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Abstract. In this paper we introduce simple multipliers, a special subclass of
multipliers on a Banach module. We show that, from a local spectral point of view, these
multipliers behave like multipliers on a commutative Banach algebra. Our definition
of simple multipliers relies on the notion of point multipliers. These multipliers were
studied earlier. However our approach gives new insight into this topic and therefore
could be of some interest by itself.
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1. Introduction. A mapping T on a Banach algebra A is a multiplier if x(Ty) =
(Tx)y for all x, y ∈ A; see [13]. Denote by M(A) the set of all multipliers on A. It
can be proven, under some mild condition on A, that M(A) is a closed commutative
subalgebra in B(A), the algebra of all bounded operators on A. Moreover, in this
case, we have T(xy) = x(Ty) = (Tx)y, x, y ∈ A, for every multiplier on A. The latter
equality motivates us to call a bounded linear operator T, which maps from a left
BanachA-module X into a left BanachA-module Y (A is not necessarily commutative),
a multiplier if it satisfies T(a · x) = a · Tx for all a ∈ A, x ∈ X. The set of all multipliers
from X into Y is denoted by BA(X,Y). (If X = Y we shall write BA(X) instead of
BA(X,X) and in the case of right modules we will use the notation B(X,Y)A, resp.
B(X)A).

The goal of the present paper is to discuss the decomposability of multipliers
between Banach modules. Since, for a general multiplier, we cannot say very much –
for instance, if A = �, then BA(X) = B(X) – it is quite clear that we have to confine
ourselves to a special subclass of multipliers. In Section 4 we introduce simple multipliers
on a Banach left module, which seem to be the suitable environment for our questions.
Section 5 is devoted to the local spectral theory of simple multipliers. For instance, we
extend to the class of simple multipliers on a left Banach module some results that are
proven in [8], [16] and [23] only for algebras. Our definition of simple multipliers relies
on the notion of point multipliers, which are studied in Sections 2 and 3. We believe
that the content of these two sections are of some interest by itself.

It is assumed that the reader is familiar with the concept of Banach modules. We
refer to [1, 18, 24], for details.

2. Point multipliers. Let A be a Banach algebra. Denote by �(A) the set of
all characters on A, i.e. non-trivial multiplicative linear functionals, and let �0(A)
denote the union �(A) ∪ {0}. The Banach space � is a left Banach A-module if the
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multiplication is defined by a · z = ϕ(a)z for all a ∈ A and all z ∈ �, where ϕ ∈ �0(A).
This module will be denoted by �ϕ.

DEFINITION 2.1. Let X be a Banach left A-module and let ϕ ∈ �0(A). A linear
functional ξ ∈ X∗ is a point multiplier at ϕ on X if it is a multiplier from X into �ϕ, i.e.

〈ξ, a · x〉 = ϕ(a)〈ξ, x〉 for all a ∈ A, x ∈ X.

Point multipliers have been used earlier (under different names) by some other
authors. See, for instance, Proposition 4 in [1, §43], for a connection with amenability,
and [12] for a connection with representation of Banach modules. See also [2].

If a Banach algebraA is without a unit, letA1 := A ⊕ � be its standard unitization.
It is easily seen that each left BanachA-module X is also a left BanachA1-module under
the multiplication (a ⊕ λ) · x = a · x + λx. A functional ξ ∈ X∗ is a point multiplier at
ϕ ∈ �0(A) if and only if ξ is a point multiplier at ϕ̃ ∈ �(A1), where ϕ̃ is given by
ϕ̃(a ⊕ λ) := ϕ(a) + λ. Hence, if we are interested in the point multipliers, then there is
no loss of generality if we assume that A is a unital Banach algebra.

Now we are going to give some examples of point multipliers. For a character ϕ

we shall denote by Mϕ the kernel kerϕ, i.e. the maximal ideal in A that corresponds
to ϕ.

EXAMPLE 2.2. Let A be a unital Banach algebra and consider A as a left A-
module via the left regular representation. Then it is easily seen that there do not exist
non-trivial point multipliers at 0. On the other hand, there exist point multipliers at
ϕ ∈ �(A). Namely, a linear functional ξ ∈ A∗ is a point multiplier at ϕ if and only if
there is α ∈ � such that ξ = αϕ.

Let ϕ ∈ �(A) and consider Mϕ as a left A-module. If ψ ∈ �(A) and ψ �= ϕ, then
{αψ |Mϕ

; α ∈ �}, where ψ |Mϕ
is the restriction of ψ to Mϕ, is the set of all point

multipliers on Mϕ at ψ. On the other hand, point multipliers on Mϕ at ϕ are exactly

the functionals in M2
ϕ

⊥
(⊆ M∗

ϕ).

EXAMPLE 2.3. Let A be a commutative Banach algebra and let I be a dense ideal
in A. Assume that there is a norm ‖ · ‖′ on I such that I is a Banach algebra with
respect to this norm and we have

‖ax‖′ ≤ ‖a‖‖x‖′ for all a ∈ A, x ∈ I,

where ‖ · ‖ denotes the norm on A. Then I is a Banach left A-module. The restriction
ϕ|I of a character ϕ ∈ �(A) to the ideal I is a character on I. The mapping ϕ �→ ϕ|I is
a bijection from �(A) onto �(I). It follows that ϕ|I is a point multiplier at ϕ ∈ �(A).
Let now ξ be an arbitrary non-trivial point multiplier at ϕ. Since I is dense in A there
is e ∈ I such that ϕ(e) = 1. Hence

〈ξ, x〉 = 〈ξ, ex〉 = 〈ξ, xe〉 = ϕ(x)〈ξ, e〉 for all x ∈ I

and therefore ξ = 〈ξ, e〉ϕ|I .
EXAMPLE 2.4. Let G be a locally compact abelian group. It is well known that

each Banach space Lp(G), where 1 < p < ∞, is a left Banach module over the group
algebra L1(G) (the algebra L1(G) acts on Lp(G) through the convolution). Note that
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the spectrum �(L1(G)) of the group algebra can be identified with the dual group Ĝ
(see [24, §3.6]).

