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An algorithm for NTRU problems and cryptanalysis of the GGH
multilinear map without a low-level encoding of zero
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Abstract

Let f and g be polynomials of a bounded Euclidean norm in the ring Z[X]/〈Xn + 1〉. Given the
polynomial [f/g]q ∈ Zq[X]/〈Xn + 1〉, the NTRU problem is to find a,b ∈ Z[X]/〈Xn + 1〉 with
a small Euclidean norm such that [a/b]q = [f/g]q. We propose an algorithm to solve the NTRU

problem, which runs in 2O(log2 λ) time when ‖g‖, ‖f‖, and ‖g−1‖ are within some range. The
main technique of our algorithm is the reduction of a problem on a field to one on a subfield. The
GGH scheme, the first candidate of an (approximate) multilinear map, was recently found to be
insecure by the Hu–Jia attack using low-level encodings of zero, but no polynomial-time attack
was known without them. In the GGH scheme without low-level encodings of zero, our algorithm
can be directly applied to attack this scheme if we have some top-level encodings of zero and a
known pair of plaintext and ciphertext. Using our algorithm, we can construct a level-0 encoding
of zero and utilize it to attack a security ground of this scheme in the quasi-polynomial time of
its security parameter using the parameters suggested by Garg, Gentry and Halevi [‘Candidate
multilinear maps from ideal lattices’, Advances in cryptology — EUROCRYPT 2013 (Springer,
2013) 1–17].

1. Introduction

The NTRU problem is to find a pair of polynomials with small coefficients whose ratio
matches a given ratio of two polynomials with small coefficients [17]. Since the introduction of
the security of the public-key encryption scheme NTRU, it has been assumed that this NTRU
problem is difficult to solve, the so-called NTRU assumption, and NTRU has been used for
the security grounding of various cryptographic schemes such as signature schemes [11, 16],
fully homomorphic encryption schemes [5, 20], and candidates for cryptographic multilinear
maps [3, 12, 19]. As it has not been broken until now, the NTRU assumption has received
more and more attention as a candidate for post-quantum public-key cryptosystems. A variant
of NTRU problem can be stated as follows.

Problem 1 (A variant of the NTRU problem). Let φn(X) ∈ Z[X] be a polynomial of
degree n, q ∈ Z be an integer, and D, N , and B be real numbers. The NTRU problem
NTRU φn,q,D,N,B is to find a, b ∈ R := Z[X]/〈φn(X)〉 with a Euclidean norm smaller than B
such that [b/a]q = h for a given polynomial h = [f/g]q, where f and g are sampled from R
and have Euclidean norms bounded by D and N , respectively.

In the original NTRU problem, f and g are sampled from some distribution of R [17, § 1]†.
We consider this variant version to attack multilinear maps [12].
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In this paper, we propose a polynomial-time reduction from NTRU φn,q,D,N,B into

NTRU φn/2,q,D1,N1,B1
, where φn = Xn + 1, B = min{q/2D

√
n, q/2N

√
n}, D1 = D2

√
n/2,

N1 = 2ND
√
n/2, and B1 = min{q/2Dt

√
n, q/2Nt

√
n, q/2nN2‖g−1‖

√
n} for a power n of 2.

Our algorithm is to reduce the problem defined over a ring Z[X]/〈Xn+1〉 to one over a subring
Z[X]/〈Xn/2 + 1〉. After repeated applications, we then use lattice reduction algorithms to find
a short element. Since the latter has a smaller dimension, lattice reduction algorithms require
a lower running time to produce a short element, which results in an algorithm for the NTRU
problem. The algorithm runs in 2O(log2 λ) time when ‖g‖, ‖f‖, and ‖g−1‖ are within some
range. For example, when n = λ2 and log q = λ, the running time is quasi-polynomial in
λ. However, when n = λ3 and log q = λ, the running time is still exponential in λ. As an
application of our work, we propose an attack of GGH multilinear maps [12] without any
low-level encodings of zero. GGH maps were proposed by Garg et al. and broken by a so-called
zeroizing attack by Hu and Jia [18]. Since their attack extensively utilizes low-level encodings
of zero, it does not work without them, and no polynomial-time attack was known without
them until recently (refer to the ‘related work’ subsection for the concurrent and independent
works on this problem). Our algorithm can be directly applied to construct a level-0 encoding
of zero, even when we are not given any low-level encodings of zero. We can then utilize them
to attack the GGH scheme without low-level encodings of zero in the polynomial time of its
security parameter. Our GGH attack requires a known pair of plaintext and ciphertext, some
top-level encodings of zero, and the public parameters.

