,i | c) · π c
�
(c)

⇒Lc
�
(c) = ln

(
Pr

(
c |Yc

�

)) = const. + ∑
o,i ln

(
f c
�,o(Y� ,o,i | c)

) + ln
(
π c
�
(c)

)

where f c
�,o(x | c) is defined in (5.3) and the superscript ‘c’ indicates the calibration on a claim level. The

MAP estimate c�c
,MAP is derived from the condition ∂Lc

�
(c)/∂c

!= 0:

−1∑
o=−T

Nrep
o∑

i=1

∂

∂c
f c
�,o(Y� ,o,i | c)

f c
�,o(Y� ,o,i | c)

!= c

σ 2
c�c

∣∣∣∣∣∣
c=c�

c
,MAP

(5.5)

5.2.6. Annual-level observations and Bayes
The calibration of the model features can also be performed on an annual level (‘a’) with the observed
random variables Y� ,o. The annual probability distributions f a

�,o(x) are fitted to the simulated probability
distributions ga

�,o(x) := g(x |Xa
�,o) determined by the sets Xa

�,o := {
X� ,o,k

}
1≤k≤K

. The MAP estimate c�a
,MAP

is derived from the condition ∂La
�
(c)/∂c

!= 0:
−1∑

o=−T

∂

∂c
f a
�,o(Y� ,o | c)

f a
�,o(Y� ,o | c)

!= c

σ 2
c�a

∣∣∣∣∣
c=c�

a
,MAP

(5.6)

5.2.7. Period-level observations and Bayes
A third option is to calibrate the feature � on an aggregated period level (‘p’) with the observed random
variable Y�. The probability distribution f p

� (x) is fitted to the simulated distribution gp
�(x) := g(x |Xp

�
)
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determined by the set Xp
�

:= {
X� ,k

}
1≤k≤K

. The MAP estimate c�
p
,MAP is derived from the condition

∂Lp
�
(c)/∂c

!= 0:
∂

∂c
f p
� (Y� | c)

f p
� (Y� | c)

!= c

σ 2
c�p

∣∣∣∣
c=c�

p
,MAP

(5.7)

5.2.8. Linear trend and Bayes
The approach derived for the calibration scalar c� (i.e., c� ,o = c� for all o) can be extended to a calibration
vector c� by postulating c� ,o = a� + b� · (o − o0), that is, c� = (a�, b�). The two parameters a� and b� are
assumed to be independent with priors πa(a�) =N(a�; 0, σ 2

a�
) and πb(b�) =N(b�; 0, σ 2

b�
).

If calibrating a linear trend of feature � on the claim level (indicated by the superscript ‘c’), fol-
lowing system of equations for the MAP estimates a�c

,MAP and b�
c
,MAP is derived from the two conditions

∂Lc
�
(c(o; a, b))/∂a

!= 0 and ∂Lc
�
(c(o; a, b))/∂b

!= 0:

∑−1
o=−T

∑Nrep
o

i=1

∂
∂c f c

�,o(Y� ,o,i|c(o; a,b))

f c
�,o(Y� ,o,i|c(o; a,b))

· 1
!= a

σ 2
a�

c∑−1
o=−T

∑Nrep
o

i=1

∂
∂c f c

�,o(Y� ,o,i|c(o; a,b))

f c
�,o(Y� ,o,i|c(o; a,b))

· (o − o0)
!= b

σ 2
b�

c

∣∣∣∣∣∣∣
(a,b)=(a�

c
,MAP ,b�

c
,MAP)

(5.8)

Respective trend parameters a�a
,MAP and b�

a
,MAP (indicated by the superscript ‘a’) can also be derived from

observations on an annual level:
∑−1

o=−T

∂
∂c f a

�,o(Y� ,o|c(o; a,b))

f a
�,o(Y� ,o|c(o; a,b))

· 1
!= a

σ 2
a�

a∑−1
o=−T

∂
∂c f a

�,o(Y� ,o|c(o; a,b))

f a
�,o(Y� ,o|c(o; a,b))

· (o − o0)
!= b

σ 2
b�

a

∣∣∣∣∣∣∣
(a,b)=(a�

a
,MAP ,b�

a
,MAP)

(5.9)