Since L1(G) ∗ Lp(G) = Lp(G) (see Example 16.6 in [6]) there do not exist non-trivial
point multipliers at 0.

If the group G is compact, then Lp(G) is a dense ideal in L1(G) and we have

‖f ∗ g‖p ≤ ‖ f ‖1‖g‖p for all f ∈ L1(G), g ∈ Lp(G).

Hence, by the preceding example, point multipliers at ϕ ∈ Ĝ form an one-dimensional
subspace in (Lp(G))∗.

Assume now that the group G is not compact. Let Cc(G) be the algebra of all
continuous functions on G which have compact support. Suppose that ξ ∈ (Lq(G))∗ is
a point multiplier at ϕ ∈ Ĝ. Then

〈ξ, f ∗ g〉 = ϕ( f )〈ξ, g〉 for all f, g ∈ Cc(G). (1)

Since Cc(G) is dense in Lp(G) there exists e ∈ Cc(G) such that ϕ(e) = 1. It follows from
(1) that ξ |Cc(G) = 〈ξ, e〉ϕ|Cc(G). If the number 〈ξ, e〉 were non-zero, then η := 〈ξ, e〉−1ξ

would be a continuous linear functional on Lp(G) such that η|Cc(G) = ϕ|Cc(G). But this is
a contradiction because ϕ|Cc(G) cannot be continuously extended to Lp(G). Thus there
do not exist non-trivial point multipliers at ϕ ∈ Ĝ.

Denote by Xϕ, ϕ ∈ �(A), the closure of the set

Mϕ · X :=
{

n∑
k=1

ak · xk; ak ∈ Mϕ, xk ∈ X, k = 1, . . . , n

}
.

It is clear that Xϕ is a submodule in X. Moreover, if Z ⊆ X is a subspace such that
Xϕ ⊆ Z for some ϕ ∈ �(A), then Z is a submodule as well.

DEFINITION 2.5. Let A be a Banach algebra and let X be a Banach left A-module.
The Gelfand radical of X is the submodule

RadA(X) := ∩{Xϕ ; ϕ ∈ �0(A)}

in X.

We shall say that X is hyper-semisimple if its Gelfand radical is trivial. Of course,
the counterpart of Gelfand radical in the theory of commutative Banach algebras is the
ordinary Gelfand radical. Note that there exists a pure algebraic theory about radicals
in modules over rings. (See [26] and references cited there.)

EXAMPLE 2.6. Let G be a locally compact abelian group and 1 < p < ∞. It follows
from Example 2.4 that Lp(G) is a hyper-semisimple left Banach L1(G)-module if G is
compact. Indeed, if a function f is in the Gelfand radical of Lp(G), then we have 〈ϕ, f 〉 =∫

G f (x)ϕ(x) dx = 0 for all ϕ ∈ G (note that ϕ is regarded as an element in Lq(G) =
(Lp(G))∗, where 1/p + 1/q = 1). Define g(x) := f (−x), x ∈ G. Then g ∈ Lp(G) ⊆ L1(G)
and hence

0 = 〈ϕ, f 〉 =
∫

G
f (x)ϕ(x) dx =

∫
G

g(x)ϕ(−x) dx = ĝ(ϕ),
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where ĝ is the Fourier transform of g. Since the group algebra is semisimple the function
g is trivial and so is f.

If G is not compact, then RadL1(G)(Lp(G)) = Lp(G), by Example 2.4. �

Let X be a Banach left A-module. We shall say that a non-zero vector x ∈ X is a
characteristic vector if there exists ϕ ∈ �0(A) satisfying a · x = ϕ(a)x for all a ∈ A. Let

Chϕ(X) := {x ∈ X; a · x = ϕ(a)x for all a ∈ A}.

It is easily seen that this is a submodule in X.

The topological dual X∗ of a left Banach A-module X is a right Banach A-module
for the multiplication 〈ξ · a, x〉 = 〈ξ, a · x〉, ξ ∈ X∗, a ∈ A, x ∈ X. Each submodule
Chϕ(X∗) is weak-∗ closed. Let ChA(X) be the closure of the linear span of the union
∪{Chϕ(X); ϕ ∈ �0(A)} and let Ch∗

A(X∗) be the weak-∗ closure of the linear span of the
union ∪{Chϕ(X∗); ϕ ∈ �0(A)}. Then ChA(X) is a submodule in X and Ch∗

A(X∗) is a
weak-∗ closed submodule in X∗.

Recall that Y⊥ := {η ∈ X∗; 〈η, y〉 = 0 for all y ∈ Y} is a weak-∗ closed subspace in
X∗ for each linear manifold Y in a Banach space X. Moreover, if X is a left Banach
A-module and Y is a submodule, then Y⊥ is a submodule in the dual A-module X∗.
Similarly, if W is a linear manifold in X∗, then W⊥ := {x ∈ X; 〈η, x〉 = 0 for all η ∈ W}
is a closed subspace in X, and (W⊥)⊥ is the weak-∗ closure of W in X∗, (cf. [4, p. 130],
if Y is a closed subspace in X, then (Y⊥)⊥ = Y by the Hahn-Banach theorem). Again,
if X is a left Banach A-module and W is an A-submodule in the dual A-module X∗,
then W⊥ is an A-submodule in X.

PROPOSITION 2.7. Let A be a unital Banach algebra and let X be a left Banach
A-module. Then

Chϕ(X∗) = BA(X, �ϕ) = X⊥
ϕ (2)

for each ϕ ∈ �(A), where X∗ is considered as a dual Banach A-module. Moreover,

Ch∗
A(X∗) = RadA(X)⊥. (3)

Proof. The equations in (2) can be easily checked. Since RadA(X) is included in Xϕ,

for every ϕ ∈ �(A), we have X⊥
ϕ ⊆ RadA(X)⊥. By (2), Ch∗

A(X∗) is the weak-∗ closure of
the linear span of the union ∪{X⊥

ϕ ; ϕ ∈ �(A)} and therefore, since RadA(X)⊥ is weak-∗
closed, it is contained in RadA(X)⊥.