Technical overview. A natural approach for the NTRU problem is to convert it into a
shortest vector problem (SVP) on an ideal lattice. Let φn(X) = Xn + 1 when n is a power

of 2. For any polynomial h = [f/g]q =
∑n−1
i=0 hiX

i ∈ R := Z[X]/〈Xn + 1〉, one may consider

it as a vector (h0, . . . , hn−1)T . Then, the product gh =
∑n−1
i=0 giX

ih of the two polynomials
h and g in R is contained in the lattice Mh generated by {h, Xh, . . . , Xn−1h}. We aim to
obtain an element g̃ ∈ Z[X]/〈φ(X)〉 such that ‖g̃‖ and ‖[g̃h]q‖ are small. To obtain such a
g̃ ∈ Z[X]/〈φ(X)〉, one can naturally contemplate the column lattice

Λh =

(
I 0
Mh qI

)
,

where I is the identity matrix of size n, and Mh is a basis matrix of Mh juxtaposed by
{h, Xh, . . . , Xn−1h}. Given a lattice vector u = (u0, . . . , u2n−1)T of Λf satisfying |ui| < q/2

for n 6 i 6 2n − 1, we take g′ =
∑n−1
i=0 uiX

i and f ′ =
∑n−1
i=0 un+iX

i so that f ′ = [g′h]q

and h = [f ′/g′]q. Therefore, if one can find a small lattice point u such that
√∑n−1

i=0 ui 6

q/2‖f‖
√
n and

√∑2n−1
i=n ui 6 q/2‖g‖

√
n, it becomes a solution of NTRU φ,q,D,N,B . However,

the dimension 2n of the lattice is too large for most applications, which is the origin of the
difficulty of the NTRU problem. To overcome this obstacle, we consider a subfield Km of
K0 := Q[X]/〈Xn + 1〉 with the extension degree m and the trace of f ∈ K0 over Km:

Tr(h) =

[ m∑
i=1

σi(h)

]
q

=

[ m∑
i=1

(
σi(f)

∏
j 6=i

σj(g)

)/ m∏
i=1

σi(g)

]
q

.

Since the numerator and denominator are elements in Km bounded by m‖f‖ · ‖g‖m−1nm
and ‖g‖mnm, respectively, if they are smaller than q, we can construct another instance of
the NTRU problem on Km where the dimension of ΛTr(h) is that of Λh divided by m. By
optimizing m such that finding a small vector on the reduced lattice is possible with the BKZ
algorithm, one can reach our results.
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Multilinear maps. Since Boneh and Silverberg [4] suggested the concept of cryptographic
multilinear maps and their applications such as multipartite Diffie–Hellman and efficient
broadcast encryption in 2002, the construction of cryptographic multilinear maps has been
a long-standing open question. In 2013, approximate cryptographic multilinear maps were
first proposed by Garg, Gentry, and Halevi (GGH) [12]. Soon after, cryptographic multilinear
maps were also suggested by Coron, Lepoint, and Tibouchi (CLT) [9], and Gentry, Gorbunov,
and Halevi [13]. However, none of these maps have a reduction to a standard difficultly problem
such as the subset sum problem. In fact, the first two schemes with low-level encodings of zero
are known to be insecure [6, 18] via the so-called zeroizing attack. The last candidate has also
been broken [8]. Although the fixed scheme of [9] was proposed by the same authors of [10]
to resist the zeroizing attack against the CLT scheme, it was also shown to be insecure [7].
On the other hand, both the [12] and [9] schemes without any encodings of zero, which are
used as basic tools for constructing applications such as indistinguishable obfuscations, have
still not been analyzed.

Related work. In 2002, a technique was suggested to reduce the dimension of an ideal lattice
by Gentry and Szydlo [14]. They consider a subring of a given ring Z[X]/〈Xn−1〉 consisting of
the fixed elements by the ring automorphism σ : X 7→ Xn−1. There is, however, no guarantee
that one can apply this technique repeatedly to reduce the dimension more efficiently.

For GGH multilinear maps without encodings of zero, two more concurrent and independent
cryptanalytic works have recently been announced simultaneously, which can overcome
the previous flaw: one by Albrecht, Bai and Ducas [2] and the other by Miles, Sahai,
and Zhandry [21]. The first introduces a very similar reduction from NTRU φn,q,D,N,B to
NTRU φn/2,q,D1,N1,B1

. Albrecht et al. provided a rich analysis of the NTRU-like homomorphic
encryptions LTV [20] and YASHE [5] and GGH multilinear maps with some implementations.
Using the norm function instead of the trace function in our algorithm, they proposed a
quantum-polynomial-time or subexponential-time attack on GGH without low-level encodings
of zero. In our work, we can achieve the same, but slightly better, results using the trace
function. Moreover, through our new approach, we can obtain an algorithm to attack GGH
scheme without low-level encodings of zero in quasi-polynomial time.

The second introduced a polynomial-time attack algorithm against the GGH multilinear
maps, the so-called annihilation attack. Using nonlinear polynomials, it also leads to a
polynomial-time break of the GGH scheme without low-level encodings of zero.

Organization. In § 2 we introduce some notation and preliminary information related to
ideal theory and Galois theory. In § 3 we state some useful properties and their proofs used
to solve the NTRU problem. In § 4 we briefly explain the GGH scheme and present our
algorithm for attacking the GGH scheme using our theorem.