5.2.9. Smoothing
The simulated annual probability distributions g�,o(x) defined in (5.1) can be quite volatile unless a
large number of simulated claim objects is generated. The resulting volatility of the fitted paramet-
ric distributions f�(x; θ 0

�,o) can be reduced by replacing the parameters θ
0
�,o evaluated independently

for each occurrence year o by smoothed parameters θ̃ �,o := (ϑ̃�,o, [ϕ̃�,o, ς̃�,o, �̃�,o, . . . ]). This can, for
example, be accomplished by blending the parameters θ

0
�,o and the parameters θ

∗
�,o, that is, by setting

θ̃ �,o = diag(α�,1, α�,2, . . . ) × θ
0
�,o + diag(1 − α�,1, 1 − α�,2, . . . ) × θ

∗
�,o where α� := (α�,1, α�,2, . . . ) is the

vector containing the credibility weights to be applied to the components of θ .
The parameters θ

0
�,o are obtained by independently fitting each distribution f�(x; θ 0

�,o) to the respective
simulated distribution g�,o(x). The parameters θ

∗
�,o = θ

∗
�
(o; φ�) are instead obtained by jointly fitting the

set {f�(x; θ ∗
�
(o, φ�))} to the set {g�,o(x)} with the help of the hyperparameters φ� = (ϕ�,1, [ϕ�,2, . . . ]).

Example 5.5. Discrete Panjer class (see Appendix B in the Online Supplementary Material) with
annually calibrated means λo and a shared fP, that is, α = (αλ, αfP ) = (1, 0):

fo(k) := Panjer(k; λo, fP)

with: λo = E[No]

and: fP =
∑

o V[No]∑
o E[No]

(5.10)
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5.3. Calibration of interdependent features
The generative model is assumed to contain M partially dependent calibration parameters c�, which are
used to calibrate M distinctive features � within the generative model (depending on the feature to be
calibrated, c� is either a scalar or a vector).

5.3.1. Decomposition of known interdependencies
The optimal approach is to decompose known interdependencies into independent features. The cal-
ibration of the variables Ninc

o , τ rep
o , and Nrep

o can, for example, be accomplished with two independent
calibration parameters (an equivalent approach is applicable to the variables I∗

o,i, τ P
o,i, and P∗

o,i).
The count and the features of the IBNR claims are not known, that is, the annual counts Ninc

o of the
incurred claims and the reporting lags τ rep

o,j of the IBNR claims (for which trep
o,j > tsub) are not observed.

These features are, however, modeled within the generative framework, that is, the counts Ninc
o,k and the

reporting lags τ rep
o,i,k are accessible for all simulated claims.

The frequencies λrep
o := E[Nrep

o ] ≈ λinc
o · ρo(τ = −o) of the claims reported for the occurrence years o

depend on the frequencies λinc
o := E[Ninc

o ] of incurred claims and the reporting patterns ρo(τ ) evaluated
at τ = tsub − tocc

o,j ≈ −o. The frequencies λinc
o and the patterns ρo(τ ) are approximated by the simulated fre-

quencies λ̂0
o and the simulated patterns ρ̂o(τ ) and considered independent, that is, they can be calibrated

with respective scalar parameters cλ and cρ .
Parametric reporting patterns ρ(τ ; τ 0

o , [ . . . ]) are fitted to the simulated reporting patterns ρ̂o(τ ).
Conditional estimates λ̂rep

o (c) for the frequencies of reported claims given the calibration parameter c :=
(cλ, cρ) are obtained as follows:

λ̂rep
o (c) = λ̂0

o · ecλ · ρ(τ = −o; τ 0
o · ecρ , [ . . . ])

These frequencies are used as parameters in the discrete probability distributions fN(k; λ̂rep
o (c), [ . . . ])

used to evaluate the conditional likelihood of the observations Nrep
o given c. The MAP estimate cMAP :=

argmax
c∈R2

Pr (c | {Nrep
o }−T≤o≤−1) is obtained numerically by applying Bayes’ theorem in combination with

independent normal priors πλ(cλ) and πρ(cρ).