Assume now that ξ ∈ X∗ is not in Ch∗
A(X∗). If kerξ = {ξ}⊥ contained Ch∗

A(X∗)⊥,

then ({ξ}⊥)⊥ would be contained in (Ch∗
A(X∗)⊥)⊥. However, this is not the case. Thus,

there is x ∈ Ch∗
A(X∗)⊥ such that 〈ξ, x〉 �= 0. Since X⊥

ϕ ⊆ Ch∗
A(X∗) for all ϕ ∈ �(A), we

have x ∈ Ch∗
A(X∗)⊥ ⊆ Xϕ for all ϕ ∈ �(A). Hence, x is in RadA(X) and it follows that

ξ /∈ RadA(X)⊥. �

3. Submodules. Let A be a Banach algebra and let X be a left Banach A-module.
If ξ ∈ X∗ is a non-trivial point multiplier, then ker ξ is a submodule in X with co-
dimension 1. On the other hand, it is not hard to see that for each closed submodule P

of co-dimension 1 in X there exists a point multiplier ξ on X such that P = ker ξ. We
will denote by �A(X) the set of all closed submodules in X which have co-dimension 1.
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The set of all those submodules in �A(X) that correspond to ϕ ∈ �(A), i.e., the set of
null-spaces of point multipliers in Chϕ(X∗) \ {0}, will be denoted by �ϕ(X).

The hull-kernel topology is very important notion in the theory of Banach algebras.
It can be defined on each non-empty subset of the set of prime ideals of an algebra.
See [24, §7.1]. If A is a unital Banach algebra, then there is a bijective correspondence
between points in �(A) and closed prime ideals with co-dimension 1. Thus, a point
in �(A) can be considered as a non-trivial multiplicative linear functional as well
as a prime ideal of co-dimension 1. Recall that the hull of a subset U ⊆ A is the
set hA(U) = {ϕ ∈ �(A); U ⊆ Mϕ} and that the kernel of a subset S ⊆ �(A) is the set
kA(S) = ∩{Mϕ ; ϕ ∈ S}. The family {�(A) \ hA(kA(S)); S ⊆ �(A)} is the hull-kernel
topology on �(A), (cf. [24]).

Let A be a unital Banach algebra and let X be a left Banach A-module. The
annihilator of a non-empty subset M ⊆ X is annA(M) := {a ∈ A; a · x = 0 for all x ∈
M}. Following [19, 20, 21] we shall also say that the annihilator of a quotient A-module
X/Y, where Y is a submodule in X, is the quotient of a submodule Y and we will denote
it by (Y : X). Thus, (Y : X) := {a ∈ A; a · X ⊆ Y}. It is easily seen that (Y : X) is a
closed two-sided ideal in A and it always contains the annihilator annA(X). Of course,
the quotient of the trivial submodule 0 is annA(X) and (X : X) = A. If Y and Z are
submodules in X such that Y ⊆ Z, then (Y : X) ⊆ (Z : X). The quotient of P ∈ �ϕ(X)
is the maximal ideal Mϕ.

DEFINITION 3.1. Let A be a unital Banach algebra and let X be a left Banach
A-module. The kernel of a non-empty subset S ⊆ �A(X) is kX(S) := ∩P∈SP and the
kernel of the empty set is X. The hull of a submodule Y in X is

hX(Y) := {P ∈ �A(X); (Y : X) ⊆ (P : X)}.

The idea of how the hulls are defined comes from [20] (see also [19] and [21] and
references cited therein). However, we shall make our approach more similar to that in
the theory of Banach algebras.

The kernel of any subset S ⊆ �A(X) is a submodule in X and the Gelfand radical
of X is included in it. In the next proposition some properties of the hulls and kernels
are listed. We will use the following notation. If {Ii}i∈I is a family of left ideals in A,

then
∑

i∈I Ii · X is the linear span of the set {a · x; a ∈ Ii for some i and x ∈ X}. Of
course, the closure

∑
i∈I Ii · X is a submodule in X.

PROPOSITION 3.2. Let A be a unital Banach algebra and let X be a Banach left
A-module.

(i) hX(0) = �A(X), hX(X) = ∅, kX(∅) = X and kX(�A(X)) = RadA(X).
(ii) If S1 ⊆ S2 ⊆ �A(X), then kX(S1) ⊇ kX(S2), and hX(Z) ⊇ hX(Y) if Y and Z

are submodules in X such that Z ⊆ Y.

(iii) For any subset S of �A(X) we have S ⊆ hX(kX(S)).
(iv) If Y is a submodule in X, then hX(Y) = hX(kX(hX(Y))).
(v) Let {Yi}i∈I be a family of submodules of X. Then

∩i∈I hX(Yi) = hX

(∑
i∈I

(Yi : X) · X

)
.

(vi) If Y and Z are submodules in X, then hX(Y) ∪ hX(Z) = hX(Y ∩ Z).
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Proof. This proof relies on [20]. Short computations show that (i), (ii) and (iii) are
valid.

(iv) The inclusion hX(Y) ⊆ hX(kX(hX(Y))) follows from (iii). Assume that P0 ∈
�A(X) is such that P0 /∈ hX(Y). Then there exists a ∈ (Y : X) such that a /∈ (P0 : X).
Since a ∈ (Y : X) ⊆ (P : X) for all P ∈ hX(Y) we have a · X ⊆ kX(hX(Y)). Thus, a is in
the quotient of kX(hX(Y)) and therefore (kX(hX(Y)) : X) �⊂ (P0 : X).