2. Preliminaries

Notation. For an integer q, we use the notation Zq := Z/(qZ) and [R]q := Zq[X]/〈Xn+1〉 =
R/qR. We denote the number in Zq within the range (−q/2, q/2] by (x mod q) or [x]q, which

is congruent to x modulo q. For u =
∑n−1
i=0 uiX

i ∈ R, [u]q =
∑n−1
i=0 [ui]qX

i and ‖u‖ denote
the Euclidean norm of u.

We define ι : Zq −→ Z by [x]q ∈ Zq 7→ x ∈ Z for −q/2 < x 6 q/2. We extend this map
to [R]q by applying it to each coefficient. In an abuse of notation, we omit ι unless it will be
confused when identifying [x]q ∈ Zq with an integer x when −q/2 < x 6 q/2.

Throughout this paper, we assume that an integer n is a power of 2. Then, K := Q[X]/
〈Xn + 1〉 is a number field with the ring of integers R := Z[X]/〈Xn + 1〉. In particular,
K is a Galois extension of Q, and we denote the Galois group of K over Q by Gal(K/Q).
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As in the technical overview, we consider any polynomial h =
∑n−1
i=0 hiX

i ∈ K to be a column
vector (h0, . . . , hn−1)T . When we need an inverse of an element a ∈ R, we usually consider the
inverse in K with the notation a−1. If we want to consider it in [R]q and not in K, then we
denote it by [a−1]q. We use bold letters to denote vectors or ring elements in Zn or R.

Ideal lattice. An n-dimension full-rank lattice M ⊂ Rn is the set of all Z-linear
combinations of n linearly independent vectors. Let det(M) denote the determinant of the
lattice M. For an element g ∈ R, we denote the principal ideal in R generated by g by 〈g〉,
whose basis consists of {g, Xg, . . . , Xn−1g}. By identifying a polynomial g =

∑
giX

i ∈ R
with a vector (gn−1, gn−2, . . . , g0)T in Zn, we can apply lattice theory to the algebraic ring
R and algebraic ring theory to the ideal lattice 〈g〉. For a polynomial u ∈ R and a basis
B := {b1,b2, . . . ,bn}, we denote the reduction of u modulo the fundamental region of
lattice B by u mod B; that is, u mod B is the unique representation of u ∈ R such that
u − (u mod B) ∈ B and u mod B =

∑n−1
i=0 αibi for αi ∈ (−1/2, 1/2]. For the polynomials

u,v ∈ R, we use the notation u mod v as u mod V, where V is a basis {v, Xv, . . . , Xn−1v}.
By the definition of u mod v, it is of the form

∑n−1
i=0 αiX

iv for αi ∈ (−1/2, 1/2]. Hence, the

size of its Euclidean norm is bounded by
∑n−1
i=0 ‖Xiv‖/2 =

∑n−1
i=0 ‖v‖/2 = (n/2)‖v‖. Next,

we introduce some useful lemmas related to ideal lattices.

Lemma 1. For any a,b ∈ R = Z[X]/〈Xn + 1〉, ‖ab‖ 6 ‖a‖ · ‖b‖ ·
√
n.

Proof. The kth coefficient of ab is of the form
∑
i+j=k aibj−

∑
i+j=n+k aibj . By the Cauchy–

Schwartz inequality, it is smaller than ‖a‖·‖b‖. Since each coefficient is smaller than ‖a‖·‖b‖,
‖ab‖ 6 ‖a‖ · ‖b‖ ·

√
n.

Lemma 2. Let g be an element of Z[X]/〈Xn+1〉 and f ∈ Z[X]/〈Xn+1〉 be a relative prime
to g. If c ∈ Z[X]/〈Xn + 1〉 satisfies ‖c‖ < q/(2‖f‖

√
n) and ‖[c · f · g−1]q‖ < q/(2‖g‖

√
n), then

c is contained in the ideal 〈g〉.

Proof. Let w := [c · f · g−1]q. Then [gw]q = [cf ]q. Since ‖w‖ < q/(2‖g‖
√
n), we have

‖gw‖ 6 ‖g‖ · ‖w‖ ·
√
n 6 q/2 and ‖cf‖ 6 ‖c‖ · ‖f‖ ·

√
n 6 q/2. Therefore, gw = cf in

Z[X]/〈Xn + 1〉. Because cf ∈ 〈g〉 and f is a relative prime to g, we can conclude c ∈ 〈g〉.

Using Lemma 2, if one can find c that satisfies Lemma 2, c is of the form c = dg for some
small d ∈ Z[X]/〈Xn + 1〉. Then, by multiplying it by [fg−1]q, one can obtain a small multiple
of f , df . Hence, df and dg become a solution of the NTRU problem.