5.3.2. Multivariate normal approach MVN
One calibration approach is to generate a substantial number K of simulated variables Xk =
(X1,k, . . . , XM,k), define�i,k := Xi,k andϒi := Yi in the case of linearly linked components i, define�j,k :=
ln (Xj,k) and ϒj := ln (Yj) in the case of exponentially linked components j, fit a multivariate normal
(MVN) distributionN(ξ ; μ0, �0) to the simulated set {	k}1≤k≤K , specify the prior π (μ0) =N(μ0; ν0, �),
derive the posterior p(μ0 | ϒ) =N(μ0; ν∗, �), and obtain CMAP = ν∗ − ν0 (Lee, 2012; Murphy, 2023).
This approach does, however, rely on an explicit quantification of the prior means ν0 and the prior
correlation matrix �.

5.3.3. EM algorithm and Gibbs sampler
An alternative approach, which relies on the implicit specification of the correlations within the genera-
tive model, is to evaluate the calibration tuple CMAP iteratively with the expectation-maximization (EM)
algorithm (Lee, 2012; Murphy, 2023). Preliminary estimates for the calibration parameters are used
to generate marginal distributions, and Bayesian inference is used to update the parameters with the
maximum likelihood values. The iterative process is initialized with the prior values C(s=0) = (0, . . . , 0).
The parameter tuple C(s) evaluated at step s ≥ 1 with the EM algorithm is determined by the observa-
tions {Y} and the simulations {X(s) | C(s−1)} (see also Remark 5.3 and Section 5.2.3), that is, the process
is governed by a Monte Carlo Markov chain (MCMC). The update of the parameter tuple C(s) in step
s can be done in several ways. In the case of relevant couplings, the basic Gibbs sampler is applied
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(Lee, 2012; Murphy, 2023), where the iteration is run in cycles (with M steps per cycle), and where a
single element c�i is updated in an iteration step. Alternatively, a block Gibbs sampler might be applied
where multiple or all parameters are updated in an iteration step.

Finding a converging solution with the basic Gibbs sampler can involve a large number of iteration
steps. It is thus computationally expensive (or even intractable), and paying the price only makes sense
if the set containing the observational data ensures a robust solution. This condition is rarely fulfilled in
the reinsurance rating process where the submission data comprises a small number (typically 10 to 100
per year) of medium and large partially developed claims. The intrinsic uncertainty in the observational
data and the epistemic uncertainty in the generative model are thus significant (see Figures 6 and 7).
These irreducible uncertainties translate into respective uncertainties in the parameter estimates. The
calibration process aims to find a robust solution within these uncertainties and reflect the uncertainties
in the posterior parameter distributions and the posterior predictive model.

5.3.4. Combined approach
A third option is to combine the two approaches. The variables Z are decomposed into weakly coupled
components Zk and strongly coupled pairs (Zi, Zj). The MVN approach is applied to the sub-spaces in
each iteration step of the EM algorithm.

5.4. Overall process and calibration of priors
The rating of reinsurance contracts is an integral part of the (annual) renewal process. Underwriters and
pricing actuaries are then absorbed by the interaction of the reinsurer with its cedents, and they cannot
calibrate the generative model for each incoming submission. However, the model calibration and the
rating of the future covers with the calibrated model are two distinct processes that can be performed
at separate times of the year. The calibration of the generative models can be performed outside of the
renewal season by considering all information available at that time.

A differentiation is made between the initial setup, the initial calibration, subsequent updates of the
setup, and calibration updates. The initial setup involves capturing the relevant market information, expo-
sure profiles, insurance conditions, and claims experience for the reporting period and specifying the
prior distributions (see Figure 2). The initial calibration is an interactive and iterative process performed
by an expert.

The calibrated model is fed with the most recent exposure profiles (and other submission data) during
the renewal process, and the model is used to rate the future contracts. A subsequent (periodic) recali-
bration can be performed after capturing any missing information from recent submission updates. This
recalibration can either be performed (semi-) automatically in the case of minor changes in the underly-
ing portfolio, or it is done analogously as the initial calibration in the case of significant changes in the
underlying portfolio or if the generative model has been modified substantially.

