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Abstract
We develop a general approach to prove K-stability of Fano varieties. The new theory is used to (a) prove the
existence of Kähler-Einstein metrics on all smooth Fano hypersurfaces of Fano index two, (b) compute the stability
thresholds for hypersurfaces at generalised Eckardt points and for cubic surfaces at all points, and (c) provide a new
algebraic proof of Tian’s criterion for K-stability, amongst other applications.
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1. Introduction

Introduced by Tian [47] and reformulated algebraically by Donaldson [18], K-stability is an algebro-
geometric property of Fano varieties that detects the existence of Kähler-Einstein metrics. By the
celebrated works of Chen-Donaldson-Sun [14] and Tian [48], a Fano manifold admits a Kähler-Einstein
metric if and only if it is K-polystable. However, it is in general very hard to verify the K-stability of
a given Fano variety. Tian’s criterion, introduced in [46], provides a sufficient condition for K-stability
and has arguably become the most famous validity criterion for K-stability. There are also a few variants
[15, 21, 41] of Tian’s criterion, and a notable application is the K-stability of smooth hypersurfaces
of Fano index one [21]. More recently, [44] discovered another K-stability criterion in the particular
case of birationally superrigid Fano varieties; and as an application, [51] proved that Fano complete
intersections of index one and large dimension are K-stable. However, both criteria apply exclusively to
certain Fano varieties of index one, and except in a few sporadic cases, it is unclear how to attack the
problem when the required conditions in neither criterion are satisfied; see for example [1, 16, 38, 43].

The purpose of this paper is to develop a systematic approach for proving the K-stability of Fano
varieties. As a major application, we confirm the K-stability of all smooth hypersurfaces of Fano index
two.
Theorem 1.1 (=Theorem 4.12). Let 𝑋 = 𝑋𝑛 ⊆ P𝑛+1 be a smooth Fano hypersurface of degree 𝑛 ≥ 3.
Then X is uniformly K-stable.

In particular, this generalises the work of [38] on K-stability of smooth cubic threefolds, although
our argument is completely different.

As another application, we prove the following K-stability criterion, giving a unified treatment for
several Fano manifolds that are previously known to be K-(semi)stable; see Definition 2.3 for the
definition of 𝛽𝑋 (𝐸) in the statement.
Theorem 1.2 (=Corollary 4.4). Let X be a Fano manifold of dimension n. Assume that there exists an
ample line bundle L on X such that

1. −𝐾𝑋 ∼Q 𝑟𝐿 for some 𝑟 ∈ Q with (𝐿𝑛) ≤ 𝑛+1
𝑟 ; and

2. for every 𝑥 ∈ 𝑋 , there exists 𝐻1, . . . , 𝐻𝑛−1 ∈ |𝐿 | containing x such that 𝐻1 ∩ · · · ∩ 𝐻𝑛−1 is an integral
curve that is smooth at x.

Then X is K-semistable. If it is not uniformly K-stable, then (𝐿𝑛) = 𝑛+1
𝑟 and there exists some prime

divisor 𝐸 ⊆ 𝑋 such that 𝛽𝑋 (𝐸) = 0.

For instance, this applies to projective spaces, hypersurfaces of Fano index one and double covers
of P𝑛 branched along a hypersurface of degree at least 𝑛 + 1. We refer to Corollary 4.5 for a more
exhaustive list. While Tian’s criterion or the criterion from [44] apply to some of them, the conditions
in Theorem 1.2 are usually easier to check; indeed, we never use Tian’s criterion or the criterion from
[44] in this paper, as most varieties considered here are of higher Fano index. On the other hand, it
may be worth pointing out that our general approach also leads to a new proof of these two criteria; see
Subsection 4.1.

Before we state further applications, let us recall that by [2, 24], K-stability of a Fano variety X can
be characterised by its stability threshold 𝛿(𝑋), defined via log canonical thresholds of anti-canonical
Q-divisors of basis type; see Subsection 2.2. For example, X is K-semistable if and only if 𝛿(𝑋) ≥ 1. One
can also define local stability thresholds 𝛿𝑥 (𝑋) at some 𝑥 ∈ 𝑋 by taking log canonical thresholds around
the point x so that the global invariant 𝛿(𝑋) is the minimum of the local ones 𝛿𝑥 (𝑋); see Subsection 2.2.
It is again a challenging problem to find the precise value of these invariants, unless the variety has a
large group of automorphisms [2, 25, 50]; see [13, 42] for some estimates on del Pezzo surfaces.

We also compute these invariants in some nontrivial cases. As a first example, we study the local
stability thresholds of hypersurfaces at generalised Eckardt points.
Theorem 1.3 (=Corollary 4.10). Let 𝑋 ⊆ P𝑛+1 be a smooth Fano hypersurface of degree d, and let
𝑥 ∈ 𝑋 be a generalised Eckardt point (the tangent hyperplane section at x is the cone over a hypersurface
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𝑌 ⊆ P𝑛−1 of degree d). Assume that Y is K-semistable when 𝑑 ≤ 𝑛 − 1 (i.e., when it is Fano). Then
𝛿𝑥 (𝑋) = 𝑛(𝑛+1)

(𝑛−1+𝑑) (𝑛+2−𝑑) , and it is computed by the ordinary blowup of x.
Since on smooth quadric hypersurfaces every closed point is a generalised Eckardt point, by induction

on dimension, we obtain an algebraic proof of their K-semistability. In general, we get 𝛿𝑥 (𝑋) ≥ 1 as
long as Y is K-semistable. We expect that if X has a generalised Eckardt point x, then 𝛿(𝑋) = 𝛿𝑥 (𝑋),
and smooth Fano hypersurfaces of degree d with smallest stability thresholds are those with generalised
Eckardt points (see Theorem 4.6 and Corollary 4.7 for some evidence on cubic surfaces). Thus the
above theorem suggests a possible inductive approach to the K-stability of Fano hypersurfaces.

As a second example, we calculate the local stability thresholds of all cubic surfaces, from which we
derive the following consequences.
Theorem 1.4 (see Theorems 4.6 and 4.8). Let 𝑋 ⊆ P3 be a smooth cubic surface. Then there exists
some boundary divisor Δ such that (𝑋,Δ) is log Fano and 𝛿(𝑋,Δ) = 9

25−8
√

6
∉ Q. Moreover, there

exists 𝐶 ∈ | − 𝐾𝑋 | such that (𝑋,𝐶) is log canonical and some valuation v that is an lc place of (𝑋,𝐶)
such that the associated graded ring

gr𝑣𝑅 := ⊕𝑚,𝜆Gr𝜆F𝑣
𝐻0(𝑋,−𝑚𝐾𝑋 )

is not finitely generated, where F𝑣 is the filtration induced by v.
This is somewhat surprising as, by [4, Theorem 1.4], the global stability thresholds 𝛿(𝑋) are always

rational on Fano manifolds that are not K-stable. Moreover, graded rings associated to lc places of
Q-complement as in the above statement are usually expected to be finitely generated; see, for example,
[35, Conjecture 1.2]. Thus our example shows that the situation is more complicated in general.

1.1. Overview of the proof

We now describe our approach to proving the K-stability of Fano varieties. In general, one would like
to estimate, or perhaps calculate, the stability threshold of a Fano variety. A priori, we need to consider
log canonical thresholds of all anti-canonical basis type divisors. Our first observation is that it suffices
to consider a smaller class of them: that is, those that are compatible with a given divisor over the Fano
variety.
Definition 1.5. Let X be a Fano variety, and let E be a divisor over X: that is, a prime divisor on some
birational model of X. Let 𝑚 ∈ N, and let D be an m-basis type Q-divisor on X: that is, there exists a
basis 𝑠1, · · · , 𝑠𝑁𝑚 of 𝑉𝑚 = 𝐻0 (𝑋,−𝑚𝐾𝑋 ), where 𝑁𝑚 = ℎ0 (𝑋,−𝑚𝐾𝑋 ), such that

𝐷 =
1

𝑚𝑁𝑚

𝑁𝑚∑
𝑖=1

{𝑠𝑖 = 0}.

We say that D is compatible with E if for every 𝑗 ∈ N, the subspace

F 𝑗𝐸𝑉𝑚 := {𝑠 ∈ 𝑉𝑚 | ord𝐸 (𝑠) ≥ 𝑗} ⊆ 𝑉𝑚

is spanned by some 𝑠𝑖 .
We may then define the stability threshold 𝛿(𝑋;F𝐸 ) of X with respect to E by restricting to basis

type divisors that are compatible with E. It turns out that
Proposition 1.6 (see Proposition 3.1). 𝛿(𝑋) = 𝛿(𝑋;F𝐸 ).

In other words, only basis type divisors compatible with E are relevant when computing stability
thresholds. While basis type divisors can be hard to study in general, those compatible with a given
divisor E are often concentrated around E, making it convenient to apply the inversion of adjunction.
As an illustration, we consider the example of projective spaces.
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Example 1.1. Let 𝑋 = P𝑛, and let E be a hyperplane. Then asymptotically, basis type Q-divisors D on
X that are compatible with E can be written as 𝐷 = 𝐸 + 𝐷0, where 𝐷0 does not contain E in its support
and 𝐷0 |𝐸 is a convex linear combination of basis type Q-divisors on 𝐸 � P𝑛−1.

By induction and inversion of adjunction, this easily implies that 𝛿(P𝑛) ≥ 1 and thus gives an
algebraic proof of the K-semistability of P𝑛. In general, there is a lot of flexibility in the choice of the
auxiliary divisors E, leading to various applications. In fact, as we will show in Subsection 4.1, both
Tian’s criterion and the criterion from [44] are implied by taking E to be a general member of | −𝑚𝐾𝑋 |
for some sufficiently divisible integer m. On explicitly given Fano varieties, however, the geometry
usually suggests more natural choices of E; sometimes we can even start with the optimal one – that is,
a divisor that computes 𝛿(𝑋), as in Example 1.1 – and no information will be lost in the process. This
is exactly how we compute the stability thresholds in Theorems 1.3 and 1.4.

More generally, instead of using an auxiliary divisor to refine the class of basis type divisors, we
can also use an admissible flag, which is an important tool in the construction of Okounkov bodies
of line bundles; see, for example, [33]. Indeed, in the inductive proof of the K-semistability of P𝑛 as
outlined above, we already implicitly use the full flags of linear subspaces. One can similarly define
the compatibility of a basis type divisor with an admissible flag and show that to compute the stability
threshold, it suffices to consider basis type divisors compatible with a chosen flag; see Section 3 for
details. To prove the K-stability of a Fano variety, it is often enough to carefully choose the auxiliary
divisor or admissible flag and analyse the corresponding compatible basis type divisors through inversion
of adjunction. In particular, the proofs of Theorems 1.1 and 1.2 are obtained this way and involve several
different auxiliary divisors and admissible flags.

1.2. Structure of the paper

This paper is organised as follows. In Subsections 2.2–2.4, we put together various preliminary materials.
As we apply inversion of adjunction to basis type divisors compatible with an admissible flag, we get
basis type divisors of some filtered multigraded linear series in a natural way. We define and study
the invariants associated to such linear series in Subsections 2.5 and 2.6. In Section 3, we develop
the framework to study stability thresholds of Fano varieties or, more generally, 𝛿-invariants of big line
bundles and derive a few inversion-of-adjunction type results for stability thresholds. The applications are
presented in Section 4: in Subsection 4.1, we give a new proof of Tian’s criterion and the criterion from
[44]; in Subsection 4.2, we study K-stability of Fano manifolds of small degree and prove Theorem 1.2;
in Subsection 4.3, we explain how to compute stability thresholds of log del Pezzo surfaces almost in
complete generality, and in particular we prove Theorem 1.4; in Subsection 4.4, we prove Theorem 1.3;
and finally, Theorem 1.1 is proved in Subsection 4.5.

2. Preliminaries

2.1. Notation and conventions

We work over C. Unless otherwise specified, all varieties are assumed to be normal and projective. A
pair (𝑋,Δ) consists of a variety X and an effective Q-divisor Δ such that 𝐾𝑋 + Δ is Q-Cartier. The
notions of klt and lc singularities are defined as in [31, Definition 2.8]. The non-lc centre Nlc(𝑋,Δ) of
a pair (𝑋,Δ) is the set of closed points 𝑥 ∈ 𝑋 such that (𝑋,Δ) is not lc at x. If 𝜋 : 𝑌 → 𝑋 is a projective
birational morphism and E is a prime divisor on Y, then we say E is a divisor over X. A valuation on
X will mean a valuation 𝑣 : C(𝑋)∗ → R that is trivial on C∗. We write 𝐶𝑋 (𝐸) (respectively, 𝐶𝑋 (𝑣))
for the centre of a divisor (respectively, valuation) and 𝐴𝑋,Δ (𝐸) (respectively, 𝐴𝑋,Δ (𝑣)) for the log
discrepancy of the divisor E (respectively, the valuation v) with respect to the pair (𝑋,Δ) (see [6, 27]).
We write Val∗𝑋 for the set of nontrivial valuations. Let (𝑋,Δ) be a klt pair, 𝑍 ⊆ 𝑋 a closed subset (may
be reducible) and D an effective divisor on X; we denote by lct𝑍 (𝑋,Δ; 𝐷) the largest number 𝜆 ≥ 0
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such that Nlc(𝑋,Δ + 𝜆𝐷) does not contain Z. Given a Q-divisor D on X, we set

𝐻0(𝑋, 𝐷) := {0 ≠ 𝑠 ∈ C(𝑋) | div(𝑠) + 𝐷 ≥ 0} ∪ {0}

whose members can be viewed as effective Q-divisors that are Z-linearly equivalent to D. In particular,
if D is Q-Cartier, then ord𝐸 (𝑠) := ord𝐸 (div(𝑠) + 𝐷) is well-defined for any 0 ≠ 𝑠 ∈ 𝐻0(𝑋, 𝐷) and any
divisor E over X. We also define the sheaf O𝑋 (𝐷) by localising the above construction.

2.2. K-stability and stability thresholds

Let (𝑋,Δ) be a projective pair, and let L be a big Q-Cartier Q-divisor on X. We denote by 𝑀 (𝐿) the set
of integers 𝑚 ∈ N+ such that 𝐻0 (𝑋, 𝑚𝐿) ≠ {0}.

Definition 2.1. Notation as above. Let 𝑚 ∈ 𝑀 (𝐿), and let 𝑉 ⊆ 𝐻0(𝑋, 𝑚𝐿) be a linear series. We say
that D is a basis type divisor of V if 𝐷 =

∑𝑁
𝑖=1{𝑠𝑖 = 0} for some basis 𝑠1, · · · , 𝑠𝑁 of V (where, by abuse

of notation, {𝑠𝑖 = 0} refers to the Q-divisor div(𝑠𝑖) +𝑚𝐿). By convention, this means 𝐷 = 0 if 𝑉 = {0}.
We say that D is an m-basis type Q-divisor of L if 𝐷 = 1

𝑚·ℎ0 (𝑋,𝑚𝐿)𝐷0 for some basis type divisor 𝐷0 of
𝐻0 (𝑋, 𝑚𝐿) (in particular, 𝐷 ∼Q 𝐿).

Definition 2.2. Let 𝑚 ∈ 𝑀 (𝐿), and let 𝑣 ∈ Val∗𝑋 . In the above notation, we set

𝑆𝑚 (𝐿; 𝑣) = sup
𝐷∼Q𝐿, 𝑚-basis type

𝑣(𝐷),

where the supremum runs over all m-basis type Q-divisor of L. We define 𝑆(𝐿; 𝑣) to be the limit
lim𝑚→∞ 𝑆𝑚 (𝐿; 𝑣), which exists by [2, 8]. We also define the pseudo-effective threshold as

𝑇 (𝐿; 𝑣) = sup{𝜆 ≥ 0 | vol(𝐿; 𝑣 ≥ 𝑡) > 0},

where

vol(𝐿; 𝑣 ≥ 𝑡) = lim
𝑚→∞

dim{𝑠 ∈ 𝐻0(𝑋, 𝑚𝐿) | 𝑣(𝑠) ≥ 𝑚𝑡}
𝑚dim𝑋/(dim 𝑋)!

.

We say that v is of linear growth if 𝑇 (𝐿; 𝑣) < ∞ (e.g., when v is divisorial or has finite discrepancy; see
[11, Section 2.3] and [2, Section 3.1]). By [2, Theorem 3.3], for any valuation v of linear growth, we have

𝑆(𝐿; 𝑣) = 1
vol(𝐿)

∫ ∞

0
vol(𝐿; 𝑣 ≥ 𝑡)d𝑡,

where vol(𝐿) denotes the volume of the divisor L (see, for example, [32, Section 2.2.C]). If E is a divisor
over X, we put 𝑆(𝐿; 𝐸) = 𝑆(𝐿; ord𝐸 ) and 𝑇 (𝐿; 𝐸) = 𝑇 (𝐿; ord𝐸 ). We will simply write 𝑆𝑚 (𝐸), 𝑆(𝐸),
and so on, if the divisor L is clear from the context.

Definition 2.3. Let (𝑋,Δ) be a log Fano pair: that is, (𝑋,Δ) is klt and −(𝐾𝑋 + Δ) is ample. We say
(𝑋,Δ) is K-semistable (respectively, K-stable) if

𝛽𝑋,Δ (𝐸) := 𝐴𝑋,Δ (𝐸) − 𝑆(−𝐾𝑋 − Δ; 𝐸) ≥ 0

(respectively, 𝛽𝑋,Δ (𝐸) > 0) for all divisors E over X. We say that (𝑋,Δ) is uniformly K-stable if

𝛽𝑋,Δ (𝑣) := 𝐴𝑋,Δ (𝑣) − 𝑆(−𝐾𝑋 − Δ; 𝑣) > 0

for all 𝑣 ∈ Val∗𝑋 such that 𝐴𝑋,Δ (𝑣) < ∞.

https://doi.org/10.1017/fmp.2022.11 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.11


6 Hamid Abban and Ziquan Zhuang

By [2, 5, 23, 34], this is equivalent to the original definition [10, 17, 18, 47] of K-stability notions in
terms of test configurations.

Definition 2.4. Let (𝑋,Δ) be a klt pair, and let L be a Q-Cartier big divisor on X. The (adjoint) stability
threshold (or 𝛿-invariant) of L is defined as

𝛿(𝐿) = 𝛿(𝑋,Δ; 𝐿) = inf
𝐸

𝐴𝑋,Δ (𝐸)
𝑆(𝐿; 𝐸) , (2.1)

where the infimum runs over all divisors E over X. Equivalently [2], it can also be defined as the limit
𝛿(𝐿) = lim𝑚→∞ 𝛿𝑚 (𝐿), where

𝛿𝑚(𝐿) = sup{𝜆 ≥ 0 | (𝑋,Δ + 𝜆𝐷) is lc for all 𝑚-basis type Q-divisors 𝐷 ∼Q 𝐿}. (2.2)

We say that a divisor E over X computes 𝛿(𝐿) if it achieves the infimum in equation (2.1). When (𝑋,Δ)
is log Fano, we write 𝛿(𝑋,Δ) (or 𝛿(𝑋) when Δ = 0) for 𝛿(−𝐾𝑋 − Δ).

We also introduce a local version of stability thresholds.

Definition 2.5. Let (𝑋,Δ) be a klt pair, and let L be a Q-Cartier big divisor on X. Let Z be a closed
subset of X. We set

𝛿𝑍,𝑚 (𝐿) = sup{𝜆 ≥ 0 | 𝑍 � Nlc(𝑋,Δ + 𝜆𝐷) for all 𝑚-basis type Q-divisors 𝐷 ∼Q 𝐿}

and define the (adjoint) stability threshold of L along Z as 𝛿𝑍 (𝐿) = lim sup𝑚→∞ 𝛿𝑍,𝑚(𝐿). When Z is
irreducible, it is not hard to see (by an argument similar to that in [2, §4]; see also Lemma 2.9) that the
above limsup is a limit, and we have

𝛿𝑍 (𝐿) = inf
𝐸,𝑍 ⊆𝐶𝑋 (𝐸)

𝐴𝑋,Δ (𝐸)
𝑆(𝐿; 𝐸) = inf

𝑣,𝑍 ⊆𝐶𝑋 (𝑣)

𝐴𝑋,Δ (𝑣)
𝑆(𝐿; 𝑣) ,

where the first infimum runs over all divisors E over X whose centre contains Z and the second infimum
runs over all valuations 𝑣 ∈ Val∗𝑋 such that 𝐴𝑋,Δ (𝑣) < ∞ and 𝑍 ⊆ 𝐶𝑋 (𝑣). If in addition L is ample,
then the second infimum is a minimum by (the same proof of) [2, Theorem E]. As in the global case,
we then say that E (respectively, v) computes 𝛿𝑍 (𝐿) if it achieves the above infimum. When (𝑋,Δ) is
log Fano, we also write 𝛿𝑍 (𝑋,Δ) (or 𝛿𝑍 (𝑋) when Δ = 0) for 𝛿𝑍 (−𝐾𝑋 − Δ).

2.3. Plt-type divisors

Definition 2.6. Let (𝑋,Δ) be a pair, and let F be a divisor over X. When F is a divisor on X, we write
Δ = Δ1 + 𝑎𝐹, where 𝐹 � Supp(Δ1); otherwise let Δ1 = Δ .

1. F is said to be primitive over X if there exists a projective birational morphism 𝜋 : 𝑌 → 𝑋 such that
Y is normal, F is a prime divisor on Y and −𝐹 is a 𝜋-ample Q-Cartier divisor. We call 𝜋 : 𝑌 → 𝑋
the associated prime blowup (it is uniquely determined by F).

2. F is said to be of plt type if it is primitive over X and the pair (𝑌,Δ𝑌 + 𝐹) is plt in a neighbourhood
of F, where 𝜋 : 𝑌 → 𝑋 is the associated prime blowup and Δ𝑌 is the strict transform of Δ1 on Y.
When (𝑋,Δ) is klt and F is exceptional over X, 𝜋 is called a plt blowup over X.

Lemma 2.1. Let (𝑌, 𝐹 + Δ) be a plt pair with �𝐹 + Δ� = 𝐹. Then for any Q-Cartier Weil divisor D on
Y, there exists a uniquely determined Q-divisor class (i.e., Q-divisor up to Z-linear equivalence) 𝐷 |𝐹
on F and a canonical isomorphism

O𝑌 (𝐷)/O𝑌 (𝐷 − 𝐹) � O𝐹 (𝐷 |𝐹 ).
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Proof. The Q-divisor class 𝐷 |𝐹 is defined in [26, Definition A.2 and A.4] by localising at every
codimension 1 point of F, and the isomorphism is established by [26, Lemma A.3]. �

2.4. Filtrations and admissible flags

We recall the notation of filtrations as well as some constructions from the study of Okounkov bodies.

Definition 2.7. Let V be a finite dimensional vector space. A filtration F on V is given by a collection of
subspaces F𝜆𝑉 indexed by a totally ordered abelian monoid Λ (in which case we also call the filtration
a Λ-filtration) such that F𝜆0𝑉 = 𝑉 , F𝜆1𝑉 = 0 for some 𝜆0, 𝜆1 ∈ Λ and F𝜆𝑉 ⊆ F𝜆′𝑉 whenever 𝜆 ≥ 𝜆′.
When Λ = R, we will also require that the filtration is left continuous: that is, for any 𝜆 ∈ R, we have
F𝜆−𝜀𝑉 = F𝜆𝑉 for all 0 < 𝜀 � 1. For each 𝜆 ∈ Λ, we set Gr𝜆F𝑉 = F𝜆𝑉/∪𝜇>𝜆F𝜇𝑉 . A basis 𝑠1, · · · , 𝑠𝑁
(where 𝑁 = dim𝑉) of V is said to be compatible with F if every F𝜆𝑉 is the span of some 𝑠𝑖 .

Most filtrations we use are induced by a divisor or an admissible flag.

Example 2.2. Let L be a Q-Cartier Q-divisor on X, and let 𝑉 ⊆ 𝐻0 (𝑋, 𝐿) be a subspace. Let E be a
divisor over X. Then it induces an R-filtration F𝐸 on V by setting

F𝜆𝐸𝑉 := {𝑠 ∈ 𝑉 | ord𝐸 (𝑠) ≥ 𝜆}.

More generally, every valuation v on X induces a filtration F𝑣 on V with F𝜆𝑣𝑉 := {𝑠 ∈ 𝑉 | 𝑣(𝑠) ≥ 𝜆}.

Definition 2.8 [33]. Let X be a variety. An admissible flag 𝑌• over X of length ℓ ≤ dim 𝑋 is defined as
a flag of subvarieties

𝑌• : 𝑌 = 𝑌0 ⊇ 𝑌1 ⊇ · · · ⊇ 𝑌ℓ

on some projective birational model 𝜋 : 𝑌 → 𝑋 of X, where each 𝑌𝑖 is an (irreducible) subvariety of
codimension i in Y that is smooth at the generic point of 𝑌ℓ .