(v) If P is in ∩i∈I hX(Yi), then the quotient of each Yi is included in the quotient
of P. It follows that

∑
i∈I (Yi : X) · X is included in P and since P is closed it contains

also the closure of
∑

i∈I (Yi : X) · X. Thus P ∈ hX(
∑

i∈I (Yi : X) · X).
On the other hand, if P is in hX(

∑
i∈I (Yi : X) · X), then it follows from

(Yi : X) ⊆ ((Yi : X) · X : X) ⊆
(∑

i∈I

(Yi : X) · X : X

)
⊆ (P : X),

that P ∈ ∩i∈I hX(Yi).
(vi) If P ∈ hX(Y) ∪ hX(Z), then (Y : X) ⊆ (P : X) or (Z : X) ⊆ (P : X). Hence in any

case (Y ∩ Z : X) ⊆ (P : X) because the intersection Y ∩ Z is included in Y and in Z.

To see that the opposite inclusion is valid we will show first that the product
(Y : X)(Z : X) := {∑n

k=1 akbk; ak ∈ (Y : X), bk ∈ (Z : X)} is contained in (Y ∩ Z : X).
Indeed, let x be an arbitrary vector from X. Then we have (

∑n
k=1 akbk) · x ∈ Y ∩ Z

because
∑n

k=1 ak · (bk · x) ∈ Y, by definition of (Y : X), and
∑n

k=1 ak · (bk · x) ∈ Z, by
definition of (Z : X) and since Z is a submodule.

Let P be in hX(Y ∩ Z) and let ϕ ∈ �(A) be the corresponding character on A.

Since Mϕ is a prime ideal in A it follows from

(Y : X)(Z : X) ⊆ (Y ∩ Z : X) ⊆ (P : X) = Mϕ

that (Y : X) ⊆ (P : X) or (Z : X) ⊆ (P : X). �
COROLLARY 3.3. Let A be a unital Banach algebra and let X be a Banach left

A-module. The correspondence S → hX(kX(S)), S ⊆ �A(X), is a closure operation.

For a submodule Y in X, let ω(Y) denote the complement of hX(Y) in �A(X). It
follows, by Corollary 3.3, that the family {ω(Y); Y is a submodule in X} is a topology,
called the hull-kernel topology on �A(X). Note that this topology is sometimes
called Zariski topology (cf. [19]). If a subset U ⊆ �A(X) is open in the hull-kernel
topology, then U = ω(kX(Uc)). It follows from Proposition 3.2 that the intersection
of sets ω(Y1), . . . , ω(Yn) is ω(Y1 ∩ . . . ∩ Yn) and the union of a family {ω(Yi)}i∈I is
ω(

∑
i∈I (Yi : X) · X).

Singletons in �A(X) are not necessarily closed in the hull-kernel topology. If P0 is in
�ϕ(X) for some ϕ ∈ �(A), then its closure is exactly �ϕ(X). It follows that �ϕ(X) ⊆ S
if S ⊆ �A(X) is hull-kernel closed and contains at least one point from �ϕ(X). The
same is true for hull-kernel open subsets in �A(X).

For P in �A(X) let νA(P) be the corresponding character in �(A). We shall say
that νA : �A(X) → �(A) is the natural map.

PROPOSITION 3.4. Let A be a unital Banach algebra and let X be a left Banach
A-module.

(i) For each two-sided ideal I in A we have

hA(I) ∩ νA(�A(X)) = νA({P ∈ �A(X); I ⊆ (P : X)}).
(ii) If S ⊆ �A(X), then kA(νA(S)) = (kX(S) : X).

https://doi.org/10.1017/S0017089503001265 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089503001265


MULTIPLIERS ON BANACH MODULES 315

Proof. (i) Obvious.
(ii) For P ∈ S we have (P : X) = Mϕ for some ϕ ∈ νA(S), which implies

kA(νA(S)) ⊆ (P : X). Thus, kA(νA(S)) · X ⊆ P for all P ∈ S and therefore kA(νA(S)) ·
X ⊆ ∩P∈SP = kX(S). The opposite inclusion follows from the fact that (kX(S) : X) ⊆
(P : X) for all P ∈ S. �

PROPOSITION 3.5. If �A(X) and �(A) are endowed with the hull-kernel topologies,
then the natural map is continuous. If S ⊆ �A(X) is hull-kernel closed (open), then νA(S)
is closed (open) in the relative hull-kernel topology on νA(�A(X)). In particular, if νA is
surjective, then it maps hull-kernel closed (open) sets into hull-kernel closed (open) sets.

Proof. Let F ⊆ �(A) be hull-kernel closed. Denote F = ν−1
A (F). We have to show

that F is hull-kernel closed. It is enough to see that hX(kX(F)) ⊆ F since the opposite
inclusion follows from Proposition 3.2 (iii). Let P ∈ �ϕ(X) be in hX(kX(F)). Since
νA(F) ⊆ F, we have

kA(F) ⊆ kA(νA(F)) = (kX(F) : X) ⊆ (P : X) = Mϕ.

Hence ϕ ∈ hA(kA(F)) = F and therefore P ∈ ν−1
A (F) = F.

If S ⊆ �A(X) is hull-kernel closed, then νA(S) = hA((kX(S) : X)) ∩ νA(�A(X)),
by (i) of the preceding proposition. Thus, νA(S) is closed in the relative hull-kernel
topology on νA(�A(X)). The rest of the proof is routine. �

PROPOSITION 3.6. Let A be a unital Banach algebra and let X be a hyper-semisimple
left Banach A-module. Then annA(X) = kA(νA(�A(X))) and νA is surjective if and only
if annA(X) = RadA(A) (= kA(�(A))).

Proof. Since X is hyper-semisimple we have kX(�A(X)) = 0. Set S = �A(X) in
Proposition 3.4 (ii). Then

kA(νA(�A(X))) = (kX(�A(X) : X) = (0 : X) = annA(X).