A similar process can be implemented on a portfolio level to periodically update the prior assump-
tions, that is, with the help of a hierarchical model (see, e.g., Sections 3.6 and 3.7 in Murphy 2023).
The reinsurer can use the set {Cι}1≤ι≤Nced containing the calibration tuples Cι derived for the Nced cedents
operating in the same market to update the hyperparameters used to specify the priors.

6. Sample calibration
6.1. Calibration case study with a toy model

Example 6.1. The calibration of the frequencies λo of the annual claim-counts distributions Nrep
o ∼

fN(λo, fP ,o) with a scale parameter c can be performed either on an annual level or on a period level and
a linear trend with the parameter c� = (a�, b�) can be calibrated on an annual level (the Panjer factor fP
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Table 3. Parameters and statistics for the generative process and the generative models shown in
Figure 5.

Calibration Annual Average Projected

Model a or c b o0 μ−12 μ−1 fP N̂ μ μ1

Generative process 5.0 15.0 1.25 9.2 18.3
Actual pmf 5.0 15.0 1.25 8.8 9.2 18.3

Prior model 10.0 20.0 1.00 14.5 22.7
Simulated pmf 10.5 19.9 1.08 14.4 20.8

Level calibration −0.49 6.2 12.3 1.00 8.9 14.0
Simulated pmf 6.3 12.9 0.99 9.0 14.1

Linear-trend cal. −0.54 0.057 −6.5 4.3 16.0 1.00 9.0 20.3
Simulated pmf 4.3 16.2 1.02 9.0 20.0

Random variables used No (3, 4, 6, 7, 10, 10, 7, 8, 12, 8, 18, 13)
for the ‘toy model’ μ0

o (10.5, 10.5, 11.7, 11.9, 12.8, 14.2, 14.8, 15.2, 16.2, 16.9, 18.8, 19.9)

is defined in Section 6.5.1 and in Appendix B). The calibration of the sample models specified in Table 3
is shown in Figure 5.

The parameters and critical statistics for the generative process and the three generative models illus-
trated in Figure 5 for the discrete random variable No := Nrep

o are summarized in Table 3. The first line
of each entry contains the model parameters and the expected statistics. The second line contains the
statistics derived from the actual pmf (probability mass function) or the simulated pmf, respectively.
The selected random variables listed at the bottom are used as input for the ‘toy model’ (see Appendix
C.1 in the Online Supplementary Material for details).

The model used to emulate the generative process is shown in panel (a), and the initial generative
model is shown in panel (b). The simulated annual and aggregate pmfs are fitted with logN distributions.
The scale calibration (see (A.1) in the Online Supplementary Material) based on aggregated period-level
statistics is shown in panel (c), and the linear-trend calibration (see (A.3) in the Online Supplementary
Material) based on annual statistics is shown in panel (d).

6.2. Calibration statistics
Additional insight is gained by running the calibration procedure multiple times and analyzing the result-
ing statistics. This is either done on a conditional basis, that is, by keeping the ‘observations’ {No}−T≤o≤−1

fixed as shown in Figure 6, or on an unconditional basis, that is, by drawing a new set of observations
{No

(m)}−T≤o≤−1 in each calibration run m, as shown in Figure 7.
The systematic bias observed in Figure 6 for the deviation statistics F(�X) stems from the different

trend assumptions and stochastic processes specified in the underlying models. The calibration of the
scale (determined by a and c) is more robust than the calibration of the trend (determined by b∗); there-
fore, the bias and the uncertainty of the overall mean μ̂ are minor compared to the bias and uncertainty
of the means at o = −T , o = −1, and o = +1 (determined by b∗). The scale-only calibration (top panels)
preserves the optimistic trend assumption; therefore, it leads to a positive bias for the calibrated mean
at o = −T , a negative bias for the calibrated mean at o = −1, and a substantial negative bias for the
projected mean at o = +1. The linear-trend calibration (bottom panels) overcompensates the underesti-
mated trend in the initial model; hence, it leads to a (moderate) positive bias for the projected mean at
o = +1.
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The variation in the unconditional case (Figure 7) increases by about one order of magnitude com-
pared to the variation in the conditional case. However, the variation of the scale parameters a and c
in the unconditional case is insignificant compared to the variation of the parameter b∗. The scale-only
calibration (top panels) thus leads to projections with a significant systematic bias but low uncertainty.
In contrast, the linear-trend calibration (bottom panels) leads to projections with a small systematic bias
but a significant uncertainty.