Gaussian distribution. Given σ > 0, the discrete Gaussian distribution over the set L with
zero mean is defined as DL,σ(x) = ρσ(x)/ρσ(L) for any x ∈ L, where ρσ(x) = exp(−π‖x‖2/σ2)
and ρσ(L) =

∑
x∈L ρσ(x). We use the notation a ← D to denote the choice of an element a

according to the distribution of D.

Norm and trace of a field. For a finite extension K of a field F , the trace TrK/F (α) and
norm NK/F (α) of α ∈ K over F are defined as the trace and determinant of the linear
transformation Mα that maps x ∈ K to αx ∈ K, respectively, that is, TrK/F (α) =

∑
ai,i and

NK/F (α) = det(ai,j), where ai,j is the matrix for Mα with respect to any basis of K over F .
For α, β ∈ K and a ∈ F , the map TrK/F and NK/F satisfy the following properties:

(1) TrK/F (α) =
∑
σ∈Gal(K/F ) σ(α) and NK/F (α) =

∏
σ∈Gal(K/F ) σ(α) if K is a Galois

extension of F ;
(2) TrK/F (α+ β) = TrK/F (α) + TrK/F (β), NK/F (αβ) = NK/F (α)NK/F (β);

(3) TrK/F (a · α) = a · TrK/F (α), NK/F (a · α) = a[K:F ] ·NK/F (α);

(4) TrK/F (a) = [K : F ] · a, NK/F (a) = a[K:F ].
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3. Main theorem

In this section, we discuss how the NTRU problem with a given input [f/g]q is reduced to the
NTRU problem with an input whose denominator and numerator have half of the degree of f
and g. Throughout this section, let n = 2s and denote Q[X2t ]/〈Xn + 1〉 and Z[X2t ]/〈Xn + 1〉
by Kt and Rt, respectively, with 0 6 t 6 s. Note that Ks := Q 6 Ks−1 6 . . . 6 K0 =
Q[X]/〈Xn+ 1〉, where A 6 B denotes that A is a subfield of B. Since K0 is a Galois extension
field of K1 with a degree of 2, Gal(K0/K1) is a group of order 2. That is, Gal(K0/K1) = {id, σ},
satisfying σ(X) = −X; therefore, σ2 = id, where id is the identity map. For an element
h,g ∈ R ⊂ K0, the following elements are contained in R1 ⊂ K1:

TrK0/K1
(h) = h + σ(h),

NK0/K1
(h) = h · σ(h),

TrK0/Kt(hσ(g)) = hσ(g) + σ(h)g,

since they are fixed by Gal(K0/K1). Note that these elements have only n/2 terms, and the
last one lies in 2 · R1. Generally, for 0 < t 6 s, K0 is a Galois extension field of Kt with
a degree of 2t and the Galois group Gt := Gal(K0/Kt) = {σ0 = id, σ1, . . . , σ2t−1}. For an
element h,g ∈ R ⊂ K0, the following elements are contained in Rt ⊂ Kt:

2t−1∑
i=0

σi(h) = h + σ1(h) + . . .+ σ2t−1(h),

2t−1∏
i=0

σi(h) = h · σ1(h) · . . . · σ2t−1(h),

TrK0/Kt(hσ1(g)σ2(g) . . . σ2t−1(g)),

since they are fixed by Gal(K0/Kt). Moreover, these elements have only n/2t terms, and the
last one lies in 2t ·Rt. Using this property, we can obtain the following theorem, which is the
main theorem of this paper.

Theorem 1. Let q and m ∈ Z be integers and let D and N be positive real numbers. Set
B = min{q/2D

√
n, q/2N

√
n}. Then, for φn(X) = Xn + 1 with n = 2s and 0 < t 6 s,

we can reduce NTRU φn,q,D,N,B toNTRU φn/2t ,q,Dt,Nt,Bt
, whereBt = min{q/2Dt

√
n, q/2Nt

√
n,

q/2nN2‖g−1‖
√
n}, Dt = D2t

∏t
j=1

√
n/2j , and Nt = ND2t−1∏t

j=1

√
n/2j .

Proof. Suppose we are given [f/g]q, where g and f are sampled from the set {(g, f) ∈ R2 =
(Z[X]/〈φn(X)〉)2 : ‖f‖ < N, ‖g‖ < D}. We consider the useful element

TrK0/Kt

(
f

g

)
=

f

g
+ σ1

(
f

g

)
+ . . .+ σ2t−1

(
f

g

)
=

TrK0/Kt(fσ1(g)σ2(g) . . . σ2t−1(g))∏2t−1
i=0 σi(g)

in Kt which satisfies

–
∏2t−1
i=0 σi(g) ∈ Rt, and TrK0/Kt(fσ1(g)σ2(g) . . . σ2t−1(g)) ∈ 2t ·Rt;

–
∥∥TrK0/Kt(fσ1(g)σ2(g) . . . σ2t−1(g))/2t

∥∥ 6 ND2t−1∏t
j=1

√
n/2j ;