If the natural map is surjective, then annA(X) = kA(�(A)) = RadA(A). On the
other hand, since �A(X) is hull-kernel closed its image νA(�A(X)) is hull-kernel
closed in �(A). Thus, if annA(X) = RadA(A), then νA(�A(X)) = hA(kA(νA(�A(X)))) =
hA(kA(�(A))) = �(A). �

Let A be a unital Banach algebra and let X be a Banach left A-module. For each
P ∈ �A(X), the quotient X/P is a one-dimensional Banach left A-module. Denote by
X the subset in the Cartesian product

∏
P∈�A(X) X/P of all x = (xP + P)P∈�A(X) for

which ‖x‖ = sup{‖xP + P‖; P ∈ �A(X)} < ∞, where the norms in the supremum are
the usual quotient norms. It is not hard to see that X is a Banach space and it is actually
a Banach left A-module for the multiplication given by a · x = (a · xP + P)P∈�A(X),

a ∈ A, x ∈ X.

For each x ∈ X and each P ∈ �A(X) denote by x̂(P) the coset x + P in X/P. Hence
x̂ can be considered as an element in X. It is clear that ‖̂x‖ ≤ ‖x‖ for all x ∈ X and that
the mapping � : x �→ x̂ is injective if and only if X is hyper-semisimple.

4. Simple multipliers. In this section we shall study a special subclass MA(X) of
multipliers in BA(X), where X is a left Banach module over a Banach algebra A. We
start with the following proposition (cf. Theorem 1.2.4 in [13]).
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PROPOSITION 4.1. Let A be a unital Banach algebra and let X and Z be left Banach
A-modules. If T is in BA(X,Z), then T∗ is in B(Z∗,X∗)A and T∗(Z⊥

ϕ ) ⊆ X⊥
ϕ for every

ϕ ∈ �(A). On the other hand, if T ∈ B(X,Z) is such that T∗(Z⊥
ϕ ) ⊆ X⊥

ϕ for each ϕ ∈
�(A), then T(a · x) − a · Tx is in the Gelfand radical of Z, for all a ∈ A and x ∈ X. In
particular, if Z is hyper-semisimple, then T ∈ BA(X,Z).

Proof. The first assertion is obvious. Let ϕ ∈ �(A) and ζ ∈ Z⊥
ϕ . Since, by (2),

(T∗ζ ) · a = T∗(ζ · a) = ϕ(a)T∗ζ for all a ∈ A, we have T∗ζ ∈ X⊥
ϕ , by Proposition 2.7.

Let T be a bounded linear map from X into Z such that T∗(Z∗
ϕ) ⊆ X⊥

ϕ for all
ϕ ∈ �(A). Denote by W the linear span of the union ∪{Z⊥

ϕ ; ϕ ∈ �(A)}. We have seen
(in the proof of Proposition 2.7) that the weak-∗ closure of W is RadA(Z)⊥. Let a ∈ A
and x ∈ X be arbitrary. Then

〈ξ, T(a · x) − a · Tx〉 =
n∑

k=1

(〈ξk, T(a · x)〉 − 〈ξk, a · Tx〉)

=
n∑

k=1

(〈(T∗ξk) · a, x〉 − 〈T∗(ξk · a), x〉)

=
n∑

k=1

(ϕk(a)〈T∗ξk, x〉 − ϕk(a)〈T∗ξk, x〉) = 0,

for ξ = ∑n
k=1 ξk ∈ W, where ξk ∈ X⊥

ϕk
, ϕk ∈ �(A), k = 1, . . . , n. It follows T(a · x) −

a · Tx ∈ RadA(Z), for all a ∈ A and x ∈ X. �

By the preceding proposition, each X⊥
ϕ , ϕ ∈ �(A), is invariant for T∗ if T ∈ BA(X).

However, since the dimension of X⊥
ϕ could be quite large, it is possible that there are

too general operators in BA(X). This is a reason for the following definition.

DEFINITION 4.2. Let A be a unital Banach algebra and let X be a left Banach
A-module. A multiplier T on X is simple if each closed submodule of co-dimension 1
is invariant for T. The set of all simple multipliers will be denoted by MA(X).

EXAMPLE 4.3. Let A be a semisimple commutative Banach algebra and let M(A) ⊂
B(A) be the algebra of all multipliers on A. Let us consider A as a left Banach A1-
module. It is obvious that �A1 (A) is exactly the set of all maximal modular ideals in
A. Since, by Theorem 1.2.4 in [13], a linear map T : A → A is in M(A) if and only
if T M ⊆ M, for every maximal modular ideal M in A, we conclude that M(A) =
MA1 (A); i.e., all multipliers on A are simple.

The preceding example shows that sometimes all multipliers are simple. It is
obvious that this is the case if each set �ϕ(X), ϕ ∈ �(A), is either empty or a singleton.
In the next example we shall see that sometimes the class of simple multipliers coincides
with a class of operators which is in general much bigger.

EXAMPLE 4.4. Let A be a unital commutative Banach algebra and X a left Banach
A-module. Denote by ϑ the corresponding representation of A on X, i.e. ϑ(a)x = a · x
for all a ∈ A, x ∈ X. The local Arveson spectrum of ϑ at x ∈ X is defined as

spϑ (x) := {ϕ ∈ �(A); ϕ(a) = 0 for all a ∈ annA(x)},
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(see §4.12 in [18]). It is easily seen that spϑ (x) is empty if and only if x = 0. IfA is regular
(in the sense of Shilov) and semisimple and λ is the left regular representation of A,

then, for each a ∈ A, the local Arveson spectrum spλ(a) coincides with the support
supp â of the Gelfand transform of a.

We shall say that a bounded linear operator T on X is local if spϑ (Tx) ⊆ spϑ (x)
holds for all x ∈ X (cf. [10] and [11, Lemma 1]). It is not hard to see that each multiplier
is a local operator. On the other hand, there exist local operators which are not
multipliers (for instance, if �(A) is a singleton, then every bounded operator is local
but not necessarily a multiplier).

We confine ourselves to the case A = C(K),X = A∗, where K is a compact
Hausdorff space. Thus, X is the dual module of A and its elements can be considered,
by the Riesz representation theorem, as finite regular Borel measures on K. It is well
known that �(A) = K ; the character that corresponds to t ∈ K is the point mass at t.