Given an admissible flag 𝑌• over X as above and a Q-divisor L on X that is Cartier at the generic
point of 𝑌ℓ , one can define a valuation-like function

𝜈 = 𝜈𝑌• = 𝜈𝑌• ,𝑋 :
(
𝐻0 (𝑋, 𝐿) \ {0}

)
→ Nℓ , 𝑠 ↦→ 𝜈(𝑠) = (𝜈1 (𝑠), · · · , 𝜈ℓ (𝑠)) (2.3)

as follows. First, 𝜈1 = 𝜈1(𝑠) = ord𝑌1 (𝑠); over an open neighbourhood 𝑈 ⊆ 𝑌 of the generic point of
𝑌ℓ , s naturally determines a section 𝑠1 ∈ 𝐻0 (𝑈,O𝑈 (𝜋∗𝐿 − 𝜈1𝑌1)) that restricts to a nonzero section
𝑠1 ∈ 𝐻0(𝑌1 ∩ 𝑈,O𝑌1∩𝑈 (𝜋∗𝐿 − 𝜈1𝑌1)). We set 𝜈2(𝑠) = ord𝑌2 (𝑠1) and continue in this way to define
the remaining 𝜈𝑖 (𝑠) inductively. Via the lexicographic ordering on Zℓ , every flag 𝑌• over X induces a
filtration F𝑌• (indexed by Nℓ) on 𝑉 = 𝐻0(𝑋, 𝐿) by setting

F𝜆𝑌•𝑉 = {𝑠 ∈ 𝑉 | 𝜈(𝑠) ≥ 𝜆}.

We also define the graded semigroup of L (with respect to 𝑌•) as the subsemigroup

Γ(𝐿) = Γ𝑌• (𝐿) = {(𝑚, 𝜈𝑌• (𝑠)) |𝑚 ∈ N, 0 ≠ 𝑠 ∈ 𝐻0(𝑋, 𝑚𝐿)}

of N ×Nℓ = Nℓ+1. The Okounkov body Δ (𝐿) = Δ𝑌• (𝐿) of L is then the base of the closed convex cone
Σ(𝐿) = Σ𝑌• (𝐿) ⊆ Rℓ+1 spanned by Γ(𝐿): that is, Δ (𝐿) = Σ(𝐿) ∩ ({1} × Rℓ).

For later use, we introduce some more notation. For a subspace 𝑉 ⊆ 𝐻0(𝑋, 𝐿) and an effective Weil
divisor E on some birational model 𝜋 : 𝑌 → 𝑋 of X, we set𝑉 (−𝐸) := 𝑉∩𝐻0(𝑌, 𝜋∗𝐿(−𝐸)) ⊆ 𝐻0(𝑋, 𝐿).
Let 𝑌• is an admissible flag over X of length r. Assume that L is Cartier and that each 𝑌𝑖 in the flag is a
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Cartier divisor in 𝑌𝑖−1. Then for every s-tuple (1 ≤ 𝑠 ≤ ℓ) of integers �𝑎 = (𝑎1, · · · , 𝑎𝑠) ∈ N𝑠 , following
[28], we define

𝑉 ( �𝑎) ⊆ 𝐻0(𝑌𝑠 , 𝐿 ⊗ O𝑌𝑠 (−𝑎1𝑌1 − 𝑎2𝑌2 − · · · − 𝑎𝑠𝑌𝑠))

inductively so that 𝑉 (𝑎1) = 𝑉 (−𝑎1𝑌1) |𝑌1 and

𝑉 (𝑎1, · · · , 𝑎𝑠) = 𝑉 (𝑎1, · · · , 𝑎𝑠−1) (−𝑎𝑠𝑌𝑠) |𝑌𝑠 (2 ≤ 𝑠 ≤ ℓ).

Note that F𝑌• induces a filtration on 𝑉 (𝑎1, · · · , 𝑎𝑠) indexed by Nℓ−𝑠 .

2.5. Multigraded linear series

Definition 2.9 [33, §4.3]. Let 𝐿1, · · · , 𝐿𝑟 be Q-Cartier Q-divisors on X. An N𝑟 -graded linear series 𝑊�•
on X associated to the 𝐿𝑖’s consists of finite-dimensional subspaces

𝑊 �𝑎 ⊆ 𝐻0(𝑋,O𝑋 (𝑎1𝐿1 + · · · + 𝑎𝑟 𝐿𝑟 ))

for each �𝑎 ∈ N𝑟 such that 𝑊�0 = C and 𝑊 �𝑎1 · 𝑊 �𝑎2 ⊆ 𝑊 �𝑎1+ �𝑎2 for all �𝑎1, �𝑎2 ∈ N𝑟 . The support
Supp(𝑊�•) ⊆ R𝑟 of 𝑊�• is defined as the closed convex cone spanned by all �𝑎 ∈ N𝑟 such that 𝑊 �𝑎 ≠ 0.
We say that 𝑊�• has bounded support if Supp(𝑊�•) ∩ ({1} × R𝑟−1) is bounded. For such 𝑊�•, we set

ℎ0 (𝑊𝑚,�•) :=
∑

�𝑎∈N𝑟−1

dim(𝑊𝑚, �𝑎)

for each 𝑚 ∈ N (it is a finite sum when 𝑊�• has bounded support) and define the volume of 𝑊�• as (where
𝑛 = dim 𝑋)

vol(𝑊�•) := lim sup
𝑚→∞

ℎ0(𝑊𝑚,�•)
𝑚𝑛+𝑟−1/(𝑛 + 𝑟 − 1)!

.

We say that 𝑊�• contains an ample series if the following conditions are satisfied:

1. Supp(𝑊�•) ⊆ R𝑟 contains a nonempty interior;
2. for any �𝑎 ∈ int(Supp(𝑊�•)) ∩ N𝑟 , 𝑊𝑘 �𝑎 ≠ 0 for 𝑘 � 0;
3. there exists some �𝑎0 ∈ int(Supp(𝑊�•)) ∩ N𝑟 and a decomposition �𝑎0 · �𝐿 = 𝐴 + 𝐸 (where �𝐿 =

(𝐿1, · · · , 𝐿𝑟 )) with A an ample Q-line bundle and E an effective Q-divisor such that 𝐻0 (𝑋, 𝑚𝐴) ⊆
𝑊𝑚 �𝑎0 for all sufficiently divisible m.

If 𝑌• is an admissible flag of length ℓ over X such that 𝐿1, · · · , 𝐿𝑟 are Cartier at the generic point of 𝑌ℓ ,
the multigraded semigroup of 𝑊�• with respect to 𝑌• is defined to be

Γ(𝑊�•) = Γ𝑌• (𝑊�•) := {( �𝑎, 𝜈(𝑠)) | 0 ≠ 𝑠 ∈ 𝑊 �𝑎} ⊆ N𝑟 × Nℓ = N𝑟+ℓ .

Remark 2.3. Note that the above definition is slightly more general than [33] since we allow divisors
𝐿𝑖 that may not be Cartier or integral. However, most results of [33, §4.3] carry over to our setting.
In particular, when 𝑊�• contains an ample series, one can verify as in [33, Lemma 4.20] that Γ(𝑊�•)
generates Z𝑟+ℓ as a group. If in addition W has bounded support, then we can define the associated
Okounkov body Δ (𝑊�•) = Δ𝑌• (𝑊�•) as Σ(𝑊�•) ∩ ({1} ×R𝑟−1+ℓ), where Σ(𝑊�•) is the closed convex cone
spanned by Γ(𝑊�•). When ℓ = 𝑛 = dim 𝑋 , we let Γ𝑚 = Γ(𝑊�•) ∩ ({𝑚} × N𝑟−1+𝑛) and let

𝜌𝑚 =
1

𝑚𝑟−1+𝑛

∑
𝑎∈Γ𝑚

𝛿𝑚−1𝑎 (2.4)
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be the atomic positive measure on Δ (𝑊�•). Then by [7, Théorème 1.12], 𝜌𝑚 converges weakly as 𝑚 → ∞
to the Lebesgue measure on Δ (𝑊�•). In particular, we have vol(𝑊�•) = (𝑛 + 𝑟 − 1)! · vol(Δ (𝑊�•)) as in
[33, Theorem 2.13]. By [33, Corollary 4.22], there is also a continuous function

vol𝑊�• : int(Supp(𝑊�•)) → R (2.5)

such that for any integer vector �𝑎 ∈ int(Supp(𝑊�•)), vol𝑊�• ( �𝑎) equals the volume of the graded linear
series {𝑊𝑚 �𝑎}𝑚∈N.

We give some examples of multigraded linear series that naturally arise in our later analysis (i.e., when
applying inversion of adjunction to basis type divisors compatible with a given divisor or admissible
flag). The following lemma ensures that the graded linear series we construct contains an ample series.

Lemma 2.4. Let𝑊�• be anN𝑟 -graded linear series on X with bounded support and containing an ample
series. Then for any admissible flag𝑌• of length ℓ over X such that 𝐿1, · · · , 𝐿𝑟 are Cartier at the generic
point of 𝑌ℓ and any 𝛾 ∈ int(Σ(𝑊�•)) ∩ N𝑟+ℓ , we have 𝑘𝛾 ∈ Γ(𝑊�•) when 𝑘 � 0.

Proof. By [33, Lemma 4.20] as in the previous remark, the semigroup Γ(𝑊�•) generates Z𝑟+ℓ as a group.
Let Γ ⊆ Γ(𝑊�•) be a finitely generated subsemigroup that still generates Z𝑟+ℓ and such that 𝛾 ∈ int(Σ),
where Σ ⊆ Σ(𝑊�•) is the subcone generated by Γ. By [29, Proposition 3], there exists some 𝛾0 ∈ Γ such
that

(Σ + 𝛾0) ∩ N𝑟+ℓ ⊆ Γ ⊆ Γ(𝑊�•).

As 𝛾 ∈ int(Σ), we have 𝑘𝛾 ∈ Σ + 𝛾0 when 𝑘 � 0, and thus the lemma follows. �

Example 2.5. Let L be a big line bundle on X. The complete linear series associated to L is theN-graded
linear series 𝑉�• on X defined by 𝑉𝑚 = 𝐻0(𝑋, 𝑚𝐿). It is clear that 𝑉�• has bounded support and contains
an ample series.

Example 2.6. Let 𝐿1, · · · , 𝐿𝑟 be Cartier divisors on X, and let 𝑉�• be an N𝑟 -graded linear series
associated to the 𝐿𝑖s. Denote �𝐿 = (𝐿1, · · · , 𝐿𝑟 ). Let F be a primitive divisor over X with associated
prime blowup 𝜋 : 𝑌 → 𝑋 , and let F be the induced filtration on 𝑉�• (see Example 2.2). Assume that F
is either Cartier on Y or of plt type. In the latter case, we define 𝐹 |𝐹 as the Q-divisor class given by
Lemma 2.1. Then in both cases,

𝑊 �𝑎, 𝑗 = F 𝑗𝑉�𝑎/F 𝑗+1𝑉�𝑎

can be naturally identified with the image of F 𝑗𝑉�𝑎 under the composition

F 𝑗𝑉�𝑎 → 𝐻0(𝑌, 𝜋∗( �𝑎 · �𝐿) − 𝑗𝐹) → 𝐻0(𝐹, 𝜋∗( �𝑎 · �𝐿) |𝐹 − 𝑗𝐹 |𝐹 )

(this is clear if F is Cartier on Y; when F is of plt type, we use Lemma 2.1). It follows that 𝑊�• is an
N𝑟+1-graded linear series on F (associated to the divisors 𝜋∗𝐿1 |𝐹 , · · · , 𝜋∗𝐿𝑟 |𝐹 and −𝐹 |𝐹 ), called the
refinement of 𝑉�• by F. It is not hard to see that 𝑊�• has bounded support if 𝑉�• does (see, for example,
[33, Remark 1.12]). We show that 𝑊�• contains an ample series if 𝑉�• does. Indeed, condition (1) and (3)
are easy to verify as 𝑉�• contains an ample series. For condition (2), consider the admissible flag 𝑌0 = 𝑌 ,
𝑌1 = 𝐹; then we see that 𝑊 �𝑎, 𝑗 ≠ 0 if and only if ( �𝑎, 𝑗) ∈ Γ𝑌• (𝑉�•), and hence condition (2) follows from
Lemma 2.4.

Example 2.7. More generally, let 𝐿1, · · · , 𝐿𝑟 be Cartier divisors on X, let 𝑉�• be an N𝑟 -graded linear
series associated to the 𝐿𝑖’s, and let 𝑌• be an admissible flag of length ℓ over X. Assume that each 𝑌𝑖 in
the flag is a Cartier divisor in 𝑌𝑖−1. Then in the notation of Section 2.4,

𝑊 �𝑎,𝑏1 , · · · ,𝑏ℓ = 𝑉�𝑎 (𝑏1, · · · , 𝑏ℓ)
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defines an N𝑟+ℓ-graded linear series on 𝑌ℓ . We call it the refinement of 𝑉�• by 𝑌•. As in the previous
example, one can check that 𝑊�• has bounded support (respectively, contains an ample series) if𝑉�• does.

2.6. Invariants associated to filtered multigraded linear series

Definition 2.10. Let 𝑊�• be an N𝑟 -graded linear series. A filtration F on 𝑊�• (indexed by Λ) is given
by a filtration on each 𝑊 �𝑎 (�𝑎 ∈ N𝑟 ) such that F𝜆1𝑊 �𝑎1 · F𝜆2𝑊 �𝑎2 ⊆ F𝜆1+𝜆2𝑊 �𝑎1+ �𝑎2 for all 𝜆𝑖 ∈ Λ and all
�𝑎𝑖 ∈ N𝑟 . If Λ ⊆ R, we say the filtration F is linearly bounded if there exist constants 𝐶1 and 𝐶2 such
that F𝜆𝑊 �𝑎 = 𝑊 �𝑎 for all 𝜆 < 𝐶1 | �𝑎 | and F𝜆𝑊 �𝑎 = 0 for all 𝜆 > 𝐶2 | �𝑎 |.

One can generalise the definition of basis type divisors, S-invariants and stability thresholds to filtered
multigraded linear series.

Definition 2.11. Let 𝑊�• be an N × N𝑟 -graded linear series with bounded support. Let 𝑀 (𝑊�•) be the
set of 𝑚 ∈ N+ such that 𝑊𝑚, �𝑎 ≠ 0 for some �𝑎 ∈ N𝑟 . Let 𝑚 ∈ 𝑀 (𝑊�•), and let 𝑁𝑚 = ℎ0 (𝑊𝑚,�•). We say
that D is an m-basis type divisor (respectively, Q-divisor) of 𝑊�• if there exist basis type divisors 𝐷 �𝑎 of
𝑊𝑚, �𝑎 for each �𝑎 ∈ N𝑟 such that

𝐷 =
∑
�𝑎∈N𝑟

𝐷 �𝑎 respectively, 𝐷 =
1

𝑚𝑁𝑚

∑
�𝑎∈N𝑟

𝐷 �𝑎 .

When 𝑟 = 0 and 𝑊�• is the complete linear series associated to L, this reduces to the usual definition of
m-basis type (Q-)divisors of L (compare to Section 2.2). Let F be a filtration on 𝑊�•, and let D be an
m-basis type (Q-)divisor of 𝑊�•. We say that D is compatible with F if all the 𝐷 �𝑎 above has the form
𝐷 �𝑎 =

∑𝑁
𝑖=1{𝑠𝑖 = 0} for some basis 𝑠𝑖 (𝑖 = 1, · · · , 𝑁) of 𝑊𝑚, �𝑎 that is compatible with F. In particular,

we say that D is compatible with a divisor E (respectively, an admissible flag 𝑌•) if it is compatible with
the filtration induced by E (respectively, 𝑌•). Note that the divisor class 𝑐1 (𝐷) ∈ Cl(𝑋)Q of an m-basis
type divisor does not depend on the choice of D. We denote it by 𝑐1 (𝑊𝑚,�•).

Definition 2.12. Let (𝑋,Δ) be a klt pair, and let Z be a closed subset of X. Let 𝑊�• be an N×N𝑟 -graded
linear series on X with bounded support, let F,G be filtrations on 𝑊�•, and let 𝑣 ∈ Val∗𝑋 be a valuation
on X. Assume that G is a linearly bounded, left continuous R-filtration and 𝐴𝑋,Δ (𝑣) < ∞. Associated to
G, we have a valuation-like function 𝑣G : 𝑊�• → R given by

𝑠 ∈ 𝑊 �𝑎 ↦→ sup{𝜆 ∈ R | 𝑠 ∈ G𝜆𝑊 �𝑎}.

If 𝐷 = 1
𝑚𝑁𝑚

∑𝑁𝑚

𝑖=1 {𝑠𝑖 = 0} is an m-basis type Q-divisor D of 𝑊�•, where each 𝑠𝑖 ∈ 𝑊𝑚, �𝑎 for some
�𝑎 ∈ N𝑟 , then we define

𝑣G (𝐷) = 1
𝑚𝑁𝑚

𝑁𝑚∑
𝑖=1

𝑣G (𝑠𝑖).

Clearly 𝑣G = 𝑣 if G = F𝑣 is the filtration induced by the valuation v. Similar to Section 2.2, for each
𝑚 ∈ 𝑀 (𝑊�•), we set

𝑆𝑚 (𝑊�•,F;G) = sup
𝐷

𝑣G (𝐷), 𝑆𝑚(𝑊�•,F; 𝑣) = 𝑆𝑚 (𝑊�•,F;F𝑣 ) = sup
𝐷

𝑣(𝐷),

where the supremum runs over all m-basis type Q-divisors D of 𝑊�• that are compatible with F. We also
set

𝛿𝑚(𝑊�•,F ) = 𝛿𝑚 (𝑋,Δ;𝑊�•,F) = inf
𝐷

lct(𝑋,Δ; 𝐷)

𝛿𝑍,𝑚 (𝑊�•,F) = 𝛿𝑍,𝑚 (𝑋,Δ;𝑊�•,F) = inf
𝐷

lct𝑍 (𝑋,Δ; 𝐷),
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where the infimum runs over all m-basis type Q-divisors D of 𝑊�• that are compatible with F. We then
define

𝑆(𝑊�•,F;G) = lim sup
𝑚→∞

𝑆𝑚 (𝑊�•,F;G), 𝑆(𝑊�•,F; 𝑣) = 𝑆(𝑊�•,F;F𝑣 )

and similarly the (adjoint) stability thresholds 𝛿(𝑊�•,F) (respectively, 𝛿𝑍 (𝑊�•,F )) of a filtered multi-
graded linear series 𝑊�•. If E is a divisor over X, we set 𝑆(𝑊�•,F; 𝐸) = 𝑆(𝑊�•,F; ord𝐸 ) and
𝑆𝑚 (𝑊�•,F; 𝐸) = 𝑆𝑚 (𝑊�•,F; ord𝐸 ). When the filtration F is trivial (i.e., F𝜆𝑊 �𝑎 equals 𝑊 �𝑎 when 𝜆 ≤ 0
and is 0 when 𝜆 > 0), we simply write 𝑆(𝑊�•;G), 𝛿(𝑊�•), 𝛿𝑍 (𝑊�•), and so on.
Remark 2.8. When L is a big line bundle on X and 𝑊�• is the complete linear series associated to L, we
have 𝑆(𝑊�•; 𝑣) = 𝑆(𝐿; 𝑣) for any valuation v on X; similarly, 𝛿(𝑊�•) = 𝛿(𝐿) and 𝛿𝑍 (𝑊�•) = 𝛿𝑍 (𝐿) for
any closed subset 𝑍 ⊆ 𝑋 .

The following statement is the direct generalisation of [2] to multigraded linear series.
Lemma 2.9. Let (𝑋,Δ) be a klt pair, and let 𝑍 ⊆ 𝑋 be a subvariety. Let 𝑊�• be anN×N𝑟 -graded linear
series with bounded support that contains an ample series. Then 𝑆(𝑊�•;F ) = lim𝑚→∞ 𝑆𝑚(𝑊�•;F) for
any linearly bounded, left continuous R-filtration F on 𝑊�•, and we have

𝛿(𝑊�•) = inf
𝐸

𝐴𝑋,Δ (𝐸)
𝑆(𝑊�•; 𝐸) = inf

𝑣

𝐴𝑋,Δ (𝑣)
𝑆(𝑊�•; 𝑣) respectively,

𝛿𝑍 (𝑊�•) = inf
𝐸,𝑍 ⊆𝐶𝑋 (𝐸)

𝐴𝑋,Δ (𝐸)
𝑆(𝑊�•; 𝐸) = inf

𝑣,𝑍 ⊆𝐶𝑋 (𝑣)

𝐴𝑋,Δ (𝑣)
𝑆(𝑊�•; 𝑣) ,

where the first infimum runs over all divisors E over X (respectively, all divisors E over X whose centre
contains Z) and the second infimum runs over all valuations 𝑣 ∈ Val∗𝑋 (respectively, all valuations
𝑣 ∈ Val∗𝑋 whose centre contains Z) such that 𝐴𝑋,Δ (𝑣) < ∞. Moreover, it holds that

𝛿(𝑊�•) = lim
𝑚→∞

𝛿𝑚 (𝑊�•) and 𝛿𝑍 (𝑊�•) = lim
𝑚→∞

𝛿𝑍,𝑚 (𝑊�•).

In view of this lemma, we say that a divisor E over X (or a valuation 𝑣 ∈ Val∗𝑋 ) computes 𝛿(𝑊�•)
(respectively, 𝛿𝑍 (𝑊�•)) if it achieves the above infimum.

Proof. The argument is almost identical to those in [2] (which is in turn based on [8]). Using the filtration
F, we define a family𝑊 𝑡

�• of multigraded linear series on X (indexed by 𝑡 ∈ R) where𝑊 𝑡
𝑚, �𝑎 = F𝑚𝑡𝑊𝑚, �𝑎.

Set

𝑇𝑚 (𝑊�•;F ) = max{ 𝑗 ∈ N |F 𝑗𝑊𝑚, �𝑎 ≠ 0 for some �𝑎}.

It is easy to see that the sequence 𝑇𝑚 (𝑊�•;F) is super-additive, and we set

𝑇 (𝑊�•;F) = lim
𝑚→∞

𝑇𝑚 (𝑊�•;F )
𝑚

= sup
𝑚∈N

𝑇𝑚 (𝑊�•;F )
𝑚

.

One can check as in [8, Lemma 1.6] that for any 𝑡 < 𝑇 (𝑊�•;F), the multigraded linear series 𝑊 𝑡
�•

contains an ample series. Therefore, for any fixed admissible flag 𝑌• of length 𝑛 = dim 𝑋 centered at
a general point of X, we have the associated Okounkov bodies Δ 𝑡 = Δ𝑌• (𝑊 𝑡

�•) (𝑡 ∈ R). The result is
now simply a consequence of properties of Okounkov bodies. More precisely, consider the function
𝐺 : Δ := Δ0 → [0, 𝑇 (𝑊�•;F )] given by

𝐺 (𝛾) = sup{𝑡 ∈ R | 𝛾 ∈ Δ 𝑡 }.

It is straightforward to check that G is concave and hence continuous in the interior of Δ . By the
exact same proof of [2, Lemma 2.9] (using [8, Theorem 1.11]), we get the equality (where 𝜌 is the
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Lebesgue measure on Δ0)

𝑆(𝑊�•;F) = 1
vol(Δ)

∫
Δ
𝐺d𝜌 = lim

𝑚→∞
𝑆𝑚(𝑊�•;F)

and an estimate

𝑆𝑚 (𝑊�•;F ) ≤ 𝑚𝑛+𝑟

ℎ0 (𝑊𝑚,�•)

∫
Δ
𝐺d𝜌𝑚,

where 𝜌𝑚 is as in equation (2.4) (note that Δ = Δ (𝑊�•)). Applied to F = F𝑣 , the argument of [2,
Lemma 2.2 and Corollary 2.10] then implies that for any 𝜖 > 0, there exists some 𝑚0 = 𝑚0 (𝜖) such that
𝑆𝑚 (𝑊�•; 𝑣) ≤ (1 + 𝜖)𝑆(𝑊�•; 𝑣) for any valuation 𝑣 ∈ Val∗𝑋 with 𝐴𝑋,Δ (𝑣) < ∞ and any 𝑚 ≥ 𝑚0 (the key
point is that 𝑚0 doesn’t depend on v). The remaining equalities in the lemma now follow from the exact
same proof of [2, Theorem 4.4]. �

The above proof also gives a formula for the S-invariants of multigraded linear series, similar to the
one in Definition 2.2.

Corollary 2.13. Notation as above. Then 𝑆(𝑊�•;F ) = 1
vol(𝑊�•)

∫ ∞
0 vol(𝑊 𝑡

�•)d𝑡.

Proof. We already have 𝑆(𝑊�•;F) = 1
vol(Δ)

∫
Δ
𝐺d𝜌. It is not hard to see that

∫
Δ
𝐺d𝜌 =

∫ ∞
0 vol(Δ 𝑡 )d𝑡.

Since vol(𝑊�•) = (𝑛 + 𝑟)! · vol(Δ) and vol(𝑊 𝑡
�•) = (𝑛 + 𝑟)! · vol(Δ 𝑡 ) for all 𝑡 ≥ 0 (see Remark 2.3), the

result follows. �

We also provide a more explicit formula for the volumes vol(𝑊 𝑡
�•). To this end, let 𝑊�• and F be as in

Lemma 2.9, let Δ 𝑡supp = Supp(𝑊 𝑡
�•) ∩ ({1} × R𝑟 ), and let

vol𝑊 𝑡
�•

: int(Δ 𝑡supp) → R

be the volume function as in equation (2.5). Then we have

Lemma 2.10. vol(𝑊 𝑡
�•) =

(𝑛+𝑟 )!
𝑛!