6.3. Features of the calibration
The key features of the calibration process are presented in Figure 5. The annual pmfs (derived from the
generative model) are represented by negative binomial distributions fo(k) := NB(k; ro, po). They can
be adequately approximated by logN distributions if Pr (No = 0) � 1.0. The parameters ro are assumed
to increase with time, while the parameters po = 1/fP are kept constant (see (5.10) and Appendix B.3 in
the Online Supplementary Material). The respective overall distribution of the average over the period
is shown on the right.

The probability distributions underlying the generative process leading to the observations
{No}−T≤o≤−1 are not known. These observations are, instead, used to adjust the respective calibration
parameter c� within the generative model. This is accomplished by fitting parametric distributions to the
simulated distributions (see Section 6.6). The calibration of the scale (or the location) with a scalar c�
(i.e., c� ,o = c� for all o) is performed with statistics on a claim level, on an annual level, or on a period
level. The statistics on a claim level and on an annual level can also be used to calibrate a linear trend
(i.e., c� ,o = a� + b� · (o − o0)).

Remark 6.2. The calibration procedure can be expanded to higher-dimensional vectors c�. Given the
interdependencies between parameters, the uncertainties, and the need to provide an adequate prior for
each parameter, it is rarely possible to calibrate any feature beyond a linear trend.

6.4. Continuous distributions
Most elements within the set of reduced random variables (see Section 4.3) are nonnegative, that is, they
have a support R+ or Z+. The underlying modules within the generative model are, therefore, calibrated
via an exponential linking (5.4). The incurred lag can, however, be positive or negative, that is, it has a
support R, and the underlying modules are calibrated via a linear linking.

In the case of continuous processes, logN distributions are fitted to the simulated distributions in
the exponential-linking case and N distributions are fitted to the simulated distributions in the linear-
linking case. Combining these distributions with N priors for the calibration parameters and plugging
the pdfs (probability density function) into (5.5), (5.6), (5.7), (5.8), and (5.9) leads to the MAP esti-
mates for cc

MAP, ca
MAP, cp

MAP and (ac
MAP, bc

MAP), (aa
MAP, ba

MAP), respectively (see (A.1) and (A.3) in the Online
Supplementary Material).

Remark 6.3. The conjugate prior distribution of a logN (or N) distribution with known parameter σ
is aN distribution and the posterior predictive distribution is also a logN (orN) distribution. The fitted
logN (or N) distributions are used as a proxy for calibration purposes; they are not used within the
generative model. The posterior predictive logN (or N) distributions can thus not be fed back into the
generative model; therefore, ‘scale’ (or ‘translate’) calibration parameters are used as a proxy.

6.5. Discrete: The Panjer class
6.5.1. Exponential linking
The three distribution families within thePanjer class (Panjer, 1981; Sundt and Jewell, 1981) are suitable
to fit a broad variety of discrete processes (see Appendix B in the Online Supplementary Material). The
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Figure 8. Fitting comparison. Representation of L(c) = c/ec and of RD(c) = R(c | No,μ0
o, fP, σc) for var-

ious distributions D. The random variables No and μ0
o are taken from the ‘toy model’ (see Table 3)

and combined with fP ∈ {0.5, 0.8, 1.0, 1.2, 2.0}. The distribution D is selected depending on fP: D =P
if fP = 1, D =NB if fP > 1, and D =B if fP < 1 (see Table B.1 in the Online Supplementary Material).
The approximation D =Ga (dotted lines) is evaluated for all selections of fP. The diamonds depict the
root cMAP = −0.48 evaluated with D = logN (see (A.1) in the Online Supplementary Material). The top
panels show L(c) and RD(c) for the wide range c ∈ [−5, +5] around the prior c = 0.0, and the bottom
panels show the curves for the narrow range c ∈ [−0.6, −0.4].

class comprises the Poisson family P, the negative binomial family NB, and the binomial family B.
The variance-over-mean ratio (Panjer factor) fP =V[N]/E[N] is used to discriminate between the three
families: fP = 1 for P, fP > 1 for NB, and fP < 1 for B.