–
∥∥∏2t−1

i=0 σi(g)
∥∥ 6 D2t

∏t
j=1

√
n/2j .
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Therefore, we can see that [(TrK0/Kt(fσ1(g)σ2(g) . . . σ2t−1(g))/2t)/
∏2t−1
i=0 σi(g)]q is a new

instance of NTRU φn/2t ,q,Dt,Nt,Bt
, where Dt = D2t

∏t
j=1

√
n/2j , Nt = ND2t−1∏t

j=1

√
n/2j ,

and Bt = min{q/2Dt
√
n, q/2Nt

√
n, q/2nN2‖g−1‖

√
n}. Now, suppose that a solution

(at,bt) ∈ Rt of NTRU φn/2t ,q,Dt,Nt,Bt
is known such that [bt/at]q = [(TrK0/Kt(fσ1(g)σ2(g) . . .

σ2t−1(g))/2t)/
∏2t−1
i=0 σi(g)]q. Moreover, since g and f are relative primes with a high

probability [2], we assume the coprimality of g and f . Then, by Lemma 2, at is of the form

at = d
∏2t−1
i=0 σi(g). After computing [at · h]q = [d

∏2t−1
i=0 σi(g) · [f/g]q]q = [df

∏2t−1
i=1 σi(g)]q,

set a = at and b = [df
∏2t−1
i=1 σi(g)]q. Then, we can conclude that the pair (a,b) is a solution

of NTRU φn,q,D,N,B with following properties:

[b/a]q = [f/g]q,

‖a‖ 6 q

2Nt
√
n
6

q

2N
√
n
,∥∥∥∥df 2t−1∏

i=1

σi(g)

∥∥∥∥ =

∥∥∥∥dg−1f 2t−1∏
i=0

σi(g)

∥∥∥∥ 6 ‖at‖ · ‖g−1‖ · ‖f‖ · n

<
q

2nN2‖g−1‖
√
n
· ‖g−1‖ ·N · n

=
q

2N
√
n
.

The last inequality implies that b = [df
∏2t−1
i=1 σi(g)]q is actually b = df

∏2t−1
i=1 σi(g) in R.

Thus, we obtain the desired result.

Comparing with [2], our result works better when N > D because the value of our N1 is
smaller than that of [2] while the values of D1 are same.

Theorem 2. Let q be an integer, n a power of 2, and λ the security parameter. Let
h = [f/g]q be an instance of the NTRU φn,q,D,N,B problem with the parameters log q = c1 ·λ`,
n 6 c2 · λ2`, N = qa, 0 < a < 1/2, D = λk < N , φn(X) = Xn + 1, and B = min{q/2D

√
n,

q/2N
√
n}. For β > 0 and t ∈ Z, if

2βnt/2(β−1)+3/2√q 6 Bt,

where Dt = D2t
∏t
j=1

√
n/2j , Nt = ND2t−1∏t

j=1

√
n/2j , Bt = min{q/2Dt

√
n, q/2Nt

√
n,

q/2nN2‖g−1‖
√
n}, and nt = n/2t, then the problem is solved in 2O(β) time.

In particular, if ‖g−1‖ 6 D2t−1/N ·
√
n
t−2 · 2t(t+1)/4 and β = log2 λ, the problem is solved

in 2O(log2 λ) time†.

For example, when n = λ2, D = λ2, N = q1/8, and log q = λ, one can solve NTRU φn,q,D,N,B

in quasi-polynomial time in λ.

Proof. By Theorem 1, one can obtain a new instance [TrK/Kt([f/g]q)/2
t]q ∈ [R]q ∩ Rt for

NTRU φnt ,q,Nt,Dt,Bt
. We now consider the column lattice

Mt =

(
Int 0
Λt qInt

)
,

†If h and g are sampled from continuous spherical Gaussian distributions, we can obtain a bound of ‖g−1‖
with a high probability [2, Lemma 3].
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where Int is the identity matrix with size nt = n/2t, and Λt ∈ Znt×nt is a matrix whose ith

column is ι(Xi2t [TrK/Kt([f/g]q)/2
t]q) for 0 6 i < n/2t. In other words, for [TrK/Kt([f/g]q)/2

t]q

=
∑nt−1
j=0 hjX

j2t , the ith column of Λt is of the form (−hnt−i, . . . ,−hnt−1, h0, . . . , hnt−i−1)T .
Using the BKZ algorithm with a block size β, one can obtain an element in Mt,

ut = (u0, . . . , unt−1, unt , . . . , u2nt−1)T ,

with ‖ut‖ 6 2β(nt−1)/2(β−1)+3/2 det(Mt)
1/2nt = 2β(nt−1)/2(β−1)+3/2√q [15]. Taking c =∑nt−1

i=0 uiX
i2t ∈ Z[X2t ]/〈Xn+1〉, we then have [c·[TrK/Kt([f/g]q)/2

t]q]q =
∑nt−1
i=0 unt+iX

i2t ∈
Z[X2t ]/〈Xn + 1〉. Moreover, if we choose t such that

2βnt/2(β−1)+3/2√q 6 Bt, (3.1)

then ‖c‖ and ‖[c · TrK/Kt([f/g]q)]q‖ satisfy

‖c‖ < ‖ut‖ 6 2β(nt−1)/2(β−1)+3/2√q 6 Bt 6
q

2Nt
√
n
,

‖[c · TrK/Kt([f/g]q)]q‖ < ‖ut‖ 6 2β(nt−1)/2(β−1)+3/2√q 6 Bt 6
q

2Dt
√
n
.