∫
Δ𝑡

supp
vol𝑊 𝑡

�•
(𝛾)d𝛾.

Proof. Let pr : R𝑟+1+𝑛 → R𝑟+1 be the projection to the first 𝑟 + 1 coordinates that induces a map
𝑝 : Δ 𝑡 → Δ 𝑡supp. By [33, Theorem 2.13 and 4.21], we know that vol(𝑊 𝑡

�•) = (𝑛 + 𝑟)! · vol(Δ 𝑡 ) and
vol𝑊 𝑡

�•
(𝛾) = 𝑛! · vol(𝑝−1 (𝛾)) for all 𝛾 ∈ int(Δ 𝑡supp). The lemma then follows from the obvious identity

vol(Δ 𝑡 ) =
∫
Δ𝑡

supp
vol(𝑝−1 (𝛾))d𝛾. �

Recall that for any Q-Cartier big divisor L on X and any integer 𝑘 > 0, we have 𝛿(𝑘𝐿) = 1
𝑘 𝛿(𝐿).

This can be generalised to multigraded linear series as follows. Let 𝐿1, · · · , 𝐿𝑟 be Q-Cartier Q-divisors
on X, and let 𝑊�• be an N𝑟 -graded linear series associated to them. Let 𝑘 > 0 be an integer such that 𝑘𝐿𝑖
is Cartier for all 1 ≤ 𝑖 ≤ 𝑟 . Set 𝑊 ′

�𝑎 = 𝑊𝑘 �𝑎 (�𝑎 ∈ N𝑟 ); then 𝑊 ′
�• is an N𝑟 -graded linear series associated to

𝑘𝐿1, · · · , 𝑘𝐿𝑟 .

Lemma 2.11. In the above notation, assume that𝑊�• contains an ample series and has bounded support.
Then

1. 𝑆(𝑊 ′
�•; 𝑣) = 𝑘 · 𝑆(𝑊�•; 𝑣) for any valuation v on X;

2. 𝛿(𝑊�•) = 𝑘 · 𝛿(𝑊 ′
�•) and 𝛿𝑍 (𝑊�•) = 𝑘 · 𝛿𝑍 (𝑊 ′

�•) for any subvariety Z of X.

In particular, this implies that for the calculation of stability thresholds, we only need to consider
multigraded linear series associated to Cartier divisors.
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Proof. We use the same notation as in the proof of Lemma 2.9 and let Δ ′, 𝐺 ′, and so on be the
counterparts on 𝑊 ′

�•. Let 𝑓 : R𝑟+𝑛 → R𝑟+𝑛 be given by

(𝑥1, · · · , 𝑥𝑟+𝑛) ↦→ (𝑘𝑥1, · · · , 𝑘𝑥𝑟 , 𝑥𝑟+1, · · · , 𝑥𝑟+𝑛).

We claim that

Σ(𝑊�•) = 𝑓 (Σ(𝑊 ′
�•)). (2.6)

Indeed, it is clear from the construction that 𝑓 (Γ(𝑊 ′
�•)) ⊆ Γ(𝑊�•), hence 𝑓 (Σ(𝑊 ′

�•)) ⊆ Σ(𝑊�•). On the
other hand, from the proof of Lemma 2.4, we know that there exists some 𝛾0 ∈ Γ(𝑊�•) such that

(Σ(𝑊�•) + 𝛾0) ∩ N𝑟+𝑛 ⊆ Γ(𝑊�•),

hence as 𝑓 (Γ(𝑊 ′
�•)) = 𝑓 (N𝑟+𝑛) ∩ Γ(𝑊�•), we have (Σ(𝑊�•) + 𝛾0) ∩ 𝑓 (N𝑟+𝑛) ⊆ 𝑓 (Γ(𝑊 ′

�•)) and therefore
Σ(𝑊�•) ⊆ 𝑓 (Σ(𝑊 ′

�•)), which proves the claim.
It follows from equation (2.6) that Δ (𝑊�•) = 1

𝑘 𝑓 (Δ (𝑊 ′
�•)) (recall that we identify Δ (𝑊�•) as a subset

of {1} × R𝑟−1+𝑛). Replace 𝑊�• with 𝑊 𝑡/𝑘
�• , noting that 𝑊 ′𝑡

𝑚, �𝑎 := F𝑚𝑡𝑊 ′
𝑚, �𝑎 = 𝑊 𝑡/𝑘

𝑘𝑚,𝑘 �𝑎, and we deduce
Δ 𝑡/𝑘 = 1

𝑘 𝑓 (Δ
′𝑡 ). Hence Δ = 1

𝑘 𝑓 (Δ
′) and

𝐺

(
𝑓 (𝛾)
𝑘

)
=
𝐺 ′(𝛾)
𝑘

(2.7)

for any 𝛾 ∈ Δ ′. Substitute it into the equality 𝑆(𝑊�•; 𝑣) = 1
vol(Δ)

∫
Δ
𝐺d𝜌 from the proof of Lemma 2.9,

we obtain 𝑆(𝑊�•; 𝑣) = 1
𝑘 𝑆(𝑊

′
�•; 𝑣). The remaining parts of the lemma now follow immediately from

Lemma 2.9. �

To further analyse basis type divisors of 𝑊�•, for each �𝑎 ∈ N𝑟+1 with 𝑊 �𝑎 ≠ 0, we let 𝑀 �𝑎 (respectively,
𝐹�𝑎) be the movable (respectively, fixed) part of the linear system |𝑊 �𝑎 |. Thus we have a decomposition
|𝑊 �𝑎 | = |𝑀 �𝑎 | + 𝐹�𝑎. For each 𝑚 ∈ 𝑀 (𝑊�•), let

𝐹𝑚 = 𝐹𝑚 (𝑊�•) :=
1

𝑚 · ℎ0 (𝑊𝑚,�•)

∑
�𝑎∈N𝑟

dim(𝑊𝑚, �𝑎) · 𝐹𝑚, �𝑎 .

Then it is clear that every m-basis type Q-divisor D of 𝑊�• can be decomposed as 𝐷 = 𝐷 ′ + 𝐹𝑚, where
𝐷 ′ is an m-basis type Q-divisor of 𝑀�• (the definition of basis type divisors works for any collection of
linear series indexed by N × N𝑟 ). We next study the asymptotic behaviour of 𝐷 ′ and 𝐹𝑚.

Lemma-Definition 2.14. Let 𝐿0, · · · , 𝐿𝑟 be Q-Cartier Q-divisors on X, and let 𝑊�• be an associated
N×N𝑟 -graded linear series that has bounded support and contains an ample series. Then in the notation
of Definition 2.11, the limit

𝑐1(𝑊�•) := lim
𝑚→∞

𝑐1 (𝑊𝑚,�•)
𝑚 · ℎ0 (𝑊𝑚,�•)

exists in Pic(𝑋)R. Similarly, lim𝑚→∞ ord𝐷𝐹𝑚 exists for any prime divisor 𝐷 ⊆ 𝑋 . We will formally write

𝐹 (𝑊�•) :=
∑
𝐷

( lim
𝑚→∞

ord𝐷 (𝐹𝑚)) · 𝐷.

When this is a finite sum, we set 𝑐1 (𝑀�•) := 𝑐1 (𝑊�•) − 𝐹 (𝑊�•) ∈ Cl(𝑋)R.
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Proof. Let �𝐿 = (𝐿1, · · · , 𝐿𝑟 ). In the notation of Definitions 2.9 and 2.11, we have

𝑐1 (𝑊𝑚,�•)
𝑚 · ℎ0 (𝑊𝑚,�•)

= 𝐿0 +
∑

�𝑎∈N𝑟 ℎ
0 (𝑊𝑚, �𝑎) · ( �𝑎 · �𝐿)

𝑚 · ℎ0 (𝑊𝑚,�•)
.

Thus for 𝑐1 (𝑊�•), it suffices to show that lim𝑚→∞
∑

�𝑎∈N𝑟 ℎ
0 (𝑊𝑚, �𝑎) ·𝑎𝑖

𝑚·ℎ0 (𝑊𝑚,�•)
exists for each 1 ≤ 𝑖 ≤ 𝑟 . In the

notation of Remark 2.3, we have ∑
�𝑎∈N𝑟 ℎ

0 (𝑊𝑚, �𝑎) · 𝑎𝑖
𝑚 · ℎ0 (𝑊𝑚,�•)

=

∫
𝑥𝑖d𝜌𝑚∫
d𝜌𝑚

,

where 𝑥𝑖 denotes the ith entry of an element of R𝑟+𝑛. Hence by [7, Théorème 1.12], the limit exists and
equals 1

vol(Δ)
∫
Δ
𝑥𝑖d𝜌, where Δ = Δ (𝑊�•).

For 𝐹 (𝑊�•), it suffices to show that lim𝑚→∞ ord𝐷 (𝐹𝑚) exists for any prime divisor D. First note that
since 𝑊�• has bounded support, there exists some constant 𝐶1 > 0 such that | �𝑎 | ≤ 𝐶1𝑚 for any �𝑎 ∈ N𝑟
with 𝑊𝑚, �𝑎 ≠ 0. Thus as 𝑚𝐿0 + �𝑎 · �𝐿 − 𝐹𝑚, �𝑎 is effective, we further deduce ord𝐷 (𝐹𝑚, �𝑎) ≤ 𝑇𝑚 for some
absolute constant T. Let Δ0 := int(Supp(𝑊�•)) ∩ ({1} × R𝑟 ) ⊆ R𝑟 . Since 𝑊 �𝑎 ·𝑊 �𝑎′ ⊆ 𝑊 �𝑎+ �𝑎′ , we have
𝐹�𝑎 + 𝐹�𝑎′ ≥ 𝐹�𝑎+ �𝑎′ (whenever 𝑊 �𝑎,𝑊 �𝑎′ ≠ 0); thus if we let

𝑓𝑊�• ,𝐷 (𝛾) := inf
𝑚

ord𝐷 (𝐹𝑚,𝑚 �𝛾)
𝑚

= lim
𝑚→∞

ord𝐷 (𝐹𝑚,𝑚 �𝛾)
𝑚

for 𝛾 ∈ Δ0 ∩ Q𝑟 , where the infimum and limit are taken over sufficiently divisible integers m, then
𝑓𝑊�• ,𝐷 (𝑡𝛾1 + (1 − 𝑡)𝛾2) ≤ 𝑡 𝑓𝑊�• ,𝐷 (𝛾1) + (1 − 𝑡) 𝑓𝑊�• ,𝐷 (𝛾2) for any 𝛾1, 𝛾2 ∈ Δ0. Therefore it naturally
extends to a convex (and hence continuous) function 𝑓𝑊�• ,𝐷 on Δ0. For simplicity, we denote 𝑓𝑊�• ,𝐷 by
f. By the previous discussion, 𝑓 (𝛾) ≤ 𝑇 for all 𝛾 ∈ Δ0.

We claim that 𝑓 (𝛾) = lim𝑚→∞ 𝑓𝑚(𝛾) for any 𝛾 ∈ Δ0 where

𝑓𝑚(𝛾) :=

{
1
𝑚ord𝐷 (𝐹𝑚, �𝑚 �𝛾� ) if 𝑊𝑚, �𝑚 �𝛾� ≠ 0
𝑇 if 𝑊𝑚, �𝑚 �𝛾� = 0.

Indeed, as 𝑓𝑚(𝛾) ≥ 𝑓 ( �𝑚 �𝛾�
𝑚 ) (𝑚 � 0) by definition, we have

lim inf
𝑚→∞

𝑓𝑚(𝛾) ≥ lim
𝑚→∞

𝑓 ( �𝑚 �𝛾�
𝑚

) = 𝑓 (𝛾).

To get the reverse direction, let 𝜀 > 0 and choose 𝛾𝑖 ∈ Δ0 ∩ Q𝑟 (𝑖 = 0, · · · , 𝑟) that are sufficiently close
to 𝛾 such that their convex hull contains 𝛾 in the interior and 𝑓 (𝛾𝑖) < 𝑓 (𝛾) + 𝜀. Then we may choose
some sufficiently divisible 𝑚0 ∈ N such that 𝑓𝑚0 (𝛾𝑖) < 𝑓 (𝛾) + 𝜀. Let Π ⊆ R𝑟+1 be the cone spanned by
all the 𝛾𝑖s. From the proof of Lemma 2.4, we know that there exists some �𝑎0 ∈ N𝑟+1 such that 𝑊 �𝑎 ≠ 0
for all �𝑎 ∈ (Π + �𝑎0) ∩ N𝑟+1 (consider the semigroup { �𝑎 |𝑊 �𝑎 ≠ 0} ⊆ N𝑟+1, choose a finitely generated
subsemigroup that generates Z𝑟+1 such that the cone it spans contains Π, and apply [29, Proposition 3]).
Then one can verify that there exists some constant 𝐶 > 0 such that for all 𝑚 � 0, we have

(𝑚, �𝑚 �𝛾�) = �𝑎 +
𝑟∑
𝑖=0

𝑘𝑖 (𝑚0, 𝑚0𝛾𝑖)

for some 𝑘𝑖 ∈ N and some �𝑎 ∈ N𝑟+1 satisfying 𝑊 �𝑎 ≠ 0 and | �𝑎 | ≤ 𝐶. In particular, |𝑚 − 𝑚0
∑

𝑘𝑖 | ≤ 𝐶
and ord𝐷 (𝑊 �𝑎) ≤ 𝐶𝑇 . It follows that
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ord𝐷 (𝐹𝑚, �𝑚 �𝛾� ) ≤ ord𝐷 (𝑊 �𝑎) +
𝑟∑
𝑖=0

𝑘𝑖ord𝐷 (𝐹𝑚0 ,𝑚0𝛾𝑖 ) = ord𝐷 (𝑊 �𝑎) +
𝑟∑
𝑖=0

𝑘𝑖𝑚0 𝑓𝑚0 (𝛾𝑖)

≤ ord𝐷 (𝑊 �𝑎) + (𝑚 − 𝐶) ( 𝑓 (𝛾) + 𝜀) ≤ 𝐶𝑇 + (𝑚 − 𝐶) ( 𝑓 (𝛾) + 𝜀).

Hence lim sup𝑚→∞ 𝑓𝑚(𝛾) ≤ 𝑓 (𝛾) + 𝜀. Since 𝜀 > 0 is arbitrary, we get lim sup𝑚→∞ 𝑓𝑚(𝛾) ≤ 𝑓 (𝛾), and
this proves the claim. Note that the argument also shows 𝑊𝑚, �𝑚 �𝛾� ≠ 0 for 𝑚 � 0.

It is clear that

ord𝐷 (𝐹𝑚) =
∫
( 𝑓𝑚 ◦ 𝑝)d𝜌𝑚∫

d𝜌𝑚
,

where 𝑝 : Δ = Δ (𝑊�•) → Δ0 is the natural projection. By dominated convergence and the above claim,
the latter limit exists and equals 1

vol(Δ)
∫
Δ
( 𝑓 ◦ 𝑝)d𝜌. �

For later calculations, we extract a formula for 𝐹 (𝑊�•) from the above proof.

Corollary 2.15. Let 𝑊�• be an N×N𝑟 -graded linear series on X that has bounded support and contains
an ample series, and let D be a prime divisor. Then

ord𝐷 (𝐹 (𝑊�•)) =
(𝑛 + 𝑟)!

𝑛!
· 1

vol(𝑊�•)

∫
Δsupp

𝑓 (𝛾)vol𝑊�• (𝛾)d𝛾,

where Δsupp = Supp(𝑊�•) ∩ ({1} ×R𝑟 ), 𝑓 (𝛾) = 𝑓𝑊�• ,𝐷 (𝛾) := lim𝑚→∞
1
𝑚ord𝐷 (𝐹𝑚, �𝑚 �𝛾� ), 𝑛 = dim 𝑋 and

vol𝑊�• (·) is as in equation (2.5).

Proof. The above proof gives ord𝐷 (𝐹 (𝑊�•)) = 1
vol(Δ)

∫
Δ
( 𝑓 ◦ 𝑝)d𝜌. We have vol(𝑊�•) = (𝑛+𝑟)! ·vol(Δ),

𝑝(Δ) = Δsupp and vol𝑊�• (𝛾) = 𝑛! · vol(𝑝−1 (𝛾)) for any 𝛾 ∈ int(Δsupp). These together imply the given
formula. �

Most multigraded linear series considered in this paper come from the refinement of some complete
linear series by a divisor or a flag. To simplify computations, we often carefully choose the divisor
(or flag) so that the corresponding multigraded linear series behaves like complete linear systems
associated to multiples of a fixed line bundle.

Definition 2.16. Let L be a big line bundle on X, and let 𝑊�• be an N × N𝑟 -graded linear series. We say
that 𝑊�• is almost complete (with respect to L) if the following two conditions are both satisfied:

1. there are at most finitely many prime divisors 𝐷 ⊆ 𝑋 with ord𝐷 (𝐹 (𝑊�•)) > 0 (so that 𝐹 (𝑊�•) is an
R-divisor);

2. for every �𝛾 ∈ Q𝑟 in the interior of Δsupp := Supp(𝑊�•) ∩ ({1} × R𝑟 ) and all sufficiently divisible
integers m (depending on �𝛾), we have |𝑀𝑚,𝑚 �𝛾 | ⊆ |𝐿𝑚, �𝛾 | for some 𝐿𝑚, �𝛾 ≡ ℓ𝑚, �𝛾𝐿 and some ℓ𝑚, �𝛾 ∈ N
(where 𝑀�• is the movable part of 𝑊�•) such that

ℎ0 (𝑊𝑚,𝑚 �𝛾)
ℎ0(𝑋, ℓ𝑚, �𝛾𝐿)

=
ℎ0 (𝑀𝑚,𝑚 �𝛾)
ℎ0 (𝑋, ℓ𝑚, �𝛾𝐿)

→ 1

as 𝑚 → ∞.

Example 2.12. Let L be an ample line bundle on X, and let 𝐻 ∈ |𝐿 |. Assume that H is irreducible and
reduced. Let 𝑉�• be the complete linear series associated to 𝑟𝐿 for some positive integer r, and let 𝑊�• be
its refinement by H (Example 2.6). Then the N2-graded linear series 𝑊�• is almost complete. Indeed, we
have 𝑊𝑚, 𝑗 = | (𝑚𝑟 − 𝑗)𝐿 |𝐻 ; but since L is ample, the natural restriction 𝐻0(𝑋, 𝑘𝐿) → 𝐻0(𝐻, 𝑘𝐿 |𝐻 ) is
surjective when 𝑘 � 0, hence 𝑊𝑚, 𝑗 = | (𝑚𝑟 − 𝑗)𝐿0 | (where 𝐿0 = 𝐿 |𝐻 ) and 𝐹𝑚, 𝑗 = 0 when 𝑚𝑟 − 𝑗 � 0,
so the conditions of Definition 2.16 are satisfied and 𝐹 (𝑊�•) = 0. More generally, if 𝑌• is an admissible
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flag on X (i.e., 𝑌0 = 𝑋) such that each 𝑌𝑖 is Cartier on 𝑌𝑖−1 and 𝑌𝑖 ∼ 𝑚𝑖𝐿 |𝑌𝑖−1 for some 𝑚𝑖 ∈ N, then the
refinement of 𝑉�• by 𝑌• (Example 2.7) is almost complete as well.

Lemma 2.13. Let L be a big line bundle on X, and let 𝑊�• be an N × N𝑟 -graded linear series. Assume
that 𝑊�• has bounded support, contains an ample series and is almost complete with respect to L. Then

1. 𝐹 (𝑊�•) is R-Cartier (i.e., it is an R-linear combination of Cartier divisors);
2. there exists a constant 𝜇 = 𝜇(𝑋, 𝐿,𝑊�•) such that 𝑐1(𝑀�•) = 𝜇𝐿 in NS(𝑋)R and

𝑆(𝑊�•; 𝑣) = 𝜇 · 𝑆(𝐿; 𝑣) + 𝑣(𝐹 (𝑊�•)) (2.8)

for all valuations 𝑣 ∈ Val∗𝑋 of linear growth.

Proof. Let 𝑀 (𝛾) := lim𝑚→∞
1
𝑚𝑐1 (𝑀𝑚, �𝑚 �𝛾� ) ∈ Cl(𝑋)R and 𝐹 (𝛾) = lim𝑚→∞

1
𝑚𝐹𝑚, �𝑚 �𝛾� for 𝛾 ∈

int(Δsupp). As in the previous proof, the limit exists: 𝑀 (𝛾) = �𝛾 · �𝐿 −
∑
𝐷 𝑓𝑊�• ,𝐷 (𝛾) · 𝐷 and 𝐹 (𝛾) =∑

𝐷 𝑓𝑊�• ,𝐷 (𝛾) · 𝐷 in the notation of Corollary 2.15. Moreover, M is continuous, and we have

𝑐1(𝑀�•) =
1

vol(Δ)

∫
Δ
(𝑀 ◦ 𝑝)d𝜌,

where Δ = Δ (𝑊�•) and 𝑝 : Δ → Δsupp is the natural projection. Since 𝑊�• is almost complete, we see
that 𝑀 (𝛾) is R-Cartier and 𝑀 (𝛾) ≡ 𝑔(𝛾)𝐿 for some 𝑔(𝛾) ∈ R. It follows that 𝑐1 (𝑀�•) is also R-Cartier
and 𝑐1 (𝑀�•) = 𝜇𝐿 in NS(𝑋)R, where

𝜇 =
1

vol(Δ)

∫
Δ
(𝑔 ◦ 𝑝)d𝜌 =

1
vol(Δ)

∫
Δsupp

vol(𝑝−1 (𝛾)) · 𝑔(𝛾)d𝛾.

Since 𝐹 (𝑊�•) ∼R 𝑐1 (𝑊�•) − 𝑐1(𝑀�•), we also see that 𝐹 (𝑊�•) is R-Cartier. It remains to prove equation
(2.8).

As 𝐹 (𝛾) ∼R �𝛾 · �𝐿 − 𝑀 (𝛾) is also R-Cartier, we may define ℎ(𝛾) = 𝑣(𝐹 (𝛾)); and as in the proof of
Corollary 2.15, we have

𝑣(𝐹 (𝑊�•)) =
1

vol(Δ)

∫
Δ
(ℎ ◦ 𝑝)d𝜌.

We claim that

vol𝑊 𝑡
�•
(𝛾) = vol(𝑔(𝛾)𝐿; 𝑣 ≥ 𝑡 − ℎ(𝛾)) (2.9)

in the notation of Corollary 2.13 and Lemma 2.10. For this, we may assume that 𝛾 ∈ Q𝑟 . Let F be the
filtration induced by v, and let m be a sufficiently divisible integer. From the exact sequence

0 → F𝜆𝑀𝑚,𝑚 �𝛾 → F𝜆𝐻0 (𝑋, 𝐿𝑚, �𝛾) → 𝐻0(𝑋, 𝐿𝑚, �𝛾)/𝑀𝑚,𝑚 �𝛾

and the obvious equality

|F𝑚𝑡𝑊𝑚,𝑚 �𝛾 | = |F𝑚𝑡−𝑣 (𝐹𝑚,𝑚 �𝛾 )𝑀𝑚,𝑚 �𝛾 | + 𝐹𝑚,𝑚 �𝛾 ,

we deduce that���dim(F𝑚𝑡𝑊𝑚,𝑚 �𝛾) − dim(F𝑚𝑡−𝑣 (𝐹𝑚,𝑚 �𝛾 )𝐻0(𝑋, 𝐿𝑚, �𝛾))
��� ≤ ℎ0 (𝑋, 𝐿𝑚, �𝛾) − ℎ0 (𝑀𝑚,𝑚 �𝛾). (2.10)

By [32, Lemma 2.2.42], there exists a fixed effective divisor N on X such that 𝑁 ± (𝐿𝑚, �𝛾 − ℓ𝑚, �𝛾𝐿) is
effective. In particular, we have the inclusions
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𝐻0(𝑋, ℓ𝑚, �𝛾𝐿 − 𝑁) ↩→ 𝐻0(𝑋, 𝐿𝑚, �𝛾) ↩→ 𝐻0(𝑋, ℓ𝑚, �𝛾𝐿 + 𝑁),

𝐻0(𝑋, ℓ𝑚, �𝛾𝐿 − 𝑁) ↩→ 𝐻0 (𝑋, ℓ𝑚, �𝛾𝐿) ↩→ 𝐻0 (𝑋, ℓ𝑚, �𝛾𝐿 + 𝑁),

which implies

lim
𝑚→∞

dim(F𝑚𝑡−𝑣 (𝐹𝑚,𝑚 �𝛾)𝐻0 (𝑋, 𝐿𝑚, �𝛾))
𝑚𝑛/𝑛!

= lim
𝑚→∞

dim(F𝑚𝑡−𝑣 (𝐹𝑚,𝑚 �𝛾 )𝐻0(𝑋, ℓ𝑚, �𝛾𝐿))
𝑚𝑛/𝑛!

.