The calibration of the discrete process Ninc
o , Nrep

o , Nclo
o , NI

o,i, and NP
o,i with support Z+ is performed in an

analogous way as the calibration of continuous processes with support R+. A parametric Panjer-class
distribution is fitted to the respective simulated discrete distribution and used as a proxy when calibrating
the underlying discrete process within the generative model. The calibration parameter c� with normal
prior π�(c�) is linked to the frequency parameter (i.e., λ for P, n for B, and r forNB) via an exponential
linking. The N distribution is not a conjugate prior of the Panjer-class families, but the MAP estimate
of the calibration parameters with a N prior can be found iteratively (see formulas in Table B.1 in the
Online Supplementary Material).

A discrete process can also be calibrated with a continuous distribution if the frequency is sufficiently
large (see Appendix A.3 in the Online Supplementary Material). A gamma distribution Ga can, for
example, approximate the Panjer-class distributions without the need to discriminate between the three
families. Another alternative is to derive the calibration parameters with the help of a logN approxi-
mation (see Figure 5). A comparison of the calibration of discrete processes performed with several
discrete and continuous distributions is shown in Table 5 and in Figure 8.

Example 6.4. A comparison of the calibration scalars ca
MAP and cp

MAP derived with the help of different
discrete and continuous parametric distribution families for threePanjer class models defined in Table 4
is provided in Table 5 and discussed in Section 6.6.

6.5.2 Logistic linking
A generative model might also comprise processes involving a fixed support {0, . . . , n} or processes
involving a fixed threshold r for a discrete random variable N . Such features can be calibrated via
a logistic linking of the calibration parameter c� to a probability parameter po ∈ [0, 1], for example,
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Table 4. Parameters used for the model comparison.

Model T λ
ref
−T λ

ref
−1

̂ln λref
o β K fNBP f PP f BP

Generative process 10 10.0 12.5 2.414 5.0 1 1.5 1.0 0.6
Generative model 10 5.0 10.0 1.956 5.0 50 1.5 1.0 0.6

Table 5. Comparison of the calibration parameters derived on an annual and a period level with
different approximations for the three model cases NB, P, and B.

Model Calibration parameters ca
MAP and cp

MAP

Case f sim
P NBa NBp Pa =Pp Ba Bp Gaa Gap logNa logNp

1.527 0.423 0.447 0.447 – – 0.322 0.451 0.345 0.452
NB 1.452 0.342 0.344 0.343 – – 0.342 0.349 0.406 0.350
fP: 1.5 1.598 0.404 0.386 0.385 – – 0.437 0.391 0.465 0.391
cmod: 0.458 1.431 0.304 0.312 0.311 – – 0.286 0.316 0.387 0.317

1.510 0.559 0.569 0.569 – – 0.547 0.573 0.691 0.572

NB mean 1.504 0.406 0.412 0.411 – – 0.387 0.416 0.459 0.416

0.961 – – 0.386 0.387 0.386 0.361 0.391 0.485 0.392
P 0.921 – – 0.543 0.547 0.543 0.498 0.547 0.596 0.546
fP: 1.0 0.906 – – 0.357 0.355 0.357 0.380 0.362 0.419 0.363
cmod: 0.458 1.140 0.433 0.436 0.436 – – 0.398 0.441 0.490 0.441

0.989 – – 0.294 0.294 0.293 0.207 0.298 0.268 0.299

P mean 0.983 – – 0.403 – – 0.369 0.408 0.452 0.408

0.579 – – 0.333 0.331 0.333 0.330 0.338 0.380 0.338
B 0.639 – – 0.418 0.429 0.418 0.380 0.422 0.408 0.422
fP: 0.6 0.629 – – 0.528 0.577 0.528 0.469 0.533 0.561 0.533
cmod: 0.458 0.622 – – 0.408 0.411 0.407 0.403 0.411 0.479 0.412

0.629 – – 0.527 0.533 0.527 0.522 0.531 0.542 0.531

B mean 0.619 – – 0.443 0.456 0.443 0.421 0.447 0.474 0.447

N ∼B(n, po(c�)) or N ∼NB(r, po(c�)). The respective equations to be fulfilled by the calibration param-
eter c� ,MAP via a logistic linking (5.4) to the annual probability parameters po are listed in the two bottom
rows of Table B.1 in the Online Supplementary Material.