In other words, c satisfies the conditions of Lemma 2. Therefore, c is in 〈NK/Kt(g)〉 ⊂ 〈g〉. Note
that c is of the form c = d · NK/Kt(g) = d′g ∈ Rt for some d, d′ ∈ R. Hence, by Theorem 1,
a pair (c, [c · h]q) is a solution of NTRU φn,q,N,D,B . The running time of this procedure is
dominated by that of the BKZ algorithm with a block size β, which is poly(n, log q) · CHKZ (β)
time, where CHKZ(β) = 2O(β) is the cost of the HKZ reduction in the dimension β [1, 15].

When ‖g−1‖ 6 D2t−1/N ·
√
n
t−2 ·2t(t+1)/4, we obtain Bt = q/2Nt

√
n. To check that the above

condition for β and t is satisfied, we have the following equivalence equation:

2βnt/2(β−1)+3/2√q 6 q

2Nt
√
n

(3.2)

⇔
(

nt
2(β − 1)

+
3

2

)
log β + logDt − logD +

log n

2
+ 2 <

log q

2
− logN. (3.3)

To optimize the left-hand side of the inequality, we choose t such that

t =

⌈
log

√
n log β

2k(β − 1) log λ

⌋
.

Then, the left-hand side is asymptotic to(
nt

2(β − 1)
+

3

2

)
log β + logDt − logD +

log n

2
+ 2 ≈ n

2t · 2(β − 1)
log β + 2t log λk +O(1)

≈ 2

√
n log β log λk

2(β − 1)
+O(1),

where the last approximation originates from the arithmetic-geometric mean. This implies that
if one chooses β = log2 λ, then the last value is asymptotically smaller than (1/2 − a) log q.
Hence, one can obtain the results.

4. Application to GGH

In this section, we explain an attack algorithm, which is a different approach from [2], to
solve the graded computational Diffie–Hellman (GCDH) problem of the GGH scheme without
low-level encodings of zero when we are given some top-level encodings of zero and a known
pair of plaintext and ciphertext.
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4.1. GGH scheme

First, we briefly recall the Garg et al. construction. We refer to the original paper [12] for a
complete description. The scheme relies on the following parameters:

λ, the security parameter;
κ, the multilinearity parameter;
q, the modulus of a ciphertext;
n, the dimension of a base ring;
m, the number of level-κ encodings of zero in the public parameters;
σ, the basic Gaussian parameter for drawing the ideal generator g;
σ′, the Gaussian parameter for sampling level-zero elements;
σ∗, the Gaussian parameter for constructing elements of nonzero level.

Instance generation. (params,pzt)← InstGen(1λ, 1κ). For a given λ and κ, the parameters
(σ, σ′, q, n) that satisfy the above conditions are determined, and (params, pzt) is output.

Sample g← DR,σ until ‖g‖, ‖g−1‖ 6 n2 and I = 〈g〉 is a prime ideal in R.

Sample z← [R]q.

Sample X = {big} ← DI,σ′ and set a level-κ encoding of zero, xi =

[
big

zκ

]
q

for each i 6 m.

Sample f ← DR,√q and set a zero-testing parameter pzt =

[
f

g
zκ
]
q

.

Publish params = (n, q, κ, {xi}) and pzt.

Sampling level-zero encodings: a← samp(params).
Sample a← DI,σ′ .

Encodings at higher levels: ci ← enc(params, i, c).
Given a level-j encoding c for j < i, compute ci = [c′/zi−j ]q, where c′−c ∈ 〈g〉, and ‖c′‖ < σ∗.

Adding and multiplying encodings: Given two encodings c1 and c2 of the same level, the
sum of c1 and c2 is computed by Add(c1, c2) = [c1 + c2]q. Given two encodings c1 and c2, we
multiply c1 and c2 by computing Mul(c1, c2) = [c1 · c2]q.

Zero testing: isZero(params, pzt, c)
?
= 0/1.

Given a level-κ encoding c, return 1 if ‖[pzt · c]q‖∞ < q3/4; otherwise, return 0.

Extraction: sk ← ext(params, pzt, c).
Given a level-κ encoding c, compute MSBlog q/4−λ([pzt · c]q).

4.2. Difficulty assumptions

We recall the definitions of the graded decisional Diffie–Hellman problem (GDDH) and GCDH
problems on which the security of the GGH scheme relies [12]. They do not seem to be reducible
to more classical assumptions in generic ways.