Thus as we divide equation (2.10) by 𝑚𝑛/𝑛!, and letting 𝑚 → ∞, the right side of the inequality
becomes 0 by the definition of almost completeness, and the equality equation (2.9) follows as 𝑔(𝛾) =
lim𝑚→∞

1
𝑚ℓ𝑚, �𝛾 .

By Corollary 2.13 and Lemma 2.10, we have

𝑆(𝑊�•; 𝑣) = 1
𝑛!vol(Δ)

∬
Δsupp×R+

vol𝑊 𝑡
�•
(𝛾)d𝑡d𝛾.

Combined with equation (2.9), we then obtain

𝑆(𝑊�•; 𝑣) = 1
𝑛!vol(Δ)

∬
Δsupp×R+

vol(𝑔(𝛾)𝐿; 𝑣 ≥ 𝑡 − ℎ(𝛾))d𝑡d𝛾

=
1

𝑛!vol(Δ)

∫
Δsupp

(∫ ℎ (𝛾)

0
+
∫ ∞

ℎ (𝛾)

)
vol(𝑔(𝛾)𝐿; 𝑣 ≥ 𝑡 − ℎ(𝛾))d𝑡d𝛾

=
1

𝑛!vol(Δ)

∫
Δsupp

(
ℎ(𝛾) · 𝑔(𝛾)𝑛vol(𝐿) +

∫ ∞

0
𝑔(𝛾)𝑛+1vol(𝐿; 𝑣 ≥ 𝑡)d𝑡

)
d𝛾.

Notice that vol𝑊�• (𝛾) = vol𝑊 0
�•
(𝛾) = 𝑔(𝛾)𝑛vol(𝐿) by equation (2.9); thus we deduce that

𝑆(𝑊�•; 𝑣) = 1
𝑛!vol(Δ)

∫
Δsupp

vol𝑊�• (𝛾) · (ℎ(𝛾) + 𝑔(𝛾)𝑆(𝐿; 𝑣))d𝛾

=
1

vol(Δ)

∫
Δsupp

vol(𝑝−1 (𝛾)) · (ℎ(𝛾) + 𝑔(𝛾)𝑆(𝐿; 𝑣))d𝛾

= 𝑣(𝐹 (𝑊�•)) + 𝜇 · 𝑆(𝐿; 𝑣).

This finishes the proof. �

Corollary 2.17. Let C be a smooth curve, and let 𝑊�• be an almost complete multigraded linear series
on C that has bounded support and contains an ample series. Then

𝛿𝑃 (𝐶;𝑊�•) =
2

deg(𝑐1 (𝑊�•) − 𝐹 (𝑊�•)) + 2 · mult𝑃𝐹 (𝑊�•)

for all closed point 𝑃 ∈ 𝐶. In particular, 𝛿(𝐶;𝑊�•) = 2
deg 𝑐1 (𝑊�•)

if 𝐹 (𝑊�•) = 0.

Proof. We have 𝑆(𝐿; 𝑃) = 1
2 deg 𝐿 for any ample line bundle L and any closed point P on C. Combining

with Lemma 2.13, we see that 𝑆(𝑊�•; 𝑃) = 𝑆(𝑐1 (𝑊�•) − 𝐹 (𝑊�•); 𝑃) + mult𝑃𝐹 (𝑊�•) = 1
2 deg(𝑐1 (𝑊�•) −

𝐹 (𝑊�•)) + mult𝑃𝐹 (𝑊�•). Since 𝛿𝑃 (𝐶;𝑊�•) = 1
𝑆 (𝑊�•;𝑃) and 𝛿(𝐶;𝑊�•) = inf𝑃∈𝐶 𝛿𝑃 (𝐶;𝑊�•) by definition,

the result follows. �
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3. Adjunction for stability thresholds

In this section, we develop a framework to estimate stability thresholds. The starting point is the following
elementary observation (compare to [9, Proposition 1.14]).

Lemma 3.1. Let V be a finite-dimensional vector space, and let F, G be two filtrations on V. Then there
exists some basis 𝑠1, · · · , 𝑠𝑁 of V that is compatible with both F and G.

Proof. By enumerating all different subspaces F𝜆𝑉 and G𝜇𝑉 , we may assume that F and G are both
N-filtrations. Note that F (respectively, G) induces a filtration (which is also denoted by F, respectively
G) on each graded quotient Gr𝑖G𝑉 (respectively, Gr 𝑗F𝑉). It is not hard to check that

Gr 𝑗FGr𝑖G𝑉 � (F 𝑗𝑉 ∩ G𝑖𝑉)/(F 𝑗+1𝑉 ∩ G𝑖𝑉 + F 𝑗𝑉 ∩ G𝑖+1𝑉) � Gr𝑖GGr 𝑗F𝑉

for each 𝑖, 𝑗 ∈ N. To construct a basis of V that is compatible with F, it suffices to lift a basis of each
Gr𝑖F𝑉 to F𝑖𝑉 and take their union. In particular, we may lift bases of Gr𝑖F𝑉 that are compatible with
the induced filtration G. By the above isomorphism, such bases can be obtained by lifting a basis of
(F 𝑗𝑉 ∩G𝑖𝑉)/(F 𝑗+1𝑉 ∩G𝑖𝑉 +F 𝑗𝑉 ∩G𝑖+1𝑉) to F 𝑗𝑉 ∩G𝑖𝑉 (for each 𝑖, 𝑗 ∈ N) and then taking the union.
But since the construction is symmetric in F and G, it follows that the basis obtained in this way is also
compatible with G. �

As an immediate consequence, we have

Proposition 3.1. Let (𝑋,Δ) be a pair, and let 𝑉�• be a multigraded linear series containing an ample
series and with bounded support. Let F be a filtration on 𝑉�•. Then for any valuation v of linear growth
on X and any subvariety 𝑍 ⊆ 𝑋 , we have

𝑆(𝑉�•; 𝑣) = 𝑆(𝑉�•,F; 𝑣), 𝛿(𝑉�•) = 𝛿(𝑉�•,F), and 𝛿𝑍 (𝑉�•) = 𝛿𝑍 (𝑉�•,F).

Proof. It suffices to show that for any 𝑚 ∈ 𝑀 (𝑉�•), we have

𝑆𝑚(𝑉�•; 𝑣) = 𝑆𝑚 (𝑉�•,F; 𝑣), 𝛿𝑚(𝑉�•) = 𝛿𝑚 (𝑉�•,F ), and 𝛿𝑍,𝑚(𝑉�•) = 𝛿𝑍,𝑚 (𝑉�•,F),

the result then follows by taking the limit as 𝑚 → ∞. Let F𝑣 be the filtration on 𝑉�• induced by v (see
Example 2.2). It is clear from the definition that 𝑆𝑚 (𝑉�•; 𝑣) = 𝑣(𝐷) for any m-basis typeQ-divisor D of𝑉�•
that is compatible withF𝑣 . In particular, if we choose an m-basis typeQ-divisor D of𝑉�• that is compatible
with both F𝑣 and F (which exists by Lemma 3.1), then we see that 𝑆𝑚 (𝑉�•; 𝑣) = 𝑣(𝐷) ≤ 𝑆𝑚 (𝑉�•,F; 𝑣).
But the reverse inequality 𝑆𝑚 (𝑉�•,F; 𝑣) ≤ 𝑆𝑚 (𝑉�•; 𝑣) is trivial, and thus we prove the first equality
𝑆𝑚 (𝑉�•; 𝑣) = 𝑆𝑚(𝑉�•,F; 𝑣). By definition, it is not hard to see that

𝛿𝑍,𝑚 (𝑉�•) = inf
𝐸

𝐴𝑋,Δ (𝐸)
𝑆𝑚(𝑉�•; 𝐸) and 𝛿𝑍,𝑚 (𝑉�•,F ) = inf

𝐸

𝐴𝑋,Δ (𝐸)
𝑆𝑚 (𝑉�•,F; 𝐸) ,

where both infimums run over divisors E over X whose centres contain Z (here we use the fact
that Z is irreducible), hence the equality 𝛿𝑍,𝑚 (𝑉�•) = 𝛿𝑍,𝑚 (𝑉�•,F) follows. The proof of the equality
𝛿𝑚 (𝑉�•) = 𝛿𝑚 (𝑉�•,F ) is similar. �

Typically we will apply Proposition 3.1 to some Fano variety X and the complete linear series
associated to −𝑟𝐾𝑋 for some sufficiently divisible integer 𝑟 > 0. By choosing different filtrations F on
𝑉�•, we get various consequences. Here we explore two of them corresponding to filtrations induced by
primitive divisors or admissible flags. Throughout the remaining part of this section, we fix a klt pair
(𝑋,Δ), some Cartier divisors 𝐿1, · · · , 𝐿𝑟 on X and an N𝑟 -graded linear series 𝑉�• associated to the 𝐿𝑖s
such that 𝑉�• contains an ample series and has bounded support.
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3.1. Filtrations from primitive divisors

Let F be a primitive divisor over X with associated prime blowup 𝜋 : 𝑌 → 𝑋 . Let F be the induced
filtration on 𝑉�•, and let

𝐷 =
1

𝑚𝑁𝑚

∑
�𝑎

∑
𝑖

{𝑠 �𝑎,𝑖 = 0}

(where 𝑁𝑚 = ℎ0 (𝑉𝑚,�•) and for each �𝑎 ∈ N𝑟−1, 𝑠 �𝑎,𝑖 (1 ≤ 𝑖 ≤ dim(𝑉𝑚, �𝑎)) form a basis of 𝑉𝑚, �𝑎) be an
m-basis type Q-divisor of 𝑉�• that is compatible with F. We may write

𝐷 =
1

𝑚𝑁𝑚

∑
�𝑎

∞∑
𝑗=0

𝐷 ′
�𝑎, 𝑗 ,

where

𝐷 ′
�𝑎, 𝑗 =

∑
𝑖,ord𝐹 (𝑠 �𝑎,𝑖)= 𝑗

{𝑠 �𝑎,𝑖 = 0}.

Since D is compatible with F, for each �𝑎 ∈ N𝑟−1, the 𝑠 �𝑎,𝑖s that appear in the expression of 𝐷 ′
�𝑎, 𝑗 restrict

to form a basis of Gr 𝑗F𝑉𝑚, �𝑎. Now assume that F is either Cartier on Y or of plt type, and let 𝑊�• be the
refinement of 𝑉�• by F (Example 2.6). Then after combining coefficients of F in 𝜋∗𝐷, we see that

𝜋∗𝐷 = 𝑆𝑚(𝑉�•; 𝐹) · 𝐹 + 1
𝑚𝑁𝑚

∑
�𝑎

∞∑
𝑗=0

𝐷 �𝑎, 𝑗 =: 𝑆𝑚(𝑉�•; 𝐹) · 𝐹 + Γ,

where each 𝐷 �𝑎, 𝑗 doesn’t contain F in its support and 𝐷 �𝑎, 𝑗 |𝐹 is a basis type divisor for 𝑊𝑚, �𝑎, 𝑗 . In other
words, Γ|𝐹 is an m-basis type Q-divisor of 𝑊�• (notice that ℎ0 (𝑊𝑚,�•) = ℎ0 (𝑉𝑚,�•)). Letting 𝑚 → ∞, we
obtain

𝑐1 (𝑊�•) = (𝜋∗𝑐1 (𝑉�•) − 𝑆(𝑉�•; 𝐹) · 𝐹) |𝐹 . (3.1)

These observations also allow us to relate the stability thresholds of𝑉�• and𝑊�• via inversion of adjunction.
In particular, we get the following consequence:

Theorem 3.2. With the above notation and assumptions, let 𝑍 ⊆ 𝑋 be a subvariety, and let 𝑍0 be an
irreducible component of 𝑍∩𝐶𝑋 (𝐹). LetΔ𝑌 be the strict transform ofΔ on Y (but remove the component
F as in Definition 2.6), and let Δ𝐹 = Diff𝐹 (Δ𝑌 ) be the difference so that (𝐾𝑌 +Δ𝑌 + 𝐹) |𝐹 = 𝐾𝐹 +Δ𝐹 .
Then we have

𝛿𝑍 (𝑋,Δ;𝑉�•) ≥ min
{
𝐴𝑋,Δ (𝐹)
𝑆(𝑉�•; 𝐹) , inf

𝑍 ′
𝛿𝑍 ′ (𝐹,Δ𝐹 ;𝑊�•)

}
(3.2)

when 𝑍 ⊆ 𝐶𝑋 (𝐹) and otherwise

𝛿𝑍 (𝑋,Δ;𝑉�•) ≥ inf
𝑍 ′

𝛿𝑍 ′ (𝐹,Δ𝐹 ;𝑊�•), (3.3)

where the infimums run over all subvarieties 𝑍 ′ ⊆ 𝑌 such that 𝜋(𝑍 ′) = 𝑍0. Moreover, if equality holds
and 𝛿𝑍 (𝑉�•) is computed by some valuation v on X, then either 𝑍 ⊆ 𝐶𝑋 (𝐹) and F computes 𝛿𝑍 (𝑉�•)
or 𝐶𝑌 (𝑣) � 𝐹; and for any irreducible component S of 𝐶𝑌 (𝑣) ∩ 𝐹 with 𝑍0 ⊆ 𝜋(𝑆), there exists
some valuation 𝑣0 on F with centre S computing 𝛿𝑍 ′ (𝑊�•) = 𝛿𝑍 (𝑉�•) for all subvarieties 𝑍 ′ ⊆ 𝑆 with
𝜋(𝑍 ′) = 𝑍0.
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Loosely speaking, this means 𝛿(𝑉�•) is either computed by the auxiliary divisor F or bounded from
below by the stability threshold 𝛿(𝑊�•) of the refinement by F, and in the latter case the inequality is
usually strict.

Proof. We only prove equation (3.2), since the proof for equation (3.3) is almost identical. By Proposition
3.1, we have 𝛿𝑍 (𝑉�•) = 𝛿𝑍 (𝑉�•,F) (where F is the filtration on 𝑉�• induced by F); thus it suffices to show
that

𝛿𝑍,𝑚 (𝑉�•,F) ≥ min
{
𝐴𝑋,Δ (𝐹)
𝑆𝑚 (𝑉�•; 𝐹) , inf

𝜋 (𝑍 ′)=𝑍0
𝛿𝑍 ′,𝑚(𝐹,Δ𝐹 ;𝑊�•)

}
(3.4)

for all 𝑚 ∈ 𝑀 (𝑉�•). Letting 𝑚 → ∞, we obtain equation (3.2). Let D be an m-basis type Q-divisor of 𝑉�•
that’s compatible with F. From the discussion before, we have

𝜋∗𝐷 = 𝑆𝑚(𝑉�•; 𝐹) · 𝐹 + Γ, (3.5)

where Γ = 𝐷𝑌 is the strict transform of D on Y and Γ|𝐹 is an m-basis type Q-divisor of 𝑊�•. Let
𝜆𝑚 (respectively, 𝜆) be the right-hand side of equation (3.4) (respectively, equation (3.2)). Then we
have 𝜋∗(𝐾𝑋 + Δ + 𝜆𝑚𝐷) = 𝐾𝑌 + Δ𝑌 + 𝑎𝑚𝐹 + 𝜆𝑚Γ, where 𝑎𝑚 = 1 − 𝐴𝑋,Δ (𝐹) + 𝜆𝑚𝑆𝑚 (𝑉�•; 𝐹) ≤ 1. In
addition, the non-lc centre of (𝐹,Δ𝐹 +𝜆𝑚Γ|𝐹 ) doesn’t contain 𝑍0 ⊆ 𝑍 in its image (under the morphism
𝜋) by the definition of stability thresholds, and hence by inversion of adjunction the same is true for
(𝑌,Δ𝑌 + 𝐹 + 𝜆𝑚Γ). It follows that (𝑋,Δ + 𝜆𝑚𝐷) is lc at the generic point of Z and indeed

𝐴𝑋,Δ (𝑣) ≥ 𝜆𝑚𝑣(𝐷) + (1 − 𝑎𝑚) · 𝑣(𝐹)

for all valuations v on X whose centre contains Z (when 𝑍 � 𝐶𝑋 (𝐹). The value of 𝑎𝑚 doesn’t matter to
us since 𝑣(𝐹) = 0; this is the main difference between the proof of equation (3.2) and equation (3.3)).
Since D is arbitrary, we get 𝛿𝑍,𝑚 (𝑉�•,F ) ≥ 𝜆𝑚, which proves equation (3.4), and

𝐴𝑋,Δ (𝑣) ≥ 𝜆𝑚𝑆𝑚(𝑉�•,F; 𝑣) + (𝐴𝑋,Δ (𝐹) − 𝜆𝑚𝑆𝑚(𝑉�•; 𝐹)) · 𝑣(𝐹).

As in the proof of Lemma 2.9, we have lim𝑚→∞ 𝜆𝑚 = 𝜆. Thus, letting 𝑚 → ∞ and noting that
𝑆(𝑉�•; 𝑣) = 𝑆(𝑉�•,F; 𝑣) by Proposition 3.1, we obtain equation (3.2) as well as the following inequality:

𝐴𝑋,Δ (𝑣) ≥ 𝜆 · 𝑆(𝑉�•; 𝑣) + (𝐴𝑋,Δ (𝐹) − 𝜆 · 𝑆(𝑉�•; 𝐹)) · 𝑣(𝐹). (3.6)

Now assume that equality holds in equation (3.2) and 𝛿𝑍 (𝑉�•) is computed by some valuation
𝑣 ∈ Val∗𝑋 : that is, 𝑍 ⊆ 𝐶𝑋 (𝑣) and 𝐴𝑋,Δ (𝑣) = 𝜆 · 𝑆(𝑉�•; 𝑣). By equation (3.6), we see that either
𝐴𝑋,Δ (𝐹) = 𝜆 · 𝑆(𝑉�•; 𝐹), in which case F computes 𝛿𝑍 (𝑉�•) and we are done, or

𝜆 = inf
𝜋 (𝑍 ′)=𝑍0

𝛿𝑍 ′ (𝑊�•) <
𝐴𝑋,Δ (𝐹)
𝑆(𝑉�•; 𝐹) (3.7)

and 𝑣(𝐹) = 0: that is, 𝐶𝑌 (𝑣) � 𝐹. Now assume that we are in the latter case, and let S be an irreducible
component of 𝐶𝑌 (𝑣) ∩ 𝐹 with 𝑍0 ⊆ 𝜋(𝑆). After rescaling the valuation v, we may also assume that
𝐴𝑌 ,Δ𝑌 (𝑣) = 𝐴𝑋,Δ (𝑣) = 1. Let 𝔞•(𝑣) ⊆ O𝑌 be the valuation ideals, and let 𝔟• = 𝔞•(𝑣) |𝐹 . Clearly
lct𝑥 (𝑌,Δ𝑌 ;𝔞•(𝑣)) ≤ 𝐴𝑌 ,Δ𝑌 (𝑣)

𝑣 (𝔞• (𝑣)) ≤ 1 for any 𝑥 ∈ 𝐶𝑌 (𝑣), hence by inversion of adjunction, we have
lct(𝐹,Δ𝐹 ; 𝔟•) ≤ 1 at the generic point of S. By [27, Theorem A], there exists some valuation 𝑣0 on F
with centre S such that

𝐴𝐹,Δ𝐹 (𝑣0)
𝑣0(𝔟•)

≤ 1. (3.8)
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To finish the proof, it suffices to show that this valuation computes 𝛿𝑍 ′ (𝑊�•) for any subvarieties 𝑍 ′ ⊆ 𝑆
with 𝜋(𝑍 ′) = 𝑍0 and that 𝛿𝑍 ′ (𝑊�•) = 𝜆. To see this, let D be an m-basis type Q-divisor of 𝑉�• that’s
compatible with both F and v (which exists by Lemma 3.1), and let 𝐷𝑌 be its strict transform on Y.
Then as before, we have 𝑣(𝐷𝑌 ) = 𝑣(𝐷) = 𝑆𝑚 (𝑉�•; 𝑣) (here we use the fact that 𝐶𝑌 (𝑣) � 𝐹) and 𝐷𝑌 |𝐹
is an m-basis type Q-divisor of 𝑊�•. Using equation (3.8), we further see that

𝐴𝐹,Δ𝐹 (𝑣0) ≤
𝑣0 (𝐷𝑌 |𝐹 )
𝑣(𝐷𝑌 )

=
𝑣0 (𝐷𝑌 |𝐹 )
𝑆𝑚 (𝑉�•; 𝑣) ,

hence 𝑆𝑚(𝑊�•; 𝑣0) ≥ 𝑣0(𝐷𝑌 |𝐹 ) ≥ 𝑆𝑚(𝑉�•; 𝑣) · 𝐴𝐹,Δ𝐹 (𝑣0). Letting 𝑚 → ∞, we obtain

𝛿𝑍 ′ (𝑊�•) ≤
𝐴𝐹,Δ𝐹 (𝑣0)
𝑆(𝑊�•; 𝑣0)

≤ 1
𝑆(𝑉�•; 𝑣) =

𝐴𝑋,Δ (𝑣)
𝑆(𝑉�•; 𝑣) = 𝜆.

Combined with equation (3.7), this implies 𝛿𝑍 ′ (𝑊�•) = 𝜆, and it’s computed by 𝑣0. �

Theorem 3.2 reduces the question of estimating stability thresholds to similar problems in lower
dimensions. Certainly the lower bounds we get depend on the choice of the auxiliary divisor F. In general,
if we want to calculate the precise value of the stability threshold, we should pick an ‘optimal’ F – that
is, a divisor that computes 𝛿(𝑉�•) – although the resulting refinement 𝑊�• can be quite complicated. On
the other hand, if we are merely interested in an estimate, we can also choose some divisor F such that
𝑊�• is relatively simple. As a typical example, we have the following direct consequence of Theorem 3.2.

Corollary 3.3. Let (𝑋,Δ), 𝐿𝑖 , 𝑉�•, 𝑍, 𝐹, 𝑍0, 𝜋 : 𝑌 → 𝑋,Δ𝐹 and 𝑊�• be as in Theorem 3.2. Assume that

1. 𝑊�• is almost complete (Definition 2.16);
2. 𝛿𝑍 ′ (𝐹,Δ𝐹 + 𝜆𝐹 (𝑊�•); 𝑐1 (𝑀�•)) ≥ 𝜆 for some 0 ≤ 𝜆 ≤ 𝐴𝑋,Δ (𝐹 )

𝑆 (𝑉�•;𝐹 ) and all subvarieties 𝑍 ′ ⊆ 𝑌 with
𝜋(𝑍 ′) = 𝑍0 (where 𝑀�• is the movable part of 𝑊�•).

Then 𝛿𝑍 (𝑋,Δ;𝑉�•) ≥ 𝜆. If equality holds and 𝛿𝑍 (𝑉�•) is computed by some valuation v on X, then either
𝑍 ⊆ 𝐶𝑋 (𝐹) and F computes 𝛿𝑍 (𝑉�•), or 𝐶𝑌 (𝑣) � 𝐹, and for any irreducible component S of 𝐶𝑌 (𝑣) ∩ 𝐹
with 𝑍0 ⊆ 𝜋(𝑆), there exists some valuation 𝑣0 on F with centre Z computing

𝛿𝑍 ′ (𝐹,Δ𝐹 + 𝜆𝐹 (𝑊�•); 𝑐1(𝑀�•)) = 𝜆

for all 𝑍 ′ ⊆ 𝑆 with 𝜋(𝑍 ′) = 𝑍0.

Proof. This is immediate from Theorem 3.2 and Lemma 2.13. �

3.2. Filtrations from admissible flags

One can inductively apply Theorem 3.2 to refine the original graded linear series while lowering the
dimension of the ambient variety. This is essentially equivalent to filtering the graded linear series via
an admissible flag. For simplicity, consider the following situation. Let

𝑌• : 𝑋 = 𝑌0 ⊇ 𝑌1 ⊇ · · · ⊇ 𝑌ℓ

be an admissible flag of length ℓ on X. Assume that each 𝑌𝑖 in the flag is a Cartier divisor on 𝑌𝑖−1. Then
for each 1 ≤ 𝑗 ≤ ℓ, we can define a boundary divisor Δ 𝑗 on 𝑌 𝑗 inductively as follows: first set Δ0 = Δ;
for each Δ 𝑖 that’s already defined, write Δ 𝑖 = 𝑎𝑖𝑌𝑖+1 + Γ𝑖 , where Γ𝑖 doesn’t contain 𝑌𝑖+1 in its support
and set Δ 𝑖+1 = Γ𝑖 |𝑌𝑖+1 . We also let𝑌 ( 𝑗)

• be the flag given by𝑌0 ⊇ · · · ⊇ 𝑌 𝑗 , and let𝑊 ( 𝑗)
�• be the refinement

of 𝑉�• by 𝑌
( 𝑗)
• (Example 2.7): that is, it is the N𝑟+ 𝑗 -graded linear series on 𝑌 𝑗 given by

𝑊
( 𝑗)
�𝑎,𝑏1 , · · · ,𝑏 𝑗

= 𝑉�𝑎 (𝑏1, · · · , 𝑏 𝑗 ).
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Note that 𝑊 (0)
�• = 𝑉�•. Also recall from Section 2.4 that the flag 𝑌• induces a filtration F = F𝑌• on each

𝑊
( 𝑗)
�• .