One B example (Bernoulli case) is a random indicator variable 1EN for ‘El Niño’ years (i.e., n = 1).
AnotherB example is an upper bound on the random count of payments per year, for example, 0 ≤ NP

o,i ≤
n = 12 for all (o, i).

ANB example is a hypothetical dual-trigger contract that covers the economic loss of NT = NTF + NTT

claims stemming from TF events or TT events (i.e., the first trigger must be ‘True’ and the second trigger
can be ‘False’ or ‘True’) as long as the count NTT of TT events does not exceed the fixed threshold r ∈R+:
NTF ∼NB(r, p), and NTT = �r�.

6.6. Method comparison
The various calibration approaches briefly described above (see details in Appendices A and B in the
Online Supplementary Material) are applied to theNB case (i.e., fP > 1), theP case (i.e., fP ≈ 1), and the
B case (i.e., fP < 1). The parameters used to generate the set {Nobs

o } containing the observations stemming
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from the generative process and the parameters used to generate the set {Nsim
o,k } representing the generative

model are listed in Table 4. The reference frequencies {λref
o } for the occurrence year o are derived from

λ
ref
−T and λref

−1 via an exponential interpolation. The simulated frequencies λsim
o ∼Ga(αo, β) with αo = λref

o ·
β are used to simulate the K random variables Nsim

o,k ∼Panjer(λsim
o , fP). The derived calibration parameters

ca
MAP (annual level) and cp

MAP (period level) obtained with the various approaches are compared in Table 5.
Five simulations are run for each of the three cases fP = 1.5 (NB case), fP = 1.0 (P case), and fP = 0.6
(B case), respectively. The case, the respective model Panjer factor fP, and the calculated calibration
parameter cmod (the difference of the mean log frequencies ̂ln λref

o ) are indicated in column 1 for each of
the three cases. The simulated Panjer factors fP

sim per run are shown in column 2.
The respective calibration parameters ca

MAP and cp
MAP are shown in columns 3–11. The calibration

parameters are only evaluated with the NB approach when fP
sim > 1, and with the B approach when

fP
sim < 1. The parameters derived with the NB approach in the NB case, with the P approach in the
P case, and with the B approach in the B case, are shown in bold (see Appendix C.2 in the Online
Supplementary Material for details).

Using the P approximation (with ca
MAP = cp

MAP) as a reference indicates that the scale calibration
parameters cp

MAP derived from aggregate period statistics with the different approaches are remarkably
close. The scale calibration parameters ca

MAP derived from annual statistics vary between the approaches,
but the variations are not substantial.

Hence, the model comparison indicates that a logN approximation based on annual statistics might be
used to derive linear-trend parameters aa

MAP and ba
MAP with the help of (A.3) in the Online Supplementary

Material. Attempting to derive these two parameters with other models, for example, the Ga family or
the Panjer class yields more complex equations that must be solved numerically (see Table B.1 in the
Online Supplementary Material).

6.7. Example of a complete calibration
An example of an iterative calibration of seven features is shown in Figures 9 and 10 (see Appendix
C.3 in the Online Supplementary Material for details). A marginal linear-trend calibration is applied to
the annual claim counts Nrep

o , the average annual claims severities Î∗
o , the average annual lags τ rep

o , τ I
o ,

τ P
o , and the average annual counts n̂I

o and n̂P
o . The distributions of the annual counts of closed claims

Nclo
o and the distributions of the annual average paid amounts P̂∗

o are strongly dependent ‘test variables’
(they are monitored but not calibrated). The distributions drawn at o = 0 show the respective aggregate
distributions on a period level. The different linear-trend assumptions underlying the model used to
emulate the generative process and the initial generative model, respectively, can be recognized in the
pmfs and pdfs shown in Figure 9. The two models are sampled 200 times, and parametric distributions
are fitted to the simulated marginal distributions.