GDDH, ext-GCDH, GCDH. For an adversary A and the parameters λ and κ, we consider
the following process in the GGH scheme.

(1) Choose (q, {xi},pzt)← InstGen(1λ, 1κ).
(2) Sample mj ← samp(params) for each 0 6 j 6 κ.
(3) Set uj = aj/z← enc(params, 1,mj) for all 0 6 j 6 κ.
(4) Choose r← DR,σ′ .
(5) Sample ρj ← {0, 1} for 1 6 j 6 m.
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(6) Set û = [a0 ×
∏κ
i=1 ui +

∑
j ρjxj ]q.

(7) Set u = [r×
∏κ
i=1 ui +

∑
j ρjxj ]q.

The GCDH problem is to output a level-κ encoding of
∏κ
i=0 mi + I given the inputs

{q, {xi},pzt,u0, . . . ,uκ}.

The ext-GCDH problem is to output v ∈ Rq such that ‖[v−pzt · û]q‖ < q3/4 given the inputs

{q, {xi},pzt,u0, . . . ,uκ}.

The GDDH problem is to distinguish between two distributions, DDDH and DR, where

DDDH = {q, {xi},pzt,u0, . . . ,uκ, û} and DR = {q, {xi},pzt,u0, . . . ,uκ,u}.

4.3. Attack on GGH

Considering [12], one may notice that the previous theorem in § 3 can be applied to solve the
GCDH problem, which is a security problem of the GGH scheme. More precisely, suppose we
have

{q, {xi},pzt,u0, . . . ,uκ}.

Additionally, we assume that we have a pair of level-0 encodings m̄ /∈ 〈g〉 and its level-1
encoding b = [(m̄ + ag)/z]q. Our attack algorithm consists of the following three steps:

– Find a small element cg ∈ 〈g〉.
– Compute a small level-1 encoding of m̄−1 using m̄, cg.
– Recover an element m′0 in R = Z[X]/〈Xn + 1〉 such that m′0 −m0 ∈ 〈g〉.

Finally, we can compute m′, which is a level-κ encoding of
∏κ
i=0 mi + 〈g〉 using m′0, ui, and

x1. Then it becomes a solution of the GCDH problem. In this paper, we assume σ′ = n2.5 and
σ∗ = n3.

4.3.1. Step 1: Finding a small element of 〈g〉. Note that ‖m̄+αg‖, ‖big‖, ‖ai‖ 6 σ∗
√
n 6

n3.5, and ‖m̄‖ 6 σ′
√
n 6 n3 with overwhelming probability. For convenience, we use

the notation Gt to denote Gal(K/Kt). Considering [uκ1/x1]q = [aκ1/b1g]q, the sizes of the

denominator and numerator are bounded by n3.5κ
√
n
κ−1

< n4κ and n3.5, respectively. Using
the algorithm in Theorem 2 for several [aI/big]q := [ai1 . . .aiκ/bjg]q for I = [i1, . . . , iκ],
i1, . . . , iκ ∈ {0, . . . , κ}, and j ∈ {1, . . . ,m}, one can recover several multiples cIb

′
jg
′bjg of

NK/Kt(g), where b′j =
∏
σ∈Gt\{id} σ(bj) and g′ =

∏
σ∈Gt\{id} σ(g). Multiplying these multiples

by [aI/bjg]q, one can obtain AI,j = aIcIb
′
jg
′. We remark that AI,j is in R\Rt because AI,j

is not fixed for any subgroup of Gt, except the trivial group. Moreover, although AI,j is not
in 〈g〉, we have δ(AI,j) = δ(aIcIb

′
jg
′) = δ(aIcI) ·

∏
σ∈Gt\{δ} σ(bg) ∈ 〈g〉 for δ ∈ Gt\{id}.

One can easily see that {δ(AI,j)}δ∈Gt\{id} only have a common factor g. Therefore, using
{δ(AI,j)}δ∈Gt\{id}, we recover a basis matrix of the ideal lattice of 〈g〉. Using NK/Kt(a) for
a ∈ 〈g〉, which is a multiple of NK/Kt(g), one can also recover a basis matrix of the ideal
lattice of 〈NK/Kt(g)〉. Now, using the β block-BKZ algorithm [15], one can obtain an element

cg ∈ 〈NK/Kt(g)〉 such that ‖cg‖ 6 2β(nt−1)/2(β−1)+3/2 · n2t+1

.

4.3.2. Step 2: Computing a small level-1 encoding of m̄−1. Using a pair (m̄,b =
[(m̄ + ag)/z]q), one can recover a level-1 encoding of 1 as follows. Since we know a basis matrix
of 〈g〉, one can compute ê such that êm̄ + ê′g = 1 for some ê′ ∈ R. Then e := (ê mod cg) is
the inverse of m̄ in R/〈g〉. Moreover, its size is smaller than ‖cg‖ · n/2.