Theorem 3.4. With the above notation and assumptions, we have

𝛿𝑍 (𝑋,Δ;𝑉�•) ≥ min

{
min

0≤𝑖≤ 𝑗−1

{
𝐴𝑌𝑖 ,Δ𝑖 (𝑌𝑖+1)
𝑆(𝑊 (𝑖)

�• ;𝑌𝑖+1)

}
, 𝛿𝑍∩𝑌𝑗 (𝑌 𝑗 ,Δ 𝑗 ;𝑊

( 𝑗)
�• ,F)

}
(3.9)

for any 1 ≤ 𝑗 ≤ ℓ and any subvariety 𝑍 ⊆ 𝑋 that intersects 𝑌 𝑗 .

This will be a key ingredient in our proof of Theorem 1.1. Compared with Theorem 3.2, the main
difference is that we allow (possibly) reducible centres 𝑍 ∩ 𝑌 𝑗 when applying inversion of adjunction.
In this case, we only have an inequality 𝛿𝑍∩𝑌𝑗 (𝑊

( 𝑗)
�• ,F) ≥ 𝛿𝑍∩𝑌𝑗 (𝑊

( 𝑗)
�• ) (as opposed to the equality in

Proposition 3.1). As such, we also need to keep track of the filtration F in the proof below.

Proof. By Proposition 3.1, we have 𝛿𝑍 (𝑉�•) = 𝛿𝑍 (𝑉�•,F) = 𝛿𝑍∩𝑌0 (𝑌0,Δ0;𝑊 (0)
�• ,F). Thus it suffices to

prove that

𝛿𝑍∩𝑌𝑖 (𝑌𝑖 ,Δ 𝑖;𝑊
(𝑖)
�• ,F) ≥ min

{
𝐴𝑌𝑖 ,Δ𝑖 (𝑌𝑖+1)
𝑆(𝑊 (𝑖)

�• ;𝑌𝑖+1)
, 𝛿𝑍∩𝑌𝑖+1 (𝑌𝑖+1,Δ 𝑖+1;𝑊 (𝑖+1)

�• ,F )
}

(3.10)

for all 0 ≤ 𝑖 ≤ 𝑗 − 1; equation (3.9) then follows by induction.
As in the proof of Theorem 3.2, let D be an m-basis type Q-divisor of 𝑊 (𝑖)

�• that’s compatible with F.
Then in particular it is compatible with 𝑌𝑖+1, and we may write

𝐷 = 𝑆𝑚(𝑊 (𝑖)
�• ;𝑌𝑖+1) · 𝑌𝑖+1 + Γ,

where Γ doesn’t contain 𝑌𝑖+1 in its support and Γ|𝑌𝑖+1 is an m-basis type Q-divisor of 𝑊 (𝑖+1)
�• (since this

is the same as the refinement of 𝑊 (𝑖)
�• by𝑌𝑖+1) that is compatible with F (since the same is true for D and

the filtration F on 𝑊 (𝑖)
�• is a refinement of the filtration induced by𝑌𝑖+1). Thus by inversion of adjunction

as in the proof of Theorem 3.2, we get

𝛿𝑍∩𝑌𝑖 ,𝑚(𝑌𝑖 ,Δ 𝑖;𝑊
(𝑖)
�• ,F) ≥ min

{
𝐴𝑌𝑖 ,Δ𝑖 (𝑌𝑖+1)

𝑆𝑚(𝑊 (𝑖)
�• ;𝑌𝑖+1)

, 𝛿𝑍∩𝑌𝑖+1 ,𝑚(𝑌𝑖+1,Δ 𝑖+1;𝑊 (𝑖+1)
�• ,F)

}
.

Letting 𝑚 → ∞, we obtain equation (3.10), and this finishes the proof. �

4. Applications

4.1. Tian’s criterion and connection to birational superrigidity

As a first application of the general framework developed in Section 3, we give a new proof of Tian’s
criterion for K-stability [46] (see, for example, [24, 41] for other proofs).

Theorem 4.1 (Tian’s criterion). Let (𝑋,Δ) be a log Fano pair of dimension n. Assume that (𝑋,Δ+ 𝑛
𝑛+1𝐷)

is log canonical (respectively, klt) for any effective Q-divisor 𝐷 ∼Q −(𝐾𝑋 + Δ). Then (𝑋,Δ) is K-
semistable (K-stable).

The proof is based on the following lemma, which is known to imply Tian’s criterion (this is the
strategy used in [24]). When v is a divisorial valuation, the statement is proved in [22, Proposition 2.1]
and [2, Proposition 3.11]. Here we give a different proof using compatible divisors, which naturally
generalises the statement to all valuations (see also [2, Remark 3.12]).
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Lemma 4.1. Let X be a projective variety of dimension n, let L be an ample line bundle on X, and let v
be a valuation of linear growth on X. Then

𝑆(𝐿; 𝑣) ≤ 𝑛

𝑛 + 1
𝑇 (𝐿; 𝑣).

Proof. Let r be a sufficiently large integer such that 𝑟𝐿 is very ample, and let 𝐻 ∈ |𝑟𝐿 | be a general
member. Let 𝑉�• be the complete linear series associated to L, and let F be the filtration on 𝑉�• induced
by H. By Proposition 3.1, we have 𝑆(𝐿; 𝑣) = 𝑆(𝑉�•; 𝑣) = 𝑆(𝑉�•,F; 𝑣). Let D be an m-basis type Q-divisor
of L that’s compatible with F. By the same discussion as at the beginning of Section 3.1, we have

𝐷 = 𝑆𝑚 (𝐿; 𝐻) · 𝐻 + Γ

for some effectiveQ-divisor Γ whose support doesn’t contain H. Since H is general, we have𝐶𝑋 (𝑣) � 𝐻.
Thus 𝑣(𝐷) = 𝑣(Γ) ≤ 𝑇 (𝐿 − 𝑆𝑚 (𝐿; 𝐻) · 𝐻; 𝑣)) and 𝑆𝑚 (𝑉�•,F; 𝑣) ≤ 𝑇 (𝐿 − 𝑆𝑚 (𝐿; 𝐻) · 𝐻; 𝑣)). Letting
𝑚 → ∞, we see that

𝑆(𝐿; 𝑣) ≤ 𝑇 (𝐿 − 𝑆(𝐿; 𝐻) · 𝐻; 𝑣)).

By direct calculation for any irreducible divisor 𝐻 ∈ |𝑟𝐿 |, we have

𝑆(𝐿; 𝐻) =
∫ 1/𝑟

0
(1 − 𝑟𝑥)𝑛d𝑥 =

1
𝑟 (𝑛 + 1) ; (4.1)

putting it into the previous inequality we get 𝑆(𝐿; 𝑣) ≤ 𝑛
𝑛+1𝑇 (𝐿; 𝑣) as desired. �

Proof of Theorem 4.1. We only prove the K-stability part since the argument for K-semistability is
similar (and simpler). Let 𝑟 > 0 be an integer such that −𝑟 (𝐾𝑋 + Δ) is Cartier. Following [23], we say
that a divisor E over X is dreamy if the double graded algebra

⊕
𝑘, 𝑗∈N 𝐻

0(𝑌,−𝑘𝑟𝜋∗(𝐾𝑋 + Δ) − 𝑗𝐸)
is finitely generated (where 𝜋 : 𝑌 → 𝑋 is a proper birational morphism such that the centre of E is
a prime divisor on Y). For such E, there exists some effective Q-divisor 𝐷 ∼Q −(𝐾𝑋 + Δ) such that
𝑇 (−𝐾𝑋 −Δ; 𝐸) = ord𝐸 (𝐷). By assumption, (𝑋,Δ + 𝑛

𝑛+1𝐷) is klt, hence 𝑛
𝑛+1𝑇 (−𝐾𝑋 −Δ; 𝐸) < 𝐴𝑋,Δ (𝐸)

and by Lemma 4.1, we have 𝛽𝑋,Δ (𝐸) = 𝐴𝑋,Δ (𝐸) −𝑆(−𝐾𝑋 −Δ; 𝐸) > 0. Since this holds for any dreamy
divisor E over X, (𝑋,Δ) is K-stable by [23, Theorem 1.6 and §6]. �

Using the same strategy, we can also give a new proof of the following statement, which implies the
K-stability criterion from [44].
Theorem 4.2 [51, Theorem 1.5]. Let (𝑋,Δ) be a log Fano pair where X isQ-factorial of Picard number
1 and dimension n. Assume that for every effective Q-divisor 𝐷 ∼Q −(𝐾𝑋 + Δ) and every movable
boundary 𝑀 ∼Q −(𝐾𝑋 + Δ), the pair (𝑋,Δ + 1

𝑛+1𝐷 + 𝑛−1
𝑛+1 𝑀) is log canonical (respectively, klt). Then

X is K-semistable (respectively, K-stable).
For the proof, we need some notation. Let X be a projective variety of dimension n, and let v be a

valuation on X whose centre has codimension at least two on X. Let L be an ample line bundle on X.
We define the movable threshold 𝜂(𝐿; 𝑣) (see [51, Definition 4.1]) as the supremum of all 𝜂 > 0 such
that the base locus of the linear system |F𝑚𝜂𝑣 𝐻0(𝑋, 𝑚𝐿) | has codimension at least 2 for some 𝑚 ∈ N.
Analogous to Lemma 4.1, we have
Lemma 4.2 [51, Lemma 4.2]. Notation as above. Assume that X is Q-factorial and 𝜌(𝑋) = 1. Then we
have

𝑆(𝐿; 𝑣) ≤ 1
𝑛 + 1

𝑇 (𝐿; 𝑣) + 𝑛 − 1
𝑛 + 1

𝜂(𝐿; 𝑣).

Proof. We may assume that 𝑇 (𝐿; 𝑣) > 𝜂(𝐿; 𝑣), otherwise the statement follows from Lemma 4.1. We
claim that there exists a unique irreducible Q-divisor 𝐺 ∼Q 𝐿 such that 𝑣(𝐺) > 𝜂. The uniqueness
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simply follows from the definition of movable threshold. To see the existence, let 𝐺 ∼Q 𝐿 be an effective
Q-divisor on X such that 𝑣(𝐺) > 𝜂 (such 𝐺 exists by the definition of pseudo-effective thresholds).
Since X is Q-factorial and has Picard number one, every divisor on X is Q-linearly equivalent to a
rational multiple of L. In particular, we may write 𝐺 =

∑
𝜆𝑖𝐺𝑖 , where

∑
𝜆𝑖 = 1 and each 𝐺𝑖 ∼Q 𝐿 is

irreducible. As 𝑣(𝐺) > 𝜂, we have 𝑣(𝐺𝑖) > 𝜂 for some i that proves the claim. Note that by the definition
of pseudo-effective threshold, we then necessarily have 𝑣(𝐺) = 𝑇 (𝐿; 𝑣). Write 𝐺 = 𝜆𝐺0, where 𝐺0 is a
prime divisor on X.

As in the proof of Lemma 4.1, let 𝑟 ∈ Z+ be such that 𝑟𝐿 is very ample, and let 𝐻 ∈ |𝑟𝐿 | be a general
member. Let 𝑉�• be the complete linear series associated to L, and let F be the filtration on 𝑉�• induced
by H. By Proposition 3.1, we have 𝑆(𝐿; 𝑣) = 𝑆(𝑉�•,F; 𝑣). Let D be an m-basis type Q-divisor of L that’s
compatible with both F and F𝑣 (which exists by Lemma 3.1). We have

𝐷 = 𝑆𝑚 (𝐿; 𝐻) · 𝐻 + Γ

for some effective Q-divisor Γ whose support doesn’t contain H. We further decompose Γ = 𝜇𝐺0 + Γ0,
where the support of Γ0 doesn’t contain 𝐺0. Note that 𝑣(Γ0) ≤ 𝜂(Γ0; 𝑣) by our choice of 𝐺0. As H is
general and D is of m-basis type, we have 𝜇 = ord𝐺0 (Γ) = ord𝐺0 (𝐷) ≤ 𝑆𝑚(𝐿;𝐺0); thus

𝑆𝑚 (𝑉�•,F; 𝑣) = 𝑣(𝐷) = 𝑣(Γ) = 𝜇 · 𝑣(𝐺0) + 𝑣(Γ0)
≤ 𝑆𝑚 (𝐿;𝐺0) · 𝑣(𝐺0) + 𝜂(Γ − 𝑆𝑚(𝐿;𝐺0) · 𝐺0; 𝑣)
= 𝑇 (𝑆𝑚 (𝐿;𝐺0) · 𝐺0; 𝑣) + 𝜂(𝐿 − 𝑆𝑚(𝐿; 𝐻) · 𝐻 − 𝑆𝑚 (𝐿;𝐺0) · 𝐺0; 𝑣).

Since 𝜌(𝑋) = 1, for any prime divisor F on X, we have 𝑆(𝐿; 𝐹) · 𝐹 ∼Q 1
𝑛+1𝐿 as in the proof of

Lemma 4.1, hence letting 𝑚 → ∞ in the above inequality, we obtain

𝑆(𝐿; 𝑣) = lim
𝑚→∞

𝑆𝑚(𝑉�•,F; 𝑣) ≤ 1
𝑛 + 1

𝑇 (𝐿; 𝑣) + 𝑛 − 1
𝑛 + 1

𝜂(𝐿; 𝑣)

as desired. �

Proof of Theorem 4.2. As in Theorem 4.1, we only prove the K-stability part. Let E be a dreamy divisor
over X. If the centre of E is a prime divisor on X, then we have −(𝐾𝑋 +Δ) ∼Q 𝜆𝐸 for some 𝜆 > 0 as X has
Picard number one. By assumption (𝑋,Δ + 𝜆

𝑛+1𝐸) is klt, hence 𝛽𝑋,Δ (𝐸) = 𝐴𝑋,Δ (𝐸) −𝑆(−𝐾𝑋 −Δ; 𝐸) =
𝐴𝑋,Δ (𝐸) − 𝜆

𝑛+1 > 0. If the centre of E has codimension at least two on X, then since E is dreamy
there are effective Q-divisor 𝐷 ∼Q −(𝐾𝑋 + Δ) and movable boundary 𝑀 ∼Q −(𝐾𝑋 + Δ) such that
ord𝐸 (𝐷) = 𝑇 (−𝐾𝑋 −Δ; 𝐸) and ord𝐸 (𝑀) = 𝜂(−𝐾𝑋 −Δ; 𝐸). By assumption (𝑋,Δ + 1

𝑛+1𝐷 + 𝑛−1
𝑛+1 𝑀) is

klt, thus

𝐴𝑋,Δ (𝐸) >
1

𝑛 + 1
ord𝐸 (𝐷) + 𝑛 − 1

𝑛 + 1
ord𝐸 (𝑀)

=
1

𝑛 + 1
𝑇 (−𝐾𝑋 − Δ; 𝐸) + 𝑛 − 1

𝑛 + 1
𝜂(−𝐾𝑋 − Δ; 𝐸)

≥ 𝑆(−𝐾𝑋 − Δ; 𝐸),

where the last inequality follows from Lemma 4.2. Therefore 𝛽𝑋,Δ (𝐸) > 0 for all dreamy divisors E
over X, and (𝑋,Δ) is K-stable by [23, Theorem 1.6 and §6]. �

Corollary 4.3 [44, Theorem 1.2]. Let X be a birationally superrigid Fano variety. Assume that (𝑋, 1
2𝐷)

is lc for all effective Q-divisor 𝐷 ∼Q −𝐾𝑋 . Then X is K-stable.

Proof. By [12, Theorem 1.26], X is Q-factorial of Picard number one and (𝑋, 𝑀) has canonical
singularities (in particular it is klt) for every movable boundary 𝑀 ∼Q −𝐾𝑋 . Let 𝐷 ∼Q −𝐾𝑋 be an
effective Q-divisor. By assumption, (𝑋, 1

2𝐷) is lc. As 1
𝑛+1𝐷 + 𝑛−1

𝑛+1 𝑀 = 2
𝑛+1 · 1

2𝐷 + 𝑛−1
𝑛+1 𝑀 is a convex
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linear combination of 1
2𝐷 and M, we see that the conditions of Theorem 4.2 are satisfied and therefore

X is K-stable. �

4.2. Fano manifolds of small degrees

As a second application of our general framework, we study K-stability of Fano manifolds of small
degree using flags of complete intersection subvarieties. To do so, we first specialise Corollary 3.3 to
the case when the auxiliary divisor is an ample Cartier divisor on the given variety.

Lemma 4.3. Let X be a variety of dimension n, let L be an ample line bundle on X, and let 𝐻 ∈ |𝐿 |.
Assume that H is irreducible and reduced. Then

𝛿𝑥 (𝐿) ≥ min
{
𝑛 + 1,

𝑛 + 1
𝑛

𝛿𝑥 (𝐿 |𝐻 )
}

at every 𝑥 ∈ 𝐻. If equality holds, then either 𝛿𝑥 (𝐿) = 𝑛 + 1 and it is computed by H, or 𝛿𝑥 (𝐿) =
𝑛+1
𝑛 𝛿𝑥 (𝐿 |𝐻 ) and 𝐶𝑋 (𝑣) � 𝐻 for any valuation v that computes 𝛿𝑥 (𝐿). Moreover, in the latter case, for

every irreducible component Z of 𝐶𝑋 (𝑣) ∩ 𝐻 containing x, there exists a valuation 𝑣0 on H with centre
Z computing 𝛿𝑥 (𝐿 |𝐻 ).

Proof. Let 𝑉�• be the complete linear series associated to L, and let 𝑊�• be its refinement by H. By
Example 2.12, 𝑊�• is almost complete and 𝐹 (𝑊�•) = 0. By equation (4.1), we have 𝑆(𝐿; 𝐻) = 1

𝑛+1 . As
discussed in Section 3, any m-basis type Q-divisor 𝐷 ∼Q 𝐿 that is compatible with H can be written as
𝐷 = 𝑆𝑚 (𝐿; 𝐻) ·𝐻 + Γ, where Γ|𝐻 is an m-basis type Q-divisor of 𝑊�•; thus, letting 𝑚 → ∞, we see that

𝑐1 (𝑊�•) ∼Q 𝐿 |𝐻 − 𝑆(𝐿; 𝐻) · 𝐻 |𝐻 ∼Q
𝑛

𝑛 + 1
𝐿 |𝐻

and 𝛿𝑥 (𝑐1 (𝑊�•)) = 𝑛+1
𝑛 𝛿𝑥 (𝐿 |𝐻 ). The result now follows directly from Corollary 3.3 with 𝐹 = 𝐻. �

Applying induction, we further deduce:

Lemma 4.4. Let X be a variety of dimension n, and let L be an ample line bundle on X. Let 𝑥 ∈ 𝑋 be a
smooth point. Assume that

(*) there exists 𝐻1, · · · , 𝐻𝑛−1 ∈ |𝐿 | containing x such that 𝐻1 ∩ · · · ∩ 𝐻𝑛−1 is an integral curve that is
smooth at x.

Then 𝛿𝑥 (𝐿) ≥ 𝑛+1
(𝐿𝑛) . If equality holds, then either (𝐿𝑛) = 1, or every valuation that computes 𝛿𝑥 (𝐿) is

divisorial and is induced by some prime divisor E on X.

Proof. First assume that 𝑛 = 1: that is, X is a curve that is smooth at x (in this case, the statement should
be well-known to experts). By direct calculation, we have 𝑆(𝐿; 𝑥) = 1

2 deg 𝐿. Hence 𝛿𝑥 (𝐿) = 2
deg 𝐿 as

desired.
Assume now that the statement has been proved in smaller dimensions. Let 𝐻 ∈ |𝐿 | be a general

divisor containing x. By (*), H is smooth at x and 𝐿 |𝐻 also satisfies (*). By induction hypothesis, we have
𝛿𝑥 (𝐿 |𝐻 ) ≥ 𝑛

(𝐿𝑛−1 ·𝐻 ) = 𝑛
(𝐿𝑛) , hence by Lemma 4.3, we see that 𝛿𝑥 (𝐿) ≥ 𝑛+1

(𝐿𝑛) . Suppose that equality
holds, (𝐿𝑛) > 1, and let v be a valuation on X that computes 𝛿𝑥 (𝐿). Then by Lemma 4.3, we see that
the centre 𝐶𝑋 (𝑣) of v is not contained in H, 𝛿𝑥 (𝐿 |𝐻 ) = 𝑛

(𝐿𝑛) , and it is computed by some valuation 𝑣0
on H with centre 𝑍 ⊆ 𝐶𝑋 (𝑣) ∩ 𝐻. But by induction hypothesis, 𝑣0 is divisorial and its centre Z is a
prime divisor on H, hence 𝐶𝑋 (𝑣) has to be a divisor on X. It follows that v is divisorial as well and is
induced by a divisor on X. �

We now restrict our attention to Fano manifolds of small degree:

Corollary 4.4. Let X be a Fano manifold of dimension n. Assume that there exists an ample line bundle
L on X such that
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1. −𝐾𝑋 ∼Q 𝑟𝐿 for some 𝑟 ∈ Q with (𝐿𝑛) ≤ 𝑛+1
𝑟 ; and

2. for every 𝑥 ∈ 𝑋 , there exists 𝐻1, · · · , 𝐻𝑛−1 ∈ |𝐿 | containing x such that 𝐻1∩· · ·∩𝐻𝑛−1 is an integral
curve that is smooth at x.

Then X is K-semistable. If it is not uniformly K-stable, then (𝐿𝑛) = 𝑛+1
𝑟 , and there exists some prime

divisor 𝐸 ⊆ 𝑋 such that 𝛽𝑋 (𝐸) = 0.

Proof. By Lemma 4.4, we have 𝛿𝑥 (𝐿) ≥ 𝑛+1
(𝐿𝑛) at every 𝑥 ∈ 𝑋 , hence 𝛿(𝐿) ≥ 𝑛+1

(𝐿𝑛) . By (1), we then
obtain 𝛿(−𝐾𝑋 ) ≥ 𝑛+1

𝑟 · (𝐿𝑛) ≥ 1 and X is K-semistable. Assume that X is not uniformly K-stable: that is,
𝛿(−𝐾𝑋 ) = 1. Then equality holds in (1) and 𝛿(𝐿) = 𝑛+1

(𝐿𝑛) . By Lemma 4.4, either (𝐿𝑛) = 1 or 𝛿(𝐿) is
computed by some prime divisor E on X. In the latter case, there is nothing left to prove. In the former
case, we have 𝑟 = 𝑛+1

(𝐿𝑛) = 𝑛 + 1, hence 𝑋 � P𝑛 by [30] and 𝛽𝑋 (𝐻) = 0 for any hyperplane H on X. �

In particular, taking L to be the hyperplane class on P𝑛, Corollary 4.4 gives a new algebraic proof of
the K-semistability of P𝑛 (see, for example, [34, 42] for other proofs). It also gives a unified treatment
of the uniform K-stability of the following Fano manifolds.

Corollary 4.5. The following Fano manifolds are all uniformly K-stable:

1. [45] del Pezzo surfaces of degree ≤ 3;
2. [21] hypersurfaces 𝑋 ⊆ P𝑛+1 of degree 𝑛 + 1;
3. [16] double covers of P𝑛 branched over some smooth divisor D of degree 𝑑 ≥ 𝑛 + 1.
4. cyclic covers 𝜋 : 𝑋 → 𝑌 of degree s (where𝑌 ⊆ P𝑛+1 is a smooth hypersurface of degree m) branched

along some smooth divisor 𝐷 ∈ |𝑑𝐻 | (where H is the hyperplane class) with 0 ≤ 𝑛+2−𝑚−(1− 1
𝑠 )𝑑 ≤

𝑛+1
𝑚𝑠 .

5. del Pezzo threefolds of degree 1: that is, smooth weighted hypersurfaces 𝑋6 ⊆ P(13, 2, 3).

Proof. Note that (3) is a special case of (4) with 𝑚 = 1. We will also treat (5) separately. In each
remaining case, we will find an ample line bundle L on the Fano variety that satisfies the assumptions
of Corollary 4.4. Indeed, for del Pezzo surfaces X of degree 2 or 3 (respectively, degree 1), we take
𝐿 = −𝐾𝑋 (respectively, 𝐿 = −2𝐾𝑋 ). We also set 𝐿 = −𝐾𝑋 for hypersurfaces 𝑋 ⊆ P𝑛+1 of degree 𝑛 + 1.
In case (4), we choose 𝐿 = 𝜋∗𝐻. It is straightforward to verify that they all satisfy the assumptions of
Corollary 4.4, hence by Corollary 4.4, all Fano manifolds X in (1)–(4) are K-semistable. Moreover, del
Pezzo surface of degree 1 or 2 are uniformly K-stable since (𝐿𝑛) < 𝑛+1

𝑟 for our choice of L. It remains
to check that there are no divisors E on X with 𝛽𝑋 (𝐸) = 0 in the other cases.