It follows from Theorem 5 in [25] that every local operator on X is a multiplier.
Now we shall show that, for t ∈ K, each set �t(X) is a singleton, which enables us to
conclude that all multipliers on X are simple.

Since A is amenable [5, Theorem 5.6.2 (i)] there exists a non-trivial point multiplier
on X at every t ∈ K, by [1, Proposition 4 §43]. Thus, �t(X) (t ∈ K) are not empty. On
the other hand, assume that F, G ∈ X∗ = A∗∗ are two non-trivial point multipliers at
t ∈ K. Since the algebra A is Arens regular (see [5]) there is only one Arens product
on A∗∗ and it is commutative. Let F · G denote the Arens product of F and G. Using
formulae (2.6.27) in [5] it is straightforward to see that

〈F, δt〉G = F · G = 〈G, δt〉F,

where δt is the point mass at t. Thus, �t(X) is indeed a singleton.

Now we proceed with the general theory of simple multipliers. Since the proof of
the next proposition is almost obvious we shall omit it.

PROPOSITION 4.5. Let A be a unital Banach algebra and let X be a Banach left
A-module. The set MA(X) is a subalgebra in BA(X). It is closed in the strong operator
topology, and it contains any multiplication operator induced by an element from the
center of A, in particular, the identity operator I is always in MA(X).

It is obvious that a multiplier T ∈ BA(X) is simple if and only if for each ϕ ∈ �(A)
and each ξ ∈ X⊥

ϕ , there exists a number λξ ∈ � such that T∗ξ = λξ ξ. If ξ and η

are arbitrary non-zero point multipliers at ϕ, then λαξ+βη(αξ + βη) = T∗(αξ + βη) =
αλξξ + βληη, for all α, β ∈ �, shows that λξ does not depend on ξ but on ϕ, i.e.,
there is λϕ ∈ � such that T∗ξ = λϕξ for all ξ ∈ X⊥

ϕ . Define, for T ∈ MA(X), a complex
function T̃ on �A(X) by T̃(P) = λνA(P), P ∈ �A(X). It is not hard to see that T̃(P) =
〈ξ, x〉−1〈ξ, Tx〉 if ξ is a non-zero point multiplier in P⊥ and x ∈ X is such that 〈ξ, x〉 �= 0.

Note that T̃ is constant on each set �ϕ(X), ϕ ∈ �(A), and that in the special case,
when T is a multiplication by a ∈ A, we have T̃(P) = â(νA(P)).

Let us define ‖T̃‖∞ := sup{|T̃(P)|; P ∈ �A(X)} for T ∈ MA(X). Then ‖T̃‖∞ is a
finite number. Moreover, following the proof of Theorem 1.2.2 in [13], we can prove
the estimate ‖T̃‖∞ ≤ ‖T‖. The next proposition can be proven in a similar way as
Theorem 1.2.2 (i) and Theorem 1.1.3 in [13].

PROPOSITION 4.6. Let A be a unital Banach algebra, X a Banach left A-module, and
let T ∈ MA(X).
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(a) For all x ∈ X and all P ∈ �A(X) we have (Tx)̂ (P) = T̃(P)̂x(P).
(b) If T is bijective, then T−1 is in MA(X) and T̃−1(P) = T̃(P)−1 for all P ∈ �A(X).

EXAMPLE 4.7. Let X be a complex Banach space and A ∈ B(X). Denote by A the
closed subalgebra in B(X) which is generated by A and the identity operator, i.e., the
closure in B(X) of the set

{p(A); p is a complex polynomial}.

Of course, A is a unital commutative Banach algebra. It is well known that �(A) can
be identified by the set σ̂ (A), the polynomially convex hull of the spectrum of A (see,
for instance, Proposition VII.8.10 and Theorem VII.5.4 (d) in [4]). In particular, the
Gelfand transform of p(A) ∈ A is given by p̂(A)(λ) = p(λ), λ ∈ σ̂ (A).

Consider X as a left Banach A-module via the multiplication given by S · x = Sx,

S ∈ A, x ∈ X. If ξ ∈ X∗ is a nontrivial point multiplier at λ ∈ σ̂ (A), then

〈ξ, Ax〉 = Â(λ)〈ξ, x〉 = λ〈ξ, x〉 (x ∈ X),

which implies A∗ξ = λξ. Hence, λ is an eigenvalue of A∗ and ξ is an eigenvector at λ.

On the other hand, it is a routine to show that if λ is an eigenvalue of A∗ and 0 �= ξ ∈ X∗

is in the null space of A∗ − λ, then ξ is a point multiplier at λ. Thus, we may conclude
that the image of �A(X) under the natural map νA is σp(A∗), the point spectrum of A∗.

For a simple multiplier T ∈ MA(X), let t : σp(A∗) → � be the function defined by
t(λ) := T̃(P) (λ ∈ σp(A∗)) where P is an arbitrary submodule in �λ(X). Since T∗ξ =
t(λ)ξ, for any point multiplier ξ at λ ∈ σp(A∗), we have inclusions

ker(A∗ − λ) ⊆ ker(T∗ − t(λ)) (λ ∈ σp(A∗)). (4)

On the other hand, it is almost obvious that T ∈ BA(X) is a simple multiplier if, for
each λ ∈ σp(A∗), there exists a number t(λ) ∈ � such that (4) is fulfilled.

Let 1 ≤ p < ∞ and let q > 1 be such that 1/p + 1/q = 1 (we set q = ∞ when
p = 1). Denote by A : �p → �p the unilateral shift. It is well known (see [4, §VII.6])
that σ (A) = �, the closed unit disc in �. The adjoint of A is the backward shift
A∗ : �q → �q. The point spectrum of A∗ contains � and, for each λ ∈ �, the null space
ker(A∗ − λ) is the one-dimensional space spanned by the vector (1, λ, λ2, . . .). Now
it is not hard to see that �p is a hyper-semisimple left Banach A-module, where A is
the closed subalgebra in B(�p) generated by A and the identity operator. Note that
BA(�p) = MA(�p) because of dim(ker(A∗ − λ)) = 1 (λ ∈ σp(A∗)).