4.3.3. Step 3: Computing m′. We refer to [12, § 6.3.3] to solve the GCDH problem with
the short vector cg ∈ 〈g〉. We explain how to use cg in order to solve the GCDH problem in
the GGH scheme. First, by applying Theorem 2 to bκ/x1 = (m̄ + ag)κ/b1g, one can obtain
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d(m̄ + ag)κ and db1g for some d ∈ R. Now, compute G ∈ R such that eκ · d(m̄ + ag)κ −
Gdb1g = eκ ·d(m̄+ ag)κ mod db1g and also compute b′ = eκbκ−Gx1. Similarly, compute
G′ ∈ R such that b′′ = eκ−1 · bκ−1u0 −G′x1. Then, b′ and b′′ have the following forms:

b′ =

[
eκ · (m̄ + ag)κ mod b1g

zκ

]
q

=

[
a′g + 1

zκ

]
q

,

b′′ =

[
eκ−1 · (m̄ + ag)κ−1m0 mod b1g

zκ

]
q

=

[
a′′g + m0

zκ

]
q

for some small a′ and a′′ ∈ R. The sizes of the numerators of b′ and b′′ are bounded by
‖b1g‖ · n/2 6 n4.5/2. By using cg, b′, b′′, and pzt, one can obtain the following zero-testing
values h and h0:

h := ι([b′ · pzt · cg]q) = ι([(a′g + 1) · f · c]q),

h0 := ι([b′′ · pzt · cg]q) = ι([(a′′g + m0) · f · c]q).

If ‖h‖ is smaller than q/2, h is actually (a′g+ 1) · f · c in R. Since the size of h is smaller than
‖cg‖‖g−1‖ · ‖f‖ · ‖a′g + 1‖ · n 6 β(nt−1)/2(β−1)+3/2 · n2t+1

n8
√
q, we use the following equation

to check the condition:

β(nt−1)/2(β−1)+3/2 · n2
t+1

n8
√
q 6

q

2
(4.1)

⇔
(

nt
2(β − 1)

+
3

2

)
log β + log n2

t+1

+ 8 log n+ 1 <
log q

2
. (4.2)

This inequality is asymptotically the same as equation (3). Hence, when β = log2 λ, the size
of h is smaller than q/2. For the same condition, h0 has the same bound and is of the form
(a′′g + m0) · f · c. Assuming that h has an inverse in R/〈g〉, we can compute m′0 := h0/h =
m0 mod 〈g〉. Then, m′0 is a level-0 encoding of m0. Note that we are given a top-level encoding
of zero, x1 = [b1g/z

κ]q. Multiplying db1g with [
∏κ
i=1 ui/x1]q, we can recover d

∏κ
i=1 ai. Now,

we compute (m′0 · d
∏κ
i=1 ai) mod db1g, which is of the form m′0 · d

∏κ
i=1 ai −G′′db1g for

some G′′ ∈ R. Since d is the common factor, it is the same as d · ((m′0 ·
∏κ
i=1 ui) mod b1g) =

d · (m′0 ·
∏κ
i=1 ai−G′′b1g). We remark that the size of (m′0 ·

∏κ
i=1 ai) mod b1g is bounded by

‖b1g‖n < n5, and it is an element of the coset
∏κ
i=0 mi+ 〈g〉. Now we compute m′0 ·

∏κ
i=1 ui−

G′′x1, which has the following form:[
(m′0 ·

∏κ
i=1 ai) mod b1g

zκ

]
q

.

By the above mention, its numerator is in the coset
∏κ
i=0 mi + 〈g〉, and its size is bounded

by n5. Hence, it is a valid level-κ encoding of
∏κ
i=0 mi, and the GCDH problem is solved. In

summary, we obtain the following corollary.

Corollary 3. Given {n, q, {xi},m,b,pzt,u0, . . . ,uκ} of the GGH scheme parameters,
where n is Θ(λ2), log q = Θ(λ), xi is a level-κ encoding of zero, m is a level-0 nonzero
encoding, b is a level-1 encoding of m, and ui is a level-1 encoding of mi, one can compute
encκ(

∏κ
i=0 mi), which is a solution of the GCDH problem in the GGH scheme in 2O(log2 λ).

According to this corollary, using the parameters suggested by [12] causes an attack for a
security ground of this scheme in the quasi-polynomial time of its security parameter. Thus, n
must be at least Ω(λ3) when log q = Θ(λ) with the security parameter λ to avoid our attack.
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5. Conclusion

Since the GGH scheme that provides an encoding of zero was found to be insecure, a variant
of the NTRU problem has received considerable attention because of the security grounding
of the GGH scheme without an encoding of zero. In this work, we described how to find a
small solution of the variant of the NTRU problem using a reduction technique. By applying
our proposed algorithm to the GGH scheme, we could attack the GCDH problem in the GGH
scheme. Therefore, our results imply that there is no guarantee for the security of the GGH
scheme when we are given a small encoding of zero and also when we are not given a small
encoding of zero.
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