Let 𝜏 = 𝑇 (−𝐾𝑋 ; 𝐸) be the pseudo-effective threshold (Definition 2.2). If dim 𝑋 ≥ 3 (so we are in case
(2) or (4)), then X has Picard number one and −𝐾𝑋 ∼Q 𝜏𝐸 . A direct calculation gives 𝛽𝑋 (𝐸) = 1− 𝜏

𝑛+1 .
Since X is not isomorphic to P𝑛, we have 𝜏 < 𝑛 + 1 by [30] and thus 𝛽𝑋 (𝐸) > 0 in this case (compare
to [20, Corollary 9.3]). If dim 𝑋 = 2, then X is a cubic surface. Clearly 𝑆(𝐸) < 𝜏. Since −𝐾𝑋 − 𝜏𝐸
is pseudo-effective, it has nonnegative intersection with −𝐾𝑋 and thus 𝜏 ≤ 3

(−𝐾𝑋 ·𝐸) . It follows that if
𝛽𝑋 (𝐸) = 1− 𝑆(𝐸) = 0, then 𝜏 > 𝑆(𝐸) = 1 and (−𝐾𝑋 · 𝐸) ≤ 2: that is, E is a line or a conic. But in both
cases, we have 𝜏 = 1 and hence 𝑆(𝐸) < 1: if E is a line, then | −𝐾𝑋 − 𝐸 | is base point free and defines a
conic bundle 𝑋 → P1; if E is a conic and 𝐿0 is the residue line (the other component of the hyperplane
section that contains E), then −𝐾𝑋 − 𝐸 ∼ 𝐿0 is a (−1)-curve. Thus 𝛽𝑋 (𝐸) = 1 − 𝑆(𝐸) > 0 for all
divisors E on the cubic surface X as well. We therefore conclude that all Fano manifolds in (1)–(4) are
uniformly K-stable.

It remains to prove every Fano threefold X in (5) is uniformly K-stable. For such X, we have−𝐾𝑋 = 2𝐻
for some ample line bundle H on X. We claim that for every 𝑥 ∈ 𝑋 there exists a smooth member 𝑆 ∈ |𝐻 |
that contains x. Indeed, it is not hard to check that ℎ0 (𝑋, 𝐻 ⊗ 𝔪𝑥) ≥ 2. Let 𝑆1 ≠ 𝑆2 ∈ |𝐻 ⊗ 𝔪𝑥 |, and
let M ⊆ |𝐻 ⊗ 𝔪𝑥 | be the pencil they span. As H generates Pic(𝑋), 𝑆1 and 𝑆2 doesn’t have common
component, and we have a well-defined 1-cycle 𝑊 = (𝑆1 · 𝑆2) on X. Since (𝐻 · 𝑊) = (𝐻3) = 1, W
is an integral curve. As W is also the complete intersection of any two members of M, every 𝑆 ∈ M
is smooth at the smooth points of W. Let y be a singular point of W, and let 𝑆′ be a general member

https://doi.org/10.1017/fmp.2022.11 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.11


Forum of Mathematics, Pi 27

of |2𝐻 ⊗ 𝔪𝑦 |. Then as |2𝐻 | is base point free, 𝑆1 ∩ 𝑆2 ∩ 𝑆 is zero dimensional. If both 𝑆1 and 𝑆2 are
singular at y, then we have mult𝑦𝑆𝑖 ≥ 2 (𝑖 = 1, 2) and thus

2 = 2(𝐻3) = (𝑆1 · 𝑆2 · 𝑆′) ≥ mult𝑦𝑆1 · mult𝑦𝑆2 · mult𝑦𝑆′ ≥ 4,

a contradiction. Hence a general member ofM is smooth at y. Since there are only finitely many singular
point of W and M is base point free outside W, we see that a general member of M is smooth, proving
the claim.

Now let 𝑥 ∈ 𝑋 , and choose a smooth member 𝑆 ∈ |𝐻 | containing x. Note that S is a del Pezzo
surface of degree 1. By Lemma 4.4 with 𝐿 = −2𝐾𝑆 , we have 𝛿(𝐻 |𝑆) = 2𝛿(𝐿) ≥ 3

2 and if the
equality is computed by some divisor E over S, then E is a divisor on S. By Lemma 4.3, it follows that
𝛿𝑥 (−𝐾𝑋 ) = 1

2𝛿𝑥 (𝐻) ≥ 2
3𝛿(𝐻 |𝑆) ≥ 1 for all 𝑥 ∈ 𝑋 , thus X is K-semistable. If it is not K-stable, then by

another use of Lemma 4.3 and the same argument as in Corollary 4.4, we have 𝛽𝑋 (𝐸) = 0 for some
divisor E on X. But since X has Picard number one and is not P3, this is a contradiction as before and
therefore X is uniformly K-stable. �

4.3. Surface case

We next investigate the surface case where almost everything can be explicitly computed. Recall from
[22, Theorem 1.5] that it is enough to test the K-stability of log Fano pairs using divisors of plt type.
The nice feature in the surface case is that the corresponding refinements are always almost complete.

Lemma 4.5. Let (𝑆,Δ) be a surface pair, and let L be an big line bundle on S. Let E be a plt type divisor
over S. Let 𝑉�• be the complete linear series associated to L, and let 𝑊�• be the refinement of 𝑉�• by E.
Then 𝑊�• is almost complete.

As in Example 2.12, the almost completeness of a refinement is related to the surjectivity of the
natural restriction map on sections, hence the proof of Lemma 4.5 essentially boils down to the following
vanishing-type result.

Lemma 4.6. Let (𝑆,Δ) be a surface pair. Then there exists some constant 𝐴 > 0 such that
ℎ1 (𝑆,O𝑆 (𝐷)) ≤ 𝐴 for all Q-Cartier Weil divisor D on S such that 𝐷 − (𝐾𝑆 + Δ) is nef and big.

Proof. Let 𝑓 : 𝑇 → 𝑆 be the minimal log resolution of (𝑆,Δ), and let (𝑇,Δ𝑇 ) be the crepant pullback of
(𝑆,Δ): that is, 𝐾𝑇 +Δ𝑇 = 𝑓 ∗(𝐾𝑆 +Δ). Let E be the sum of all exceptional divisors. Since D has integer
coefficients, { 𝑓 ∗𝐷} is exceptional over S, hence we have � 𝑓 ∗𝐷� + 𝐸 ≥ 𝑓 ∗𝐷 and 𝑓∗O𝑇 (� 𝑓 ∗𝐷� + 𝐸) =
O𝑆 (𝐷). Let 𝐿 = � 𝑓 ∗𝐷� + 𝐸 , and let Δ ′ = Δ𝑇 + 𝐿 − 𝑓 ∗𝐷. Then it is easy to check that 0 ≤ Δ ′ ≤ Δ𝑇 + 𝐸
and

𝐿 − (𝐾𝑇 + Δ ′) ∼Q 𝑓 ∗(𝐷 − 𝐾𝑆 − Δ),

which is nef and big by assumption. By Lemma 4.7, we know that there exists some constant A
depending only on the pair (𝑇,Δ𝑇 + 𝐸) such that ℎ1 (𝑇,O𝑇 (𝐿)) ≤ 𝐴. The lemma then follows as
ℎ1 (𝑆,O𝑆 (𝐷)) = ℎ1 (𝑆, 𝜋∗O𝑇 (𝐿)) ≤ ℎ1 (𝑇,O𝑇 (𝐿)). �

The following result is used in the above proof.

Lemma 4.7. Let S a smooth surface, and let Δ be an effective divisor on S with simple normal crossing
support. Then there exists some constant A such that ℎ1 (𝑇,O𝑇 (𝐿)) ≤ 𝐴 for all Cartier divisor L such
that 𝐿 − (𝐾𝑇 + Δ ′) is nef and big for some Q-divisor 0 ≤ Δ ′ ≤ Δ .

Proof. We prove by induction on the sum of all coefficients of �Δ�. First note that if �Δ ′� = 0, then
(𝑇,Δ ′) is klt and ℎ1 (𝑇,O𝑇 (𝐿)) = 0 by Kawamata-Viehweg vanishing. Thus it suffices to consider
the case when �Δ ′� ≠ 0. In particular, we may just take 𝐴 = 0 when �Δ� = 0. In general, let
C be an irreducible component of �Δ ′� ≤ �Δ�. By assumption (𝐿 − 𝐾𝑇 − Δ ′) · 𝐶 ≥ 0, which
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gives deg(𝐿 |𝐶 − 𝐾𝐶 ) ≥ (Δ ′ − 𝐶) · 𝐶, thus by Serre duality ℎ1 (𝐶,O𝐶 (𝐿)) = ℎ0 (𝐶, 𝜔𝐶 (−𝐿)) ≤
1 + deg(𝐾𝐶 − 𝐿 |𝐶 ) ≤ 1 + ((𝐶 − Δ ′) · 𝐶) is bounded by some constants 𝐴1 that only depends on Δ . By
induction hypothesis (applied to the pairs (𝑇,Δ − 𝐶) for various components C of �Δ�), we also have
ℎ1 (𝑇,O𝑇 (𝐿 − 𝐶)) ≤ 𝐴2 for some constant 𝐴2 that only depends on Δ , thus ℎ1 (𝑇,O𝑇 (𝐿)) ≤ 𝐴1 + 𝐴2
via the exact sequence 0 → O𝑇 (𝐿 − 𝐶) → O𝑇 (𝐿) → O𝐶 (𝐿) → 0. �

Proof of Lemma 4.5. Let 𝑇1 → 𝑆 be the prime blowup associated to E. Note that E is a smooth curve
on 𝑇1 and 𝑇1 is klt along E (as (𝑇1,Δ𝑇1 +𝐸) is plt by assumption). Let 𝑇 → 𝑇1 be the minimal resolution
of 𝑇1 over its non-klt locus, and let 𝜋 : 𝑇 → 𝑆 be the induced morphism. Note that T is Q-factorial. Let
𝐼 = Supp(𝑊�•) ∩ ({1} × R), let 𝛾 ∈ 𝐼◦ ∩ Q, and let 𝜋∗𝐿 − 𝛾𝐸 = 𝑃𝛾 + 𝑁𝛾 be the Zariski decomposition
where 𝑃𝛾 (respectively, 𝑁𝛾) is the nef (respectively, negative) part. We claim that there exists a divisor
𝐺 ⊆ 𝑇 such that Supp(𝑁𝛾) ⊆ 𝐺 for all 𝛾. Indeed, for any 𝛾1 < 𝛾 < 𝛾2, since 𝜋∗𝐿 − 𝛾𝐸 is a convex
linear combination of 𝜋∗𝐿 − 𝛾1𝐸 and 𝜋∗𝐿 − 𝛾2𝐸 , we see that Supp(𝑁𝛾) ⊆ Supp(𝑁𝛾1) ∪Supp(𝑁𝛾2 ). On
the other hand, by [39, Proposition III.1.10], there are at most 𝜌(𝑇) irreducible components in each 𝑁𝛾 .
It follows that ∪𝛾Supp(𝑁𝛾) is a finite union of divisors in T, and we may simply take 𝐺 = ∪Supp(𝑁𝛾).
Note that 𝐸 � Supp(𝐺) as otherwise 𝐸 ⊆ Bs(𝜋∗𝐿 − 𝛾𝐸) for some 𝛾, and thus 𝑊𝑚,𝑚𝛾 = 0 for all m.

Now fix 𝛾 ∈ 𝐼◦ ∩ Q and write P (respectively, N) for 𝑃𝛾 (respectively, 𝑁𝛾). Then for sufficiently
divisible m, we have |𝑚(𝜋∗𝐿 − 𝛾𝐸) | = |𝑚𝑃 | + 𝑚𝑁 . It follows that |𝑀𝑚,𝑚𝛾 | ⊆ |𝐷𝑚 | for some divisor D
with 0 < deg 𝐷𝑚 ≤ 𝑚(𝑃 · 𝐸) and in particular (𝑃 · 𝐸) > 0. Since E is a curve, any divisors on E are
numerically proportional. Thus 𝑊�• is almost complete (with respect to any line bundle of degree 1 on
E) as long as

lim
𝑚→∞

ℎ0 (𝑊𝑚,𝑚𝛾)
𝑚(𝑃 · 𝐸) = 1, (4.2)

where the limit is taken over sufficiently divisible integers m. Indeed, if equation (4.2) holds, then as

ℎ0 (𝑊𝑚,𝑚𝛾) = ℎ0 (𝑀𝑚,𝑚𝛾) ≤ ℎ0(𝐸, 𝐷𝑚) ≤ deg 𝐷𝑚 + 1 ≤ 𝑚(𝑃 · 𝐸) + 1,

we clearly have lim𝑚→∞
ℎ0 (𝑊𝑚,𝑚𝛾 )
ℎ0 (𝐸,𝐷𝑚) = 1, which verifies condition (2) in Definition 2.16. It also gives

lim𝑚→∞
deg𝐷𝑚

𝑚 = (𝑃 ·𝐸), hence lim𝑚→∞
𝐹𝑚,𝑚𝛾

𝑚 = 𝑁 |𝐸 for sufficiently divisible m (compare to the proof
of Lemma 4.8 below). Since Supp(𝑁) ⊆ 𝐺, we see that 𝐹 (𝑊�•) is supported on 𝐺 ∩ 𝐸 , which verifies
condition (1) in Definition 2.16.

It remains to prove equation (4.2). To see this, we note that P is big (since 𝛾 ∈ 𝐼◦) and hence
𝑚0𝑃 − 𝐸 − 𝐾𝑇 is effective for some divisible enough integer 𝑚0. Let 𝑄 ∈ |𝑚0𝑃 − 𝐸 − 𝐾𝑇 |. Then by
Lemma 4.6, there exists some constant A depending only on (𝑇, 𝑄) such that ℎ1 (𝑇,O𝑇 (𝑚𝑃 − 𝐸)) ≤ 𝐴
for all sufficiently divisible 𝑚 > 𝑚0 (as 𝑚𝑃 − 𝐸 − (𝐾𝑇 +𝑄) ∼ (𝑚 − 𝑚0)𝑃 is nef and big).

Using the exact sequence

0 → O𝑇 (𝑚𝑃 − 𝐸) → O𝑇 (𝑚𝑃) → O𝐸 (𝑚𝑃) → 0

from Lemma 2.1, we obtain

ℎ0 (𝑊𝑚,𝑚𝛾) = dim Im(𝐻0(𝑇,O𝑇 (𝑚𝑃)) → 𝐻0(𝐸,O𝐸 (𝑚𝑃)))
≥ ℎ0 (𝐸,O𝐸 (𝑚𝑃)) − ℎ1 (𝑇,O𝑇 (𝑚𝑃 − 𝐸))
≥ ℎ0 (𝐸,O𝐸 (𝑚𝑃)) − 𝐴

≥ 𝑚(𝑃 · 𝐸) + 1 − 𝑔(𝐸) − 𝐴,

where the last inequality follows from Riemann-Roch. Letting 𝑚 → ∞, we get equation (4.2), and hence
𝑊�• is almost complete as desired. �
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For actual calculations, it would be convenient to have a formula for 𝐹 (𝑊�•) before we apply
Corollary 3.3 to the almost complete refinement 𝑊�•. This can be done using Zariski decomposition on
surfaces.

Lemma 4.8. In the setup of Lemma 4.5, assume that L is ample, and let 𝜋 : 𝑇 → 𝑆 be the prime blowup
associated to E. Then we have

𝐹 (𝑊�•) =
2

(𝐿2)

∫ ∞

0

(
vol𝑇 |𝐸 (𝜋∗𝐿 − 𝑡𝐸) · 𝑁𝜎 (𝜋∗𝐿 − 𝑡𝐸) |𝐸

)
d𝑡, (4.3)

where vol𝑇 |𝐸 (·) is the restricted volume function (see [19]) and 𝑁𝜎 (·) denotes the negative part in the
Zariski decomposition of a (pseudo-effective) divisor.

Proof. Since L is ample, it is easy to see that Supp(𝑊�•) ∩ ({1} ×R) = [0, 𝑇 (𝐿; 𝐸)]. By Corollary 2.15,
we then have

𝐹 (𝑊�•) =
2

vol(𝑊�•)

∫ 𝑇 (𝐿;𝐸)

0
𝐹 (𝛾)vol𝑊�• (𝛾)d𝛾,

where 𝐹 (𝛾) = lim𝑚→∞
1
𝑚𝐹𝑚, �𝑚𝛾� . By construction, we have vol(𝑊�•) = vol(𝑉�•) = vol(𝐿), vol𝑊�• (𝛾) =

vol𝑇 |𝐸 (𝜋∗𝐿 − 𝛾𝐸) and vol𝑇 |𝐸 (𝜋∗𝐿 − 𝛾𝐸) = 0 when 𝛾 > 𝑇 (𝐿; 𝐸). Thus it suffices to show that

𝐹 (𝛾) = 𝑁𝜎 (𝜋∗𝐿 − 𝛾𝐸) |𝐸 . (4.4)

By continuity, it is enough to check equation (4.4) when 𝛾 ∈ (0, 𝑇 (𝐿; 𝐸)) ∩Q. Let 𝜋∗𝐿−𝛾𝐸 = 𝑃+𝑁 be
the Zariski decomposition as in the proof of Lemma 4.5, and let m be a sufficiently divisible integer. Since
L is ample, E is not contained in the stable base locus Bs(𝜋∗𝐿) of 𝜋∗𝐿. Since there always exists some
𝛾′ ≥ 𝛾 such that 𝐸 � Bs(𝜋∗𝐿 − 𝛾′𝐸) (e.g., we take 𝛾′ = ord𝐸 (𝐷) for any 𝐷 ∼Q 𝐿 with ord𝐸 (𝐷) ≥ 𝛾)
and 𝜋∗𝐿 − 𝛾𝐸 is a convex linear combination of 𝜋∗𝐿 and 𝜋∗𝐿 − 𝛾′𝐸 , we see that 𝐸 � Bs(𝜋∗𝐿 − 𝛾𝐸) as
well. In particular, 𝐸 � Supp(𝑁). Then clearly 𝐹𝑚,𝑚𝛾 ≥ 𝑚𝑁 |𝐸 and hence 𝐹 (𝛾) ≥ 𝑁 |𝐸 . From the proof
of Lemma 4.5, we also see that there exists some constant A (depending only on (𝑆,Δ) and E) such
that the restricted linear series |𝑚𝑃 |𝐸 has codimension at most A in |O𝐸 (𝑚𝑃) |, and thus the degree of
𝐹𝑚,𝑚𝛾 −𝑚𝑁 |𝐸 is at most A. Letting 𝑚 → ∞, we obtain deg 𝐹 (𝛾) = deg(𝑁 |𝐸 ), which implies equation
(4.4) as 𝐹 (𝛾) ≥ 𝑁 |𝐸 . �

As an illustration, we compute the 𝛿-invariants of all smooth cubic surfaces. Some of these will be
useful in our proof of the K-stability of cubic threefolds (Lemma 4.10).

Theorem 4.6. Let 𝑋 ⊆ P3 be a smooth cubic surface, and let 𝑥 ∈ 𝑋 be a closed point. Let𝐶 = 𝑇𝑥 (𝑋)∩𝑋
be the tangent hyperplane section. Then

𝛿𝑥 (𝑋) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3/2 if mult𝑥𝐶 = 3,
27/17 if 𝐶 has a tacnode at 𝑥,
5/3 if 𝐶 has a cusp at 𝑥,
18/11 if 𝐶 is the union of three lines and mult𝑥𝐶 = 2,
12/7 if 𝐶 is irreducible and has a node at 𝑥,

9
25−8

√
6

if 𝐶 is the union of a line and a conic that intersects transversally.

Moreover, in the first three cases, 𝛿𝑥 (𝑋) is computed by the (unique) divisor that computes lct𝑥 (𝑋,𝐶);
in the next two cases, 𝛿𝑥 (𝑋) is computed by the ordinary blowup of x; in the last case, 𝛿𝑥 (𝑋) is computed
by the quasi-monomial valuation over 𝑥 ∈ 𝑋 with weights 1 +

√
6 on the line and 2 on the conic, and if

0 < 𝜀 � 1, then the log del Pezzo pair (𝑋, (1 − 𝜀)𝐶) satisfies 𝛿(𝑋, (1 − 𝜀)𝐶) = 9
25−8

√
6
∉ Q.

Proof. See Appendix A. �
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Corollary 4.7. Let 𝑋 ⊆ P3 be a smooth cubic surface. Then

𝛿(𝑋) =
{

3/2 if 𝑋 has an Eckardt point,
27/17 otherwise.

It has been expected (see, for example, [37]) that given a klt Fano variety X with a Q-complement Δ ,
the graded rings

gr𝑣𝑅 := ⊕𝑚,𝜆Gr𝜆F𝑣
𝐻0(𝑋,−𝑚𝑟𝐾𝑋 )

are finitely generated for all lc places v of (𝑋,Δ), where 𝑟 > 0 is an integer such that −𝑟𝐾𝑋 is Cartier
and F𝑣 is the filtration induced by v. Unfortunately, this is not true in general, and we identify a
counterexample through the calculations in Theorem 4.6.

Theorem 4.8. Let 𝑋 ⊆ P3 be a smooth cubic surface, and let 𝐶 ⊆ 𝑋 be a hyperplane section such that
𝐶 = 𝐿 ∪𝑄 is the union of a line and a conic that intersects transversally. Then there exists an lc place
v of (𝑋,𝐶) such that gr𝑣𝑅 is not finitely generated.

Proof. This can be deduced from the fact that 𝛿𝑥 (𝑋) ∉ Q, where 𝑥 ∈ 𝐿 ∩𝑄. Here we give a more direct
(and simpler) argument.

Let 𝑥 ∈ 𝐿∩𝑄, and let 𝑎, 𝑏 > 0 be coprime integers. Let 𝜋 : 𝑌 = 𝑌𝑎,𝑏 → 𝑋 be the weighted blowup at
x with wt(𝐿) = 𝑎 and wt(𝑄) = 𝑏. Let E be the exceptional divisor, and let 𝐿̃ (respectively,𝑄) be the strict
transform of L (respectively, Q). Assume that 𝑏 < 2𝑎. We have ( 𝐿̃2) = −1− 𝑎

𝑏 , (𝑄2) = − 𝑏𝑎 , ( 𝐿̃ ·𝑄) = 1
and in particular the intersection matrix of 𝐿̃ and 𝑄 is negative definite. As −𝜋∗𝐾𝑋 − (𝑎 + 𝑏)𝐸 ∼ 𝐿̃ +𝑄,
it follows that 𝑇 (−𝐾𝑋 ; 𝐸) = 𝑎 + 𝑏, the stable base locus of −𝜋∗𝐾𝑋 − 𝑡𝐸 is supported on 𝐿̃ ∪ 𝑄 for all
0 ≤ 𝑡 ≤ 𝑎 + 𝑏, and hence 𝑁𝜎 (−𝜋∗𝐾𝑋 − 𝑡𝐸) = 𝑓 (𝑡) 𝐿̃ + 𝑔(𝑡)𝑄 for some 𝑓 (𝑡), 𝑔(𝑡) ≥ 0. The coefficients
𝑓 (𝑡) and 𝑔(𝑡) are computed as the smallest numbers such that −𝜋∗𝐾𝑋 − 𝑡𝐸 − 𝑓 (𝑡) 𝐿̃ − 𝑔(𝑡)𝑄 is nef, and
it is enough to check nefness against 𝐿̃ and 𝑄. A straightforward computation then gives

𝑁𝜎 (−𝜋∗𝐾𝑋 − 𝑡𝐸) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if 0 ≤ 𝑡 ≤ 𝑏,
𝑡−𝑏
𝑎+𝑏 𝐿̃ if 𝑏 < 𝑡 ≤ 𝑎 (2𝑎+3𝑏)

2𝑎+𝑏 ,
2𝑡−2𝑎−𝑏

𝑏 𝐿̃ + (2𝑎+𝑏)𝑡−𝑎 (2𝑎+3𝑏)
𝑏2 𝑄 if 𝑎 (2𝑎+3𝑏)

2𝑎+𝑏 < 𝑡 ≤ 𝑎 + 𝑏.

(4.5)

The key point is that as a rational function, 𝑎 (2𝑎+3𝑏)
(2𝑎+𝑏) is not a linear combination of a and b. In particular,

we may choose 𝑎0, 𝑏0 ∈ R+ such that 𝑏0 < 2𝑎0 and 𝑎0, 𝑏0,
𝑎0 (2𝑎0+3𝑏0)
(2𝑎0+𝑏0) are linearly independent over

Q (thus 𝑎0
𝑏0

is necessarily irrational). Let 𝑣0 be the quasi-monomial valuation centred at x given by
wt(𝐿) = 𝑎0 and wt(𝑄) = 𝑏0. We claim that gr𝑣0

𝑅 is not finitely generated.
Suppose that gr𝑣0

𝑅 is finitely generated, and let 𝑓𝑖 (𝑖 = 1, 2, · · · , 𝑠) be a finite set of homogeneous
generators (gr𝑣0

𝑅 is naturally graded by N × (N𝑎0 + N𝑏0)). Let deg( 𝑓𝑖) = (𝑚𝑖 , 𝜆𝑖 = 𝑝𝑖𝑎0 + 𝑞𝑖𝑏0),
where 𝑚𝑖 , 𝑝𝑖 , 𝑞𝑖 ∈ N. We may assume that 0 = 𝜆1

𝑚1
≤ 𝜆2
𝑚2

· · · ≤ 𝜆𝑠
𝑚𝑠

. Clearly 𝜆𝑠
𝑚𝑠

≥ 𝑎0 + 𝑏0 > 𝑎0 (2𝑎0+3𝑏0)
(2𝑎0+𝑏0)

(otherwise 𝑣0 (𝑠) < 𝑎0 + 𝑏0 for all 𝑠 ∈ 𝐻0(𝑋,−𝐾𝑋 ); but 𝑣0 (𝐿 + 𝑄) = 𝑎0 + 𝑏0). Since 𝑎0, 𝑏0 and
𝑎0 (2𝑎0+3𝑏0)
(2𝑎0+𝑏0) are linearly independent over Q, there exists 1 ≤ ℓ < 𝑠 such that

𝜆ℓ
𝑚ℓ

<
𝑎0 (2𝑎0 + 3𝑏0)
(2𝑎0 + 𝑏0)

<
𝜆ℓ+1
𝑚ℓ+1

.

We may lift each 𝑓𝑖 to 𝑔𝑖 ∈ 𝑅𝑚𝑖 = 𝐻0(𝑋,−𝑚𝑖𝐾𝑋 ) such that in𝑣0 (𝑔𝑖) = 𝑓𝑖 . Then for all 𝛼 = (𝑎, 𝑏) ∈ Q2

with |𝛼 − (𝑎0, 𝑏0) | � 1, we have 𝜇𝑖 := 𝑣𝛼 (𝑔𝑖) = 𝑝𝑖𝑎 + 𝑞𝑖𝑏 (where 𝑣𝛼 is the quasi-monomial valuation
with wt(𝐿) = 𝑎 and wt(𝑄) = 𝑏); in particular, 𝑣𝛼 (𝑔𝑖) > 𝑚𝑖 · 𝑎 (2𝑎+2𝑏)

2𝑎+𝑏 when 𝑖 ≥ ℓ + 1; thus by
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equation (4.5), 𝑔𝑖 vanishes on Q for all 𝑖 ≥ ℓ + 1. We may also assume that

0 =
𝜇1
𝑚1

≤ · · · ≤ 𝜇ℓ
𝑚ℓ

<
𝑎(2𝑎 + 2𝑏)

2𝑎 + 𝑏
<

𝜇ℓ+1
𝑚ℓ+1

≤ · · · ≤ 𝜇𝑠
𝑚𝑠

. (4.6)

By [35, Lemma 2.10], 𝑔𝑖 restrict to a finite set of generators of gr𝑣𝛼𝑅. It follows that for any 𝑔 ∈ 𝑅𝑚 =
𝐻0 (𝑋,−𝑚𝐾𝑋 ), we have

𝑣𝛼 (𝑔) = max{wt(𝐹) | 𝐹 ∈ C[𝑥1, · · · , 𝑥𝑠] s.t. 𝐹 (𝑔1, · · · , 𝑔𝑠) = 𝑔}, (4.7)

where we set wt(𝑥𝑖) = 𝜇𝑖 (clearly if 𝑔 = 𝐹 (𝑔1, · · · , 𝑔𝑠), then 𝑣𝛼 (𝑔) ≥ wt(𝐹); conversely, as 𝑔𝑖 generate
gr𝑣𝛼𝑅, there exists F such that wt(𝐹) = 𝑣𝛼 (𝑔) and 𝑔 = 𝐹 (𝑔1, · · · , 𝑔𝑠)mod F>𝑣𝛼 (𝑔)𝑣𝛼 𝑅𝑚, one can then
prove by induction on 𝑣𝛼 (𝑔) that 𝑔 = 𝐹 (𝑔1, · · · , 𝑔𝑠) for some wt(𝐹) = 𝑣𝛼 (𝑔)). Now let 𝜆 = 𝑎 (2𝑎+2𝑏)

2𝑎+𝑏 .
By equation (4.5), for sufficiently divisible integers 𝑚 > 0, there exists 𝑓 ∈ 𝐻0(𝑋,−𝑚𝐾𝑋 ) such that
𝑣𝛼 ( 𝑓 ) = 𝜆𝑚 and f does not vanish on Q. By equation (4.7), we have 𝑓 = 𝐹 (𝑔1, · · · , 𝑔𝑠) for some F
with wt(𝐹) = 𝑚𝜆. However, by equation (4.6), we see that each monomial in F must contain some 𝑔𝑖
with 𝑖 ≥ ℓ + 1; it follows that 𝑓 = 𝐹 (𝑔1, · · · , 𝑔𝑠) vanishes along Q, a contradiction. Therefore, gr𝑣0

𝑅 is
not finitely generated. �

4.4. Hypersurfaces with Eckardt points

Let 𝑋 ⊆ P𝑛+1 be a smooth hypersurface of degree 𝑑 ≥ 2. Recall that 𝑥 ∈ 𝑋 is called a generalised
Eckardt point if the tangent hyperplane section 𝐷 = 𝑇𝑥𝑋 ∩ 𝑋 ⊆ 𝑋 at x satisfies mult𝑥𝐷 = 𝑑. In this case
D is isomorphic to the cone over 𝐹 (𝑋, 𝑥), the Hilbert scheme of lines in X passing through x, which is
a hypersurface of degree d in P𝑛−1. It is in fact smooth by the following easy lemma.

Lemma 4.9. Let 𝑋 ⊆ P𝑛+1 be a smooth hypersurface of degree 𝑑 ≥ 2, and let 𝑥 ∈ 𝑋 be a generalised
Eckardt point. Then 𝐹 (𝑋, 𝑥) is smooth.

Proof. We may assume that 𝑥 = [0 : · · · : 0 : 1]. Up to a change of coordinates, X is defined by an
equation of the form 𝑥0 𝑓 (𝑥1, · · · , 𝑥𝑛+1) + 𝑔(𝑥1, · · · , 𝑥𝑛) = 0, where deg 𝑓 = 𝑑 − 1, deg 𝑔 = 𝑑 and f
contains the monomial 𝑥𝑑−1

𝑛+1 . We then have 𝐹 (𝑋, 𝑥) � (𝑔 = 0) ⊆ P𝑛−1. If [𝑎1 : · · · : 𝑎𝑛] is a singular
point of 𝐹 (𝑋, 𝑥), then for any 𝑎𝑛+1 with 𝑓 (𝑎1, · · · , 𝑎𝑛+1) = 0 (such 𝑎𝑛+1 exists since f contains the
monomial 𝑥𝑑−1

𝑛+1 ) it is not hard to check that X is singular at [0 : 𝑎1 : · · · : 𝑎𝑛+1]. This is a contradiction
as X is smooth. Thus 𝐹 (𝑋, 𝑥) is smooth. �

Theorem 4.9. Let 𝑋 ⊆ P𝑛+1 be a smooth hypersurface of degree 𝑑 ≥ 2, and let 𝑥 ∈ 𝑋 be a generalised
Eckardt point. Assume that 𝐹 (𝑋, 𝑥) is K-semistable if 𝑑 ≤ 𝑛 − 1 (i.e., when it’s Fano). Then 𝛿𝑥 (𝐻) =
𝑛(𝑛+1)
𝑑+𝑛−1 (where H is the hyperplane class on X), and it is computed by the ordinary blowup of x.

Proof. Let 𝜋 : 𝑌 → 𝑋 be the blowup of x, and let E be the exceptional divisor. Let 𝑉�• be the complete
linear series associated to H, and let 𝑊�• be its refinement by E. Since 𝑥 ∈ 𝑋 is a generalised Eckardt
point, the tangent hyperplane section 𝑥 ∈ 𝐷 ⊆ 𝑋 has mult𝑥𝐷 = 𝑑. Let 𝐷 be the strict transform of
D on Y. Let 𝑗 , 𝑚 ∈ N. Note that |𝑚𝜋∗𝐻 − 𝑗𝐸 | ≠ ∅ if and only if 0 ≤ 𝑗 ≤ 𝑑𝑚, and it is base point free
when 0 ≤ 𝑗 ≤ 𝑚. We first show that

|𝑚𝜋∗𝐻 − 𝑗𝐸 | =
����(𝑚 − � 𝑗 − 𝑚

𝑑 − 1
�
)
𝜋∗𝐻 −

(
𝑗 − 𝑑 · � 𝑗 − 𝑚

𝑑 − 1
�
)
𝐸

���� + � 𝑗 − 𝑚

𝑑 − 1
�𝐷 (4.8)

is the decomposition into movable and fixed part when 𝑚 ≤ 𝑗 ≤ 𝑑𝑚.
Suppose first that 𝑛 ≥ 3. Then D is irreducible. Let 𝐷 ′ ∼Q 𝐻 be another effective Q-divisor that

doesn’t contain D in its support. We have

𝑑 · mult𝑥𝐷 ′ ≤ (𝐷 · 𝐷 ′ · 𝐻1 · · · · · 𝐻𝑛−2) = 𝑑,
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where 𝐻1, · · · , 𝐻𝑛−2 are general hyperplane sections passing through x, hence mult𝑥𝐷 ′ ≤ 1.
It follows that for any 𝐺 ∈ |𝑚𝜋∗𝐻 − 𝑗𝐸 |, if we write 𝐺 = 𝑎𝐷 + 𝐺 ′, where 𝐷 � Supp(𝐺 ′), then
𝐺 ′ ∈ |(𝑚 − 𝑎)𝜋∗𝐻 − ( 𝑗 − 𝑎𝑑)𝐸 | and

𝑗 − 𝑎𝑑 ≤ mult𝑥𝜋(𝐺 ′) ≤ 𝑚 − 𝑎.

In other words, 𝑎 ≥ � 𝑗−𝑚𝑑−1 �, which implies equation (4.8). If 𝑛 = 2, then in the above same notation 𝐷
is a disjoint union of d lines 𝐿1, · · · , 𝐿𝑑 . If we take 𝐺 ∈ |𝑚𝜋∗𝐻 − 𝑗𝐸 | and write 𝐺 =

∑
𝑎𝑖𝐿𝑖 + 𝐺 ′,

where 𝐺 ′ doesn’t contain any 𝐿𝑖 (𝑖 = 1, · · · , 𝑑) in its support, then as (𝐺 ′ · 𝐿𝑖) ≥ 0, we obtain
𝑚− 𝑗 = (𝐺 · 𝐿𝑖) ≥ 𝑎𝑖 (𝐿2

𝑖 ) = 𝑎𝑖 (1− 𝑑); thus 𝑎𝑖 ≥ � 𝑗−𝑚𝑑−1 � for all 1 ≤ 𝑖 ≤ 𝑑, and equation (4.8) still holds.
It is straightforward to check that for all 0 ≤ 𝑗 ≤ 𝑚, the natural restriction maps

𝐻0(𝑌,O𝑌 (𝑚𝜋∗𝐻 − 𝑗𝐸)) → 𝐻0 (𝐸,O𝐸 ( 𝑗))

are surjective. It follows that

vol(𝜋∗𝐻 − 𝑡𝐸) =
{
𝑑 − 𝑡𝑛 if 0 ≤ 𝑡 ≤ 1,
(𝑑−𝑡)𝑛
(𝑑−1)𝑛−1 if 1 < 𝑡 ≤ 𝑑,

and

𝑊𝑚, 𝑗 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐻0(𝐸,O𝐸 ( 𝑗)) if 0 ≤ 𝑗 ≤ 𝑚,

Im(𝐻0(𝐸,O𝐸 ( 𝑗 − 𝑑 � 𝑗−𝑚𝑑−1 �))
· � 𝑗−𝑚

𝑑−1 �𝐷0
−−−−−−−−→ 𝐻0(𝐸,O𝐸 ( 𝑗))) if 𝑚 ≤ 𝑗 ≤ 𝑑𝑚

0 otherwise,

where 𝐷0 = 𝐷 ∩ 𝐸 � 𝐹 (𝑋, 𝑥). In particular, 𝑊�• is almost complete, and through direct calculations
we see that 𝑆(𝐻; 𝐸) = 𝑑+𝑛−1

𝑛+1 , 𝐹 (𝑊�•) = 1
𝑛+1 (1 − 1

𝑑 )𝐷0 (by Corollary 2.15) and 𝑐1 (𝑊�•) ∼Q (𝜋∗𝐻 −
𝑆(𝐻; 𝐸) · 𝐸) |𝐸 ∼ 𝑑+𝑛−1

𝑛+1 𝐻0 (see equation (3.1)), where 𝐻0 is the hyperplane class on 𝐸 � P𝑛−1.
Clearly 𝛿𝑥 (𝐻) ≤ 𝜆, where 𝜆 = 𝑛(𝑛+1)

𝑑+𝑛−1 = 𝐴𝑋 (𝐸)
𝑆 (𝐻 ;𝐸) . It remains to prove 𝛿𝑥 (𝐻) ≥ 𝜆. Let 𝑀�• be the

movable part of 𝑊�•. By Corollary 3.3, it suffices to prove

𝛿(𝐸, 𝜆𝐹 (𝑊�•); 𝑐1(𝑀�•)) ≥ 𝜆. (4.9)

Note that by the above calculations, we have

𝜆𝑐1(𝑀�•) + 𝜆𝐹 (𝑊�•) ∼Q 𝜆𝑐1(𝑊�•) ∼Q 𝑛𝐻0 ∼ −𝐾𝐸 .

Thus equation (4.9) is equivalent to saying that the pair

(𝐸, 𝜆𝐹 (𝑊�•)) � (P𝑛−1,
𝑛(𝑑 − 1)

𝑑 (𝑑 + 𝑛 − 1)𝐷0)

is K-semistable. By [16, Lemma 2.6], this would be true if (P𝑛−1, 𝜇𝐷0) is K-semistable for some
𝜇 ≥ 𝑛(𝑑−1)

𝑑 (𝑑+𝑛−1) (as P𝑛−1 is K-semistable). When 𝑑 ≥ 𝑛, (P𝑛−1, 𝑛𝑑𝐷0) is a log canonical log Calabi-Yau
pair (note that 𝐷0 is smooth) and therefore is K-semistable by [40, Corollary 1.1]; thus we may take
𝜇 = 𝑛

𝑑 . When 𝑑 ≤ 𝑛 − 1, 𝐷0 is Fano and K-semistable by assumption. We claim that (P𝑛−1, 𝜇𝐷0) is
K-semistable, where 𝜇 = 1− 1

𝑑 +
1
𝑛 > 𝑛(𝑑−1)

𝑑 (𝑑+𝑛−1) . Indeed, the divisor 𝐷0 induces a special degeneration of
(P𝑛−1, 𝜇𝐷0) to (𝑉, 𝜇𝑉∞), where𝑉 = 𝐶𝑝 (𝐷0, 𝑁𝐷0/𝐸 ) is the projective cone over 𝐷0. By [36, Proposition
5.3], (𝑉, 𝜇𝑉∞) is K-semistable, thus (P𝑛−1, 𝜇𝐷0) is also K-semistable by the openness of K-semistability
[3, 49]. This proves the claim and also concludes the proof of the theorem. �

Restricting to Fano hypersurfaces, we have
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Corollary 4.10. Let 𝑋 ⊆ P𝑛+1 be a smooth Fano hypersurface of degree d, and let 𝑥 ∈ 𝑋 be a generalised
Eckardt point. Assume that 𝐹 (𝑋, 𝑥) is K-semistable if 𝑑 ≤ 𝑛 − 1. Then 𝛿𝑥 (𝑋) = 𝑛(𝑛+1)

(𝑛−1+𝑑) (𝑛+2−𝑑) , and it
is computed by the ordinary blowup of x.

Proof. If 𝑑 = 1, then 𝑋 � P𝑛 and 𝛿𝑥 (𝑋) = 1 = 𝑛(𝑛+1)
(𝑛−1+𝑑) (𝑛+2−𝑑) for all 𝑥 ∈ 𝑋 . If 𝑑 ≥ 2, then as

−𝐾𝑋 ∼ (𝑛 + 2− 𝑑)𝐻, where H is the hyperplane class, we have 𝛿𝑥 (𝑋) = 1
𝑛+2−𝑑 𝛿𝑥 (𝐻) = 𝑛(𝑛+1)

(𝑛−1+𝑑) (𝑛+2−𝑑)
by Theorem 4.9. �

Since every point of a smooth quadric hypersurface is a generalised Eckardt point, we obtain a new
algebraic proof of the following well-known result.

Corollary 4.11. Quadric hypersurfaces are K-semistable.

Proof. Let 𝑑 = 2 in Corollary 4.10. Since every 𝑥 ∈ 𝑋 is a generalised Eckardt point and 𝐹 (𝑋, 𝑥) is a
smooth quadric hypersurface of smaller dimension, we get 𝛿(𝑋) = 1 by induction on the dimension. �

4.5. Hypersurfaces of index two

The goal of this section is to prove the following result.

Theorem 4.12. Let 𝑋 = 𝑋𝑛 ⊆ P𝑛+1 be a smooth Fano hypersurface of degree 𝑛 ≥ 3 (i.e., it has Fano
index 2). Then X is uniformly K-stable.

Note that when 𝑛 = 3 – that is, X is a cubic threefold – the result is already known by [38]. Here we
give a different proof using techniques developed in previous sections.

Lemma 4.10. Let 𝑋 ⊆ P4 be a smooth cubic threefold. Then X is uniformly K-stable.

Proof. It suffices to show that 𝛿𝑥 (𝑋) > 1 for all 𝑥 ∈ 𝑋 . If x is a generalised Eckardt point, then
𝛿𝑥 (𝑋) = 1

2𝛿𝑥 (𝐻) = 6
5 > 1 by Theorem 4.9. If x is not a generalised Eckardt point, then there are only

finitely many lines on X passing through x; thus if𝑌 ⊆ 𝑋 is a general hyperplane section passing through
x, then Y is a smooth cubic surface such that x is not contained in any lines on Y. By Theorem 4.6, we
see that 𝛿𝑥 (𝑌 ) ≥ 5

3 . It then follows from Lemma 4.3 that 𝛿𝑥 (𝑋) = 1
2𝛿𝑥 (𝐻) ≥ 2

3𝛿𝑥 (𝑌 ) ≥
10
9 > 1. This

completes the proof. �

In the remaining part of this section, we will henceforth assume that 𝑛 ≥ 4. As a key step toward the
proof of Theorem 4.12, we observe the following K-stability criterion.

Lemma 4.11. Let X be a Fano manifold of dimension n. Assume that

1. 𝛿𝑍 (𝑋) ≥ 𝑛+1
𝑛 for any subvariety 𝑍 ⊆ 𝑋 of dimension ≥ 1;

2. 𝛽𝑋 (𝐸𝑥) > 0 for any 𝑥 ∈ 𝑋 , where 𝐸𝑥 denotes the exceptional divisor of the ordinary blowup of x.

Then X is uniformly K-stable.

Proof. We need to show that for any valuation 𝑣 ∈ Val∗𝑋 with 𝐴𝑋 (𝑣) < ∞, we have 𝛽𝑋 (𝑣) > 0. By our
first assumption, this holds if the centre of v has dimension at least one. Thus we may assume that the
centre of v is a closed point 𝑥 ∈ 𝑋 , and by our second assumption, we may assume that 𝑣 ≠ 𝑐 · ord𝐸𝑥 .
Let r be a sufficiently large integer such that −𝑟𝐾𝑋 is very ample, and let 𝐻 ∈ | − 𝑟𝐾𝑋 | be a general
member (in particular, 𝑥 ∉ 𝐻). By Proposition 3.1, we have 𝑆(−𝐾𝑋 ; 𝑣) = 𝑆(𝑉�•,F; 𝑣), where 𝑉�• is the
complete linear series associated to −𝐾𝑋 and F is the filtration induced by H. Let 𝑚 � 0, and let D be
an m-basis type Q-divisor of −𝐾𝑋 that’s compatible with F. As in the proof of Lemma 4.1, we have
𝐷 = 𝜇𝑚 ·𝐻 +Γ, where 𝜇𝑚 = 𝑆𝑚 (−𝐾𝑋 ; 𝐻) → 𝑆(−𝐾𝑋 ; 𝐻) = 1

𝑟 (𝑛+1) (𝑚 → ∞) and Γ ∼Q −(1− 𝑟𝜇𝑚)𝐾𝑋
is effective. By [2, Corollary 3.6], there exist constants 𝜖𝑚 ∈ (0, 1) (𝑚 ∈ N) depending only on X such
that 𝜖𝑚 → 1 (𝑚 → ∞) and

𝑆(−𝐾𝑋 ; 𝑣) > 𝜖𝑚 · 𝑆𝑚(−𝐾𝑋 ; 𝑣)
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for all valuations 𝑣 ∈ Val∗𝑋 with 𝐴𝑋 (𝑣) < ∞ and all 𝑚 ∈ N. Perturbing the 𝜖𝑚, we will further assume
that 𝜖𝑚(1 − 𝑟𝜇𝑚) < 𝑛

𝑛+1 . Combining with our first assumption, we see that

𝛿𝑍,𝑚 (𝑋) > 𝜖𝑚 · 𝛿𝑍 (𝑋) ≥
(𝑛 + 1)𝜖𝑚

𝑛

for any subvariety 𝑍 ⊆ 𝑋 of dimension ≥ 1. It follows that (𝑋, (𝑛+1) 𝜖𝑚
𝑛 𝐷) is klt in a punctured

neighbourhood of x and so does (𝑋, (𝑛+1) 𝜖𝑚
𝑛 Γ). Note that −(𝐾𝑋 + (𝑛+1) 𝜖𝑚

𝑛 Γ) ∼Q −(1 − 𝑛+1
𝑛 𝜖𝑚(1 −

𝑟𝜇𝑚))𝐾𝑋 is ample; thus by the following Lemma 4.12, there exists some 𝜆 = 𝜇
𝜇+1 · 𝑛+1

𝑛 > 1 (where
𝜇 = 𝐴𝑋 (𝑣)

𝑣 (𝔪𝑥 ) > 𝑛) such that

𝐴𝑋 (𝑣) ≥ 𝜆𝜖𝑚 · 𝑣(Γ) = 𝜆𝜖𝑚 · 𝑣(𝐷),

where the last equality holds since 𝑥 ∉ 𝐻. Since D is arbitrary, we obtain 𝐴𝑋 (𝑣) ≥ 𝜆𝜖𝑚 · 𝑆𝑚 (𝑉�•,F; 𝑣);
letting 𝑚 → ∞, we deduce 𝐴𝑋 (𝑣) ≥ 𝜆𝑆(−𝐾𝑋 ; 𝑣) > 𝑆(−𝐾𝑋 ; 𝑣). This completes the proof. �

The following result is used in the above proof.

Lemma 4.12. Let 𝑥 ∈ 𝑋 be a smooth point on a projective variety. Let D be an effective Q-divisor on X
such that (𝑋, 𝐷) is klt in a punctured neighbourhood of x and −(𝐾𝑋 + 𝐷) is ample. Let 𝑣 ∈ Val∗𝑋 be a
valuation with 𝐴𝑋 (𝑣) < ∞ that’s centred at x, and let 𝜇 = 𝐴𝑋 (𝑣)

𝑣 (𝔪𝑥 ) . Then

1. 𝜇 ≥ dim 𝑋 and equality holds if and only if 𝑣 = 𝑐 · ord𝐸 for some 𝑐 > 0, where E is the exceptional
divisor of the blowup of x.

2. 𝐴𝑋 (𝑣) ≥ 𝜇
𝜇+1 · 𝑣(𝐷).

Proof. Let 𝑛 = dim 𝑋 . The first part follows from the fact that (𝑋,𝔪𝑛𝑥) is lc, and the only lc place
is the exceptional divisor coming from the blowup of x. The second part essentially follows from the
proof of [51, Theorem 1.6], which we reproduce here for the reader’s convenience. Let J = J(𝑋, 𝐷)
be the multiplier ideal of (𝑋, 𝐷). We may assume that (𝑋, 𝐷) is not lc at x (otherwise 𝐴𝑋 (𝑣) ≥ 𝑣(𝐷),
and we are done), hence J𝑥 ≠ O𝑋,𝑥 . By assumption, we have J = O𝑋 in a punctured neighbourhood
of x. Since −(𝐾𝑋 + 𝐷) is ample, we have 𝐻1 (𝑋,J) = 0 by Nadel vanishing and hence a surjection
𝐻0 (O𝑋 ) � 𝐻0(O𝑋/J) � 𝐻0(O𝑋,𝑥/J𝑥). Since ℎ0 (𝑋,O𝑋 ) = 1, we see that J𝑥 = 𝔪𝑥 and thus
𝑣(J) = 𝑣(𝔪𝑥) = 𝐴𝑋 (𝑣)

𝜇 . Through the definition of multiplier ideals, we also have 𝑣(J) ≥ 𝑣(𝐷)−𝐴𝑋 (𝑣).
Combined with the previous equality it implies 𝐴𝑋 (𝑣) ≥ 𝜇

𝜇+1 · 𝑣(𝐷). �

To prove the K-stability of smooth hypersurfaces of Fano index two, it remains to verify the two
conditions in Lemma 4.11. The following lemma takes care of the (easier) second condition.

Lemma 4.13. Let 𝑋 ⊆ P𝑛+1 be a smooth Fano hypersurface of degree d. Let 𝑟 = 𝑛 + 2 − 𝑑 be its Fano
index. Assume that 𝑑 ≥ 3 and 𝑛 + 1 ≥ 𝑟2. Then 𝛽𝑋 (𝐸𝑥) > 0 for any 𝑥 ∈ 𝑋 , where 𝐸𝑥 is the exceptional
divisor of the ordinary blowup of x.