The calibration procedure is iterated five times after the initial sampling (iteration 0). The marginal
linear-trend parameters a�a

,MAP and b�
a
,MAP are evaluated in the first step of each iteration, the respective

parameters within the generative model are adjusted in the second step, and the adjusted model is used to
generate 200 new samples in the third step. A robust solution is obtained by reducing the prior parameters
σa�a and σb�a after each iteration. The resulting marginal distributions derived from the calibrated model
are shown in Figure 10. The residual offsets of corresponding modes are small relative to the respective
standard deviations, that is, the highest density regions of corresponding distributions are overlapping.
The calibrated generative model is thus well aligned with the (hidden) ‘true’ model used to emulate the
generative process.

7. Conclusions
A generic framework that permits calibrating the relevant features within exposure-based generative
models with the claims experience Y of a cedent has been introduced. Depending on the generative
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Figure 9. Generative process and initial model. Temporal evolution of the probability distributions
(shown at o ∈ {−T , . . . , −1} with T = 12) and the aggregated distribution (shown at o = 0) of nine
reduced variables. The underlying (hidden) pmfs (horizontal lines) and pdfs (continuous lines) of the
generative process are drawn with thin lines. The pdfs of the underlying generative model are drawn
with thicker lines, and the diamonds represent the ‘observations’ drawn from the generative process.
Large offsets of the corresponding modes (large relative to the respective standard deviations) can
be identified for the claims count Nrep, the incurred amount Î∗, and the (derived) cumulative paid
amount P̂∗.

Figure 10. Generative process and calibrated model. Same representation as in Figure 9. The lin-
ear-trend parameters within the generative model are calibrated in five iteration steps with seven
marginal distributions. The residual offsets between the corresponding modes of the (hidden) true model
and the calibrated generative model are minor compared to the standard deviations. Note: The count
of closed claims Nclo and the paid amount P̂∗ are dependent ‘test variables’ that are monitored but not
calibrated.
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model, the calibration is accomplished by applying the maximum a posteriori (MAP) point estimates
CMAP or by applying the posterior probability distribution Pr(C |Y).

Generative models attempt to emulate all relevant features of the generative process underlying the
claims experience of a cedent, that is, the simulated claims are represented in the same way as the
observed claims in the submission data. The detailed features of the simulated high-dimensional claim
objects are required for the rating process, but these objects cannot be directly used for calibration. The
calibration is thus performed with low-dimensional reduced variables and simulated marginal probabil-
ity distributions. Rating and calibration are two distinct processes performed with the same generative
model; the two processes can, however, be performed at different points in time.

Standard experience-based rating approaches project the past claims experience to the future, and the
incomplete claims are developed. In contrast, the integrated framework projects the exposure models
to the past and attempts to replicate the characteristics of the claims experience. A calibrated genera-
tive model is, therefore, coherently reflecting all information available to the reinsurer. The calibrated
model is projected to the cover period and used for rating, while the standard experience-based rating is
obsolete.

The generic calibration framework interacts with the generative model via standardized interfaces,
and it is applicable to all nonlife lines of business. In the case of short-tail business, it is used to calibrate
the claims frequency and the claims severity. In the case of long-tail lines, it is used to calibrate the claims
frequency, the claims severity, the reporting pattern, the incurred pattern, and the payment pattern.

The marginal probability distributions encountered in reinsurance ratings are assumed to be uni-
modal and heavy-tailed. The calibration of such distributions with Bayesian inference is determined by
the highest density region (HDR), and it only depends on relative probabilities. It is thus sufficient to
adequately fit the simulated distributions in the HDR, and there is no need to normalize the potentials
defining the shape of the distributions. Continuous potentials as, for example, defined by the normal
(N) family, the log-normal (logN) family, or the gamma (Ga) family, can, therefore, be used to calibrate
discrete processes if the frequencies are not too small. This is of particular interest when attempting to
calibrate the linear trend of a feature.

Interdependencies between the calibration features, for example, the (unknown) count of incurred
claims, the reporting lag, and the count of reported claims, depend on the characteristics of the
underlying generative processes. Such dependencies are considered in the calibration by reflecting
the characteristics within the generative model and by iterating the calibration procedure with an
expectation-maximization (EM) algorithm.

The set of calibration parameters derived during a certain period for cedents operating in the same
market can be used to update the hyperparameters used to specify the prior distributions in a subsequent
period.

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.1017/asb.2024.17.
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