Consider a left Banach A-module X also as a left Banach MA(X)-module –
the multiplication is defined by T · x := Tx, T ∈ MA(X), x ∈ X. In the dual Banach
MA(X)-module X∗ we have ξ · T = T̃(P)ξ, for all ξ ∈ P⊥, P ∈ �A(X). By definition,
all P ∈ �A(X) are T-invariant for each T ∈ MA(X), hence �A(X) ⊆ �MA(X)(X). The
next example shows that this inclusion can be proper.

EXAMPLE 4.8. Let X be a Banach space of dimension greater than 1 and let
A = B(X). The space X is a left Banach A-module in the usual way. It is obvious that
�A(X) is empty. Of course, in BA(X), and therefore in MA(X), are only the scalar
multiples of the identity operator. Hence �MA(X)(X) consists of all subspaces in X of
co-dimension 1.
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Since X is simultaneously considered as a left Banach A- and MA(X)-module, we
will denote hulls and kernels by HX and KX when X is MA(X)-module.

PROPOSITION 4.9. Let A be a unital Banach algebra and let X be a Banach left
A-module as well as a left Banach MA(X)-module. Then �A(X) ⊆ �MA(X)(X) and the
hull-kernel topology on �A(X) is the relative hull-kernel topology, which �A(X) inherits
from �MA(X)(X), that is S = HX(KX(S)) ∩ �A(X) for each hull-kernel closed subset S ⊆
�A(X). If A is commutative, then �A(X) = �MA(X)(X) and both hull-kernel topologies
coincide.

Proof. It is obvious that S ⊆ HX(KX(S)) ∩ �A(X). On the other hand, if P ∈
HX(KX(S)) ∩ �A(X), then (KX(S) : X) ⊆ (P : X). However, KX(S) = kX(S) and hence
P ∈ hX(kX(S)) = S.

If A is commutative, then every multiplication operator Ta on X, a ∈ A, is in
MA(X). Thus, if P is in �MA(X)(X), it is also in �A(X). �

COROLLARY 4.10. Let A be a unital Banach algebra and let X be a Banach left
A-module. If X is hyper-semisimple, then MA(X) is a semisimple commutative Banach
algebra.

Proof. Let S and T be in MA(X) and let x be an arbitrary vector in X.

Since X is hyper-semisimple it follows from (STx)̂ (P) = S̃(P)T̃(P)̂x(P) = (TSx)̂ (P),
P ∈ �A(X), that STx = TSx. Thus, MA(X) is a unital commutative Banach algebra.
The radical RadMA(X)(MA(X)) coincides with the ordinary Gelfand radical of MA(X),
because MA(X) is commutative and, by Example 2.2, in �MA(X)(MA(X)) are exactly the
maximal ideals Mϕ, ϕ ∈ �(MA(X)). Consider X as a Banach left MA(X)-module and
assume that T is in RadMA(X)(MA(X)). Then TX ⊆ P for each P ∈ �MA(X)(X) because
〈ξ, Tx〉 = ϕ(T)〈ξ, x〉 = 0, ϕ ∈ �(MA(X)), ξ ∈ Chϕ(X∗). Thus, by hyper-semisimplicity
of X, the subspace TX is trivial and hence T = 0. �

When X is considered as a left Banach A- and MA(X)-module, then, for T ∈
MA(X), there are defined two functions T̃ : �A(X) → � and, say, ˜̃T : �MA(X)(X) → �.

However, it is easily seen that T̃ is just the restriction of ˜̃T to �A(X). From now on we
shall denote by T̃ both ˜̃T and its restriction to �A(X).

Let νM be the natural map from �MA(X)(X) into �(MA(X)). If T is a simple
multiplier and T̂ : �(MA(X)) → � is its Gelfand transform, then T̃ = T̂ ◦ νM . Thus,
by Proposition 3.5, T̃ is hull-kernel continuous if and only if T̂ is continuous with
respect to the relative hull-kernel topology on νM(�MA(X)(X)).

5. Spectral properties of simple multipliers. Recall some basic notions from the
local spectral theory of operators. The reader is referred to the excellent monograph
[18] for more details.

A bounded linear operator T on a Banach space X has the single-valued extension
property (SVEP) if for every open U ⊆ � the only analytic solution f : U → X of the
equation (λ − T)f (λ) = 0 (λ ∈ U) is f ≡ 0.

An operator T ∈ B(X) is said to have the decomposition property (δ) if, given
an arbitrary open covering {U1, U2} of �, every x ∈ X admits a decomposition x =
u1 + u2 where the vector uk (k = 1, 2) satisfies uk = (T − λ)fk(λ) for all λ ∈ � \ Uk and
some analytic function fk : � \ Uk → X.
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If for every open covering {U, V} of � there exists a pair of closed linear subspaces
Y and Z in X such that they are invariant for T ∈ B(X) and X = Y + Z, σ (T |Y) ⊆ U,

σ (T |Z) ⊆ V, then T is called decomposable (cf. [3]). When the sum Y + Z is just dense in
X, then T has the weak 2-spectral decomposability property (weak 2-SDP). A stronger
notion than decomposability is super-decomposability. An operator T ∈ B(X) is super-
decomposable if for every open covering {U, V} of � there exists some S ∈ B(X),
commuting with T, such that σ (TimS) ⊆ U and σ (Tim(I−S)) ⊆ V, (see [15]).

By a simple modification of the proof of Proposition 6.2.3 in [3] we get the following
assertion.

PROPOSITION 5.1. Let A be a unital Banach algebra and let X be a hyper-semisimple
Banach left A-module. Then every T ∈ MA(X) has the single-valued extension property.

An immediate consequence is the following well known assertion.

COROLLARY 5.2. If T ∈ B(�p) (1 ≤ p < ∞) commutes with the unilateral shift, then
it has single-valued extension property.