Proof. Let H be the hyperplane class on X, and let 𝑇 = 𝑇 (𝐻; 𝐸𝑥) be the pseudo-effective threshold and
𝜂 = 𝜂(𝐻; 𝐸𝑥) the movable threshold (see Lemma 4.2). Clearly 1 ≤ 𝜂 ≤ 𝑇 ≤ 𝑑. Let 𝜋 : 𝑌 → 𝑋 be the
blowup of x. Then as 𝜋∗𝐻 − 𝐸𝑥 is nef, we see that

(𝜋∗𝐻 − 𝐸𝑥)𝑛−2 · (𝜋∗𝐻 − 𝜂𝐸𝑥) · (𝜋∗𝐻 − 𝑇𝐸𝑥) ≥ 0,

and thus 𝜂𝑇 ≤ 𝑑 and 𝜂 ≤
√
𝑑. By Lemma 4.2, we then have

𝑆(𝐻; 𝐸𝑥) ≤
1

𝑛 + 1
𝑇 + 𝑛 − 1

𝑛 + 1
𝜂 ≤ 𝑑

(𝑛 + 1)𝜂 + 𝑛 − 1
𝑛 + 1

𝜂.
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When 1 ≤ 𝜂 ≤
√
𝑑, the right-hand side of the above inequality achieves its maximum at either 𝜂 = 1 or

𝜂 =
√
𝑑, hence as 3 ≤ 𝑑 ≤ 𝑛 + 1 and 𝑛 + 1 ≥ 𝑟2, we obtain

𝑆(−𝐾𝑋 ; 𝐸𝑥) = 𝑟 · 𝑆(𝐻; 𝐸𝑥) ≤ max

{
(𝑛 + 2 − 𝑑) (𝑛 − 1 + 𝑑)

𝑛 + 1
,
𝑟𝑛
√
𝑑

𝑛 + 1

}
< 𝑛 = 𝐴𝑋 (𝐸𝑥).

In other words, 𝛽𝑋 (𝐸𝑥) > 0. �

We now focus on checking the first condition of Lemma 4.11. The basic idea, similar to the proof of
Lemma 4.4, is to apply Theorem 3.4 to an admissible flag of complete intersection subvarieties on the
hypersurface X. At the end, we relate 𝛿𝑍 (𝑋) to the stability threshold of a divisor of degree close to 4
on a curve C (i.e., the 1-dimensional subvariety in the chosen flag). However, this only gives the naïve
bound 𝛿𝑍 (𝑋) ≥ 𝛿(− 2

𝑛+1𝐾𝑋 |𝐶 ) =
𝑛+1
2𝑛 (since 𝛿(𝐿) = 2

deg 𝐿 for any ample line bundle L on a curve) and
is not good enough for our purpose. To get a better estimate, we choose a flag such that C intersects
Z in at least two points 𝑃,𝑄 (which is possible since dim 𝑍 ≥ 1). We still have the freedom to choose
another point 𝑅 ≠ 𝑃,𝑄 on C to put in our flag. The key observation is that (asymptotically) basis type
Q-divisors of degree 4 on C that are compatible with R have multiplicity 2 at the point R and therefore
must be log canonical at one of P or Q for degree reason. In other words, the stability threshold along
𝑍 ∩ 𝐶 is at least one, which is exactly what we need.

We work out the details in the next several lemmas. The first thing is to make sure that the admissible
flag we want to use exists.

Lemma 4.14. Let 𝑌 ⊆ P𝑚+1 be a smooth hypersurface of dimension 𝑚 ≥ 2, and let 𝑃 ≠ 𝑄 be two
distinct points on Y. Let 𝐻 ⊆ 𝑌 be a general hyperplane section containing both P and Q. Then H is
smooth unless 𝑚 = 2 and Y contains the line joining P and Q.

Proof. Let ℓ ⊆ P𝑚+1 be the line joining P and Q, and let M ⊆ |O𝑌 (1) | be the linear system of
hyperplane sections containing 𝑃,𝑄. If ℓ � 𝑌 , then M only has isolated base points ℓ ∩ 𝑌 , and by
Bertini’s theorem, H is smooth away from these points. On the other hand, since H is general, it is
different from the tangent hyperplane of any 𝑥 ∈ ℓ∩𝑌 ; hence H is also smooth at any 𝑥 ∈ ℓ∩𝑌 . Thus we
may assume that ℓ ⊆ 𝑋 . Again H is smooth away from ℓ by Bertini’s theorem. The tangent hyperplanes
of 𝑥 ∈ ℓ give a 1-dimensional family of members of M. Hence they are different from H as long as
dimM = 𝑚 − 1 ≥ 2. It follows that H is smooth when 𝑚 ≥ 3. �

In the remaining part of this subsection, let 𝑋 ⊆ P𝑛+1 be a smooth hypersurface of degree 𝑛 ≥ 4 and
𝑍 ⊆ 𝑋 a subvariety of dimension at least one. We divide into two cases to show that 𝛿𝑍 (𝑋) ≥ 𝑛+1

𝑛 . First
we treat the case when X doesn’t contain the secant variety of Z.

Lemma 4.15. In the above notation, assume that there exist closed points 𝑃 ≠ 𝑄 ∈ 𝑍 such that the line
joining P and Q is not contained in X. Then 𝛿𝑍 (𝑋) ≥ 𝑛+1

𝑛 .

Proof. By Lemma 4.14, there exists a flag

𝑌• : 𝑋 = 𝑌0 ⊇ 𝑌1 ⊇ · · · ⊇ 𝑌𝑛

on X such that each𝑌𝑖 (1 ≤ 𝑖 ≤ 𝑛−1) is a smooth hyperplane section of𝑌𝑖−1 containing 𝑃,𝑄 and𝑌𝑛 is a
smooth point on the curve𝑌𝑛−1 that’s different from 𝑃,𝑄. Let𝑉�• be the complete linear series associated
to −𝐾𝑋 , let 𝑌 ( 𝑗)

• be the truncated flag given by 𝑌0 ⊇ · · · ⊇ 𝑌 𝑗 , and let 𝑊 ( 𝑗)
�• be the refinement of 𝑉�• by

𝑌
( 𝑗)
• . It is equipped with a filtration F induced by 𝑌•. By Example 2.12, 𝑊 ( 𝑗)

�• is almost complete, and it
is clear that 𝐹 (𝑊 ( 𝑗)

�• ) = 0. Since any m-basis type Q-divisor D of 𝑊 ( 𝑗)
�• that’s compatible with F can be

written as (see the discussion at the beginning of Section 3.1)

𝐷 = 𝑆𝑚 (𝑊 ( 𝑗)
�• ;𝑌 𝑗+1) · 𝑌 𝑗+1 + Γ,
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where Γ|𝑌𝑗+1 is an m-basis type Q-divisor of 𝑊 ( 𝑗+1)
�• , we have (see equation (3.1))

𝑐1 (𝑊 ( 𝑗+1)
�• ) =

(
𝑐1 (𝑊 ( 𝑗)

�• ) − 𝑆(𝑊 ( 𝑗)
�• ;𝑌 𝑗+1) · 𝑌 𝑗+1

)���𝑌𝑗+1 . (4.10)

Therefore, by Lemma 2.13 and induction on j, we have

𝑐1 (𝑊 ( 𝑗)
�• ) ∼Q −

(
1 − 𝑗

𝑛 + 1

)
𝐾𝑋 |𝑌𝑗 = 2

(
1 − 𝑗

𝑛 + 1

)
𝐻

for all 0 ≤ 𝑗 ≤ 𝑛 − 1 and 𝑆(𝑊 ( 𝑗)
�• ;𝑌 𝑗+1) = 𝑆(𝑐1 (𝑊 ( 𝑗)

�• );𝑌 𝑗+1) = 2
𝑛+1 for 0 ≤ 𝑗 ≤ 𝑛 − 2. By

Theorem 3.4 (applied to 𝑗 = 𝑛 − 1), we see that to prove 𝛿𝑍 (𝑋) = 𝛿𝑍 (𝑉�•) ≥ 𝑛+1
𝑛 , it suffices

to show that 𝛿𝑍∩𝑌𝑛−1 (𝑌𝑛−1;𝑊 (𝑛−1)
�• ,F) ≥ 𝑛+1

𝑛 . As 𝑍 ∩ 𝑌𝑛−1 contains at least two points 𝑃,𝑄 and
deg 𝑐1 (𝑊 (𝑛−1)

�• ) = 2
𝑛+1 (−𝐾𝑋 · 𝐻𝑛−1) = 4𝑛

𝑛+1 , this follows from the next lemma. �

Lemma 4.16. Let C be a smooth curve, let 𝑊�• be a multigraded linear series with bounded support
containing an ample series, let 𝑃1, · · · , 𝑃𝑟 , 𝑄 be distinct points on C, let 𝑍 = 𝑃1 ∪ · · · ∪ 𝑃𝑟 , and let F
be the filtration on 𝑊�• induced by Q. Assume that 𝑊�• is almost complete and 𝐹 (𝑊�•) = 0. Then

𝛿𝑍 (𝐶;𝑊�•,F) ≥ 2𝑟
deg 𝑐1 (𝑊�•)

.

Proof. Any m-basis typeQ-divisor D of𝑊�• that’s compatible withF has the form 𝐷 = 𝑆𝑚 (𝑊�•;𝑄) ·𝑄+Γ
for some effective Q-divisor Γ. Since 𝑄 ∉ 𝑍 , in order for Z to be contained in the non-lc centre of
(𝐶, 𝜆𝐷), we need mult𝑃𝑖 (𝜆Γ) > 1 for all 𝑖 = 1, · · · , 𝑟 . It follows that

𝛿𝑍,𝑚 (𝑊�•,F) ≥ 𝑟

deg Γ
=

𝑟

deg 𝐷 − 𝑆𝑚 (𝑊�•;𝑄) .

Letting 𝑚 → ∞, we obtain

𝛿𝑍 (𝑊�•,F ) ≥ 𝑟

deg 𝑐1 (𝑊�•) − 𝑆(𝑊�•;𝑄) .

The lemma then follows since 𝑆(𝑊�•;𝑄) = 𝑆(𝑐1 (𝑊�•);𝑄) = 1
2 deg 𝑐1 (𝑊�•) by Lemma 2.13. �

The opposite case is when X contains the secant variety of Z.

Lemma 4.17. Let 𝑋 ⊆ P𝑛+1 be a smooth hypersurface of degree 𝑛 ≥ 4 and 𝑍 ⊆ 𝑋 a subvariety of
dimension at least one. Assume that there exists closed points 𝑃 ≠ 𝑄 ∈ 𝑍 such that the line joining 𝑃,𝑄
is contained in X. Then 𝛿𝑍 (𝑋) ≥ 𝑛+1

𝑛 .

Proof. The proof is similar to Lemma 4.15, except that we use a slightly different flag. Consider a flag

𝑌• : 𝑋 = 𝑌0 ⊇ 𝑌1 ⊇ · · · ⊇ 𝑌𝑛

on X such that each 𝑌𝑖 (1 ≤ 𝑖 ≤ 𝑛 − 2) is a smooth hyperplane section of 𝑌𝑖−1 containing P and Q, 𝑌𝑛−1
is the line joining 𝑃,𝑄 and 𝑌𝑛 is a smooth point on 𝑌𝑛−1 that’s different from 𝑃,𝑄. We use the same
notation 𝑊

( 𝑗)
�• and F as in Lemma 4.15. We claim that 𝑊 ( 𝑗)

�• is almost complete and 𝐹 (𝑊 ( 𝑗)
�• ) = 0 for all

0 ≤ 𝑗 ≤ 𝑛 − 1. Indeed this is evident when 0 ≤ 𝑗 ≤ 𝑛 − 2 by Example 2.12, so it remains to consider
the case 𝑗 = 𝑛 − 1. For ease of notation, let 𝑆 = 𝑌𝑛−2, 𝐿 = 𝑌𝑛−1, and let H be the hyperplane class. It is
straightforward to check that on the surface S (which is a smooth surface of degree n in P3), we have

1. (𝐻 · 𝐿) = 1, (𝐻2) = 𝑛, (𝐿2) = 2 − 𝑛 and (𝐻 − 𝐿)2 = 0;
2. 𝐻 − 𝐿 is nef.
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They together imply that 𝐻0 (𝑆, 𝑚𝐻 − 𝑗 𝐿) ≠ 0 (𝑚, 𝑗 ∈ N) if and only if 0 ≤ 𝑗 ≤ 𝑚 and that

𝑆(𝐻; 𝐿) = 1
(𝐻2)

∫ 1

0
(𝐻 − 𝑥𝐿)2d𝑥 =

2
3
− 1

3𝑛
. (4.11)

By Kodaira vanishing, we also have 𝐻1 (𝑆,O𝑆 (𝑚𝐻 − 𝑗 𝐿)) = 0 whenever 𝑚 − 𝑗 > 𝑛 − 4, and thus the
natural map 𝐻0(𝑆,O𝑆 (𝑚𝐻 − 𝑗 𝐿)) → 𝐻0 (𝐿,O𝐿 (𝑚𝐻 − 𝑗 𝐿)) is surjective when 𝑚 − ( 𝑗 + 1) > 𝑛 − 4.
As O𝐿 (𝑚𝐻 − 𝑗 𝐿) � O𝐿 (𝑚 + 𝑗 (𝑛 − 2)), we see that the complete linear series 𝑉�• associated to H on
S has almost complete refinement by L. Since 𝑊 (𝑛−2)

�• is almost complete (with respect to H), most
graded pieces of 𝑊 (𝑛−2)

�• are a complete linear series |𝑚𝐻 | for some 𝑚 ∈ N (see Example 2.12); hence
its refinement 𝑊 (𝑛−1)

�• by L is also almost complete. As 𝐿 � P1, the linear systems |O𝐿 (𝑚𝐻 − 𝑗 𝐿) | are
all base point free; thus it is not hard to check that 𝐹 (𝑊 (𝑛−1)

�• ) = 0. By Lemma 2.13, equation (4.10) and
equation (4.11), we find (as in the proof of Lemma 4.15)

𝑆(𝑊 ( 𝑗)
�• ;𝑌𝑖+1) =

2
𝑛 + 1

<
𝑛

𝑛 + 1

when 0 ≤ 𝑗 ≤ 𝑛 − 3 and

𝑆(𝑊 (𝑛−2)
�• ;𝑌𝑛−1) = 𝑆(𝑐1 (𝑊 (𝑛−2)

�• );𝑌𝑛−1) = 𝑆

(
6

𝑛 + 1
𝐻; 𝐿

)
=

6
𝑛 + 1

(
2
3
− 1

3𝑛

)
<

𝑛

𝑛 + 1
,

where the last inequality uses 𝑛 ≥ 4. Using equation (4.10) one more time, we also obtain

deg 𝑐1 (𝑊 (𝑛−1)
�• ) = 6

𝑛 + 1

(
𝐻 −

(
2
3
− 1

3𝑛

)
𝐿 · 𝐿

)
=

4
𝑛 + 1

(
𝑛 − 1 + 1

𝑛

)
<

4𝑛
𝑛 + 1

.

Hence by Lemma 4.16, noting that 𝑍 ∩ 𝑌𝑛−1 contains at least two points 𝑃,𝑄, we deduce that
𝛿𝑍∩𝑌𝑛−1 (𝑊

(𝑛−1)
�• ,F) ≥ 𝑛+1

𝑛 , and therefore the lemma follows from Theorem 3.4 and the above compu-
tations. �

We are ready to prove the K-stability of index two hypersurfaces.

Proof of Theorem 4.12. By Lemma 4.10, we may assume that 𝑛 ≥ 4. It suffices to verify the two
conditions of Lemma 4.11. The first condition follows from Lemmas 4.15 and 4.17 and the second
condition follows from Lemma 4.13. �

A. Stability thresholds of cubic surfaces

In this appendix, we compute the 𝛿-invariants of all smooth cubic surfaces and give the proof of
Theorem 4.6. Throughout the section, we let 𝑋 ⊆ P3 be a smooth cubic surface, 𝑥 ∈ 𝑋 a closed point
and 𝐶 = 𝑇𝑥 (𝑋) ∩ 𝑋 .

The proofs are similar between different cases. Note that the first case – that is, mult𝑥𝐶 = 3 – is
already treated by Theorem 4.9. We work out the details when C has a tacnode and sketch the argument
in the remaining cases.

Lemma A.1. Assume that C has a tacnode at x. Then 𝛿𝑥 (𝑋) = 27
17 , and it is computed by the (unique)

divisor that computes lct𝑥 (𝑋,𝐶).

Proof. By assumption, 𝐶 = 𝐿 ∪ 𝑄, where L (respectively, Q) is a line (respectively, conic) and L is
tangent to Q at x. We have 𝐿 = (𝑢 = 0) and 𝑄 = (𝑢 − 𝑣2 = 0) in some local coordinates 𝑢, 𝑣 around x.
Let 𝜋 : 𝑌 → 𝑋 be the weighted blowup at x with weights wt(𝑢) = 2, wt(𝑣) = 1, and let 𝐸 ⊆ 𝑌 be
the exceptional divisor. Note that E is the unique divisor that computes lct𝑥 (𝑋,𝐶). Let 𝐿̃ (respectively,
𝑄) be the strict transform of L (respectively, Q). We have ( 𝐿̃2) = −3, (𝑄2) = −2, ( 𝐿̃ · 𝑄) = 0 and
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−𝜋∗𝐾𝑋 − 4𝐸 ∼ 𝐿̃ +𝑄. It follows that the stable base locus of −𝜋∗𝐾𝑋 − 𝑡𝐸 is contained in 𝐿̃ ∪𝑄 for all
0 ≤ 𝑡 ≤ 4, and we have

𝑁𝜎 (−𝜋∗𝐾𝑋 − 𝑡𝐸) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if 0 ≤ 𝑡 ≤ 1,
𝑡−1

3 𝐿̃ if 1 < 𝑡 ≤ 2,
𝑡−1

3 𝐿̃ + 𝑡−2
2 𝑄 if 2 < 𝑡 ≤ 4,

(A.1)

where 𝑁𝜎 (𝐿) (respectively, 𝑃𝜎 (𝐿)) denotes the negative (respectively, positive) part in the Zariski
decomposition of L. Therefore,

vol(−𝜋∗𝐾𝑋 − 𝑡𝐸) = ((𝑃𝜎 (−𝜋∗𝐾𝑋 − 𝑡𝐸))2 (A.2)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
3 − 1

2 𝑡
2 if 0 ≤ 𝑡 ≤ 1,

3 − 1
2 𝑡

2 + 1
3 (𝑡 − 1)2 if 1 < 𝑡 ≤ 2,

3 − 1
2 𝑡

2 + 1
3 (𝑡 − 1)2 + 1

2 (𝑡 − 2)2 if 2 < 𝑡 ≤ 4

In particular, 𝑇 (−𝐾𝑋 ; 𝐸) = 4 (as vol(−𝜋∗𝐾𝑋 − 4𝐸) = 0) and 𝑆(−𝐾𝑋 ; 𝐸) = 17
9 . Let

𝜆 =
27
17

=
𝐴𝑋 (𝐸)

𝑆(−𝐾𝑋 ; 𝐸) .

Clearly 𝛿𝑥 (𝑋) ≤ 𝜆 by definition, and it remains to show 𝛿𝑥 (𝑋) ≥ 𝜆. Let 𝑉�• be the complete linear
series associated to −𝐾𝑋 , and let 𝑊�• be its refinement by E. By Theorem 3.2, it is enough to prove
𝛿(𝐸,Δ𝐸 ;𝑊�•) ≥ 𝜆, where Δ𝐸 = Diff𝐸 (0) = 1

2𝑃0 and 𝑃0 is the (unique) singular point of Y. Note that
𝑃0 ∉ 𝐿̃ ∪𝑄.

By Lemma 4.5, 𝑊�• is almost complete. Therefore, by Corollary 3.3, it suffices to show

𝛿(𝐸,Δ𝐸 + 𝜆𝐹 (𝑊�•); 𝑐1(𝑀�•)) ≥ 𝜆. (A.3)

As in the proof of Theorem 4.9, noting that

𝜆𝑐1(𝑀�•) + 𝜆𝐹 (𝑊�•) ∼Q 𝜆𝑐1(𝑊�•) ∼Q 𝜆(−𝜋∗𝐾𝑋 − 𝑆(−𝐾𝑋 ; 𝐸) · 𝐸) |𝐸
∼Q −𝐴𝑋 (𝐸) · 𝐸 |𝐸 ∼Q −(𝐾𝑌 + 𝐸) |𝐸 ∼Q −(𝐾𝐸 + Δ𝐸 ),

we see that equation (A.3) is equivalent to saying the pair (𝐸,Δ𝐸 + 𝜆𝐹 (𝑊�•)) is K-semistable.
We apply Lemma 4.8 to compute 𝐹 (𝑊�•). Let 𝑃1 = 𝐿̃ ∩ 𝐸 and 𝑃2 = 𝑄 ∩ 𝐸 . Then Supp(𝐹 (𝑊�•)) ⊆

𝑃1 ∪ 𝑃2. We have vol𝑌 |𝐸 (−𝜋∗𝐾𝑋 − 𝑡𝐸) = − 1
2 · d

d𝑡 vol(−𝜋∗𝐾𝑋 − 𝑡𝐸) by [33, Corollary C]. Combined
with equation (A.1), equation (A.2) and Lemma 4.8, we deduce

mult𝑃1𝐹 (𝑊�•) =
1

(−𝐾𝑋 )2

(∫ 2

1

𝑡 − 1
3

· 𝑡 + 2
3

d𝑡 +
∫ 4

2

𝑡 − 1
3

· 2(4 − 𝑡)
3

d𝑡
)
=

17
54

,

mult𝑃2𝐹 (𝑊�•) =
1

(−𝐾𝑋 )2

∫ 4

2

𝑡 − 2
2

· 2(4 − 𝑡)
3

d𝑡 =
4

27
.

Thus (𝐸,Δ𝐸 +𝜆𝐹 (𝑊�•)) � (P1, 1
2𝑃0 + 1

2𝑃1 + 4
17𝑃2), which is K-semistable by Lemma A.2. This finishes

the proof. �

The following result is used in the above proof.
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Lemma A.2. LetΔ = 𝑎1𝑃1+· · ·+𝑎𝑚𝑃𝑚, where 𝑃1, · · · , 𝑃𝑚 are distinct points on P1 and 𝑎𝑖 ∈ (0, 1) (𝑖 =
1, · · · , 𝑚) satisfy 𝑎1 + · · · + 𝑎𝑚 < 2 (i.e., (P1,Δ) is log Fano). Then

𝛿(P1,Δ) = 1 − max1≤𝑖≤𝑚{𝑎𝑖}
1 − 1

2 (𝑎1 + · · · + 𝑎𝑚)
.

In particular, (P1,Δ) is K-semistable if and only if 𝑎1 + · · · + 𝑎𝑚 ≥ 2𝑎𝑖 for all 1 ≤ 𝑖 ≤ 𝑚.

Proof. We have 𝑆(−𝐾P1 −Δ; 𝑃) = 1
2 deg(−𝐾P1 −Δ) = 1− 1

2 (𝑎1+· · ·+𝑎𝑚) and 𝐴P1 ,Δ (𝑃) = 1−mult𝑃 (Δ)
for any 𝑃 ∈ P1. The result then follows from the definition of stability thresholds. �

Lemma A.3. Assume that C has a cusp at x. Then 𝛿𝑥 (𝑋) = 5
3 , and it is computed by the (unique) divisor

that computes lct𝑥 (𝑋,𝐶).

Proof. The proof is very similar to that of Lemma A.1, so we only sketch the steps. In local coordinates,
𝐶 = (𝑢2 − 𝑣3 = 0) around x. Let 𝜋 : 𝑌 → 𝑋 be the weighted blowup at x with wt(𝑢) = 3, wt(𝑣) = 2, and
let E be the exceptional divisor. Let 𝐶 be the strict transform of C. We have 𝑇 (−𝐾𝑋 ; 𝐸) = 6,

𝑁𝜎 (−𝜋∗𝐾𝑋 − 𝑡𝐸) =
{

0 if 0 ≤ 𝑡 ≤ 3,
𝑡−3

3 𝐶 if 3 < 𝑡 ≤ 6

and

vol(−𝜋∗𝐾𝑋 − 𝑡𝐸) =
{

3 − 1
6 𝑡

2 if 0 ≤ 𝑡 ≤ 3,
1
6 (6 − 𝑡)2 if 3 < 𝑡 ≤ 6.

Thus 𝑆(−𝐾𝑋 ; 𝐸) = 3. Let 𝜆 = 5
3 = 𝐴𝑋 (𝐸)

𝑆 (−𝐾𝑋 ;𝐸) , and let 𝑊�• be the refinement by E of the complete linear
series of −𝐾𝑋 . As in the proof of Lemma A.1, 𝑊�• is almost complete, and it suffices to show that
(𝐸,Δ𝐸 +𝜆𝐹 (𝑊�•)) is K-semistable. Note that Δ