Proof. See the end of Example 4.7 and use the previous proposition. �

The next theorem extends a part of Proposition 3 in [16 ] and a part of Proposition 1
in [8] to Banach modules. The proof is a modification of the proofs in [16, 8]. However,
since the concept of point multipliers is used, we give the details.

THEOREM 5.3. Let A be a unital Banach algebra and let X be a left Banach A-
module. If T ∈ MA(X) has the decomposition property (δ) or the weak 2-SDP, then
T̂ : �(MA(X)) → � is continuous on νM(�MA(X)(X)) with respect to the relative hull-
kernel topology.

Proof. Assume that T̂ is not continuous on νM(�MA(X)(X)) with respect to the
relative hull-kernel topology. Then T̃ is not continuous with respect to the hull-
kernel topology on �MA(X)(X). Hence there exists a closed subset F of � such that
F := {P ∈ �MA(X)(X); T̃(P) ∈ F} is not hull-kernel closed in �MA(X)(X). Choose P0 ∈
HX(KX(F)) \ F and denote λ0 = T̃(P0) /∈ F. Let V1 and V2 be open neighbourhoods
of λ0, respectively of F, such that V1 ∩ V2 = ∅. Denote Uk = (Vk)c, k = 1, 2. Then
{U1, U2} is an open covering of �.

Consider first the case when T has the decomposition property (δ). A given x ∈ X

can be written as x = u1 + u2, where uk = (T − λ)fk(λ) for all λ ∈ � \ Uk and some
analytic function fk : � \ Uk → X, k = 1, 2. The point λ0 is in � \ U1 therefore we
have u1 = (T − λ0) f1(λ0). Denote ϕ0 = νM(P0) ∈ �(MA(X)) and let ξ be an arbitrary
point multiplier in P⊥

0 . Then 〈ξ, u1〉 = 〈ξ, (T − λ0)f1(λ0)〉 = ϕ0(T − λ0)〈ξ, f1(λ0)〉 = 0
and hence u1 ∈ P0.

Now let P be an arbitrary point in F. Since µ := T̃(P) ∈ F, we have u2 = (T −
µ) f2(µ). The multiplier T − µ is in kMA(X)({νM(P)}), therefore u2 ∈ kMA(X)({νM(P)}) ·
X. It follows

u2 ∈
⋂
P∈F

(kMA(X)({νM(P)}) · X) =
( ⋂

P∈F

kMA(X)({νM(P)})
)

· X

= kMA(X)(νM(F)) · X.
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Since P0 is in HX(KX(F)) and, by Proposition 3.4 (ii), kMA(X)(νM(F)) = (KX(F) : X),
the vector u2 must be in kMA(X)(νM(F)) · X ⊆ P0. Thus, x = u1 + u2 ∈ P0 for all x ∈ X –
a contradiction.

Assume that T has the weak 2-SDP. Then there exist T-invariant subspaces Y

and Z such that σ (T |Y) ⊆ U1, σ (T |Z) ⊆ U2 and Y + Z = X. An arbitrary y ∈ Y can
be written as y = (T |Y − λ0)u = (T − λ0)u for some u ∈ Y since λ0 �∈ U1. If ξ is in
P⊥

0 , then 〈ξ, u2〉 = 〈ξ, (T − λ0)u〉 = 0, that is y ∈ P0. For an arbitrary P ∈ F let µ :=
T̃(P) ∈ F. Each z ∈ Z is of the form z = (T |Z − µ)v = (T − µ)v for some v ∈ Z, that
is z ∈ kMA(X)({νM(P)}) · X, because of µ �∈ U2. It follows z ∈ kA(νM(F)) · X ⊆ P0 as
before. Thus, Y + Z ⊆ P0 and we have a contradiction. �

We shall say about a simple multiplier T that it has natural spectrum when σ (T) =
T̃(�A(X)). The next theorem extends the remained parts of Proposition 3 in [16] and
Proposition 1 in [8] to Banach modules.

THEOREM 5.4. Let A be a unital Banach algebra and let X be a hyper-semisimple left
Banach A-module. If T ∈ MA(X) has the decomposition property (δ) or weak 2-SDP,
then it has natural spectrum.

Proof. It is easy to see that (xP + P)P∈�A(X) �→ (T̃(P)xP + P)P∈�A(X) defines a
bounded linear operator S on X. It is also not hard to show that �T = S�, where
� is the map that is defined at the end of Section 3. Since X is hyper-semisimple the
multiplier T has SVEP and � is injective, as we remarked at the end of Section 3.
Thus, if T has (δ), we can use Lemma 1 in [16], which asserts that σ (T) ⊆ σ (S).
The same is true if T has weak 2-SDP, by Lemma 1 in [7]. On the other hand, it is
almost evident that σ (S) ⊆ T̃(�A(X)) ⊆ σ (T). Indeed, if λ is not in T̃(�A(X)), then
Sλ : (xP + P)P∈�A(X) �→ ((T̃(P) − λ)−1xP + P)P∈�A(X) is a bounded linear operator
on X such that Sλ(S − λ) = (S − λ)Sλ = I. This proves the first inclusion. The second
inclusion follows from the fact that (T̃ − λ)−1 cannot exist if λ is in T̃(�A(X)) (see
Proposition 4.6 (b)). �

The last result is an extension of a well-known result of M. M. Neumann, see [23]
or [22].

THEOREM 5.5. Let A be a unital Banach algebra and let X be a hyper-semisimple left
Banach A-module. If T ∈ MA(X) is such that its Gelfand transform T̂ : �(MA(X)) → �

is hull-kernel continuous, then T is super-decomposable.

Proof. Since X is a hyper-semisimple Banach leftA-module, it follows, by Corollary
4.10, that MA(X) is a semisimple commutative Banach algebra. Hence, by Theorem
1.2 of [23], the multiplication operator LT : MA(X) → MA(X) is super-decomposable.
Since MA(X) is a closed subalgebra in B(X), Theorem 3.2 of [15], which asserts that T
is super-decomposable, can be used. �
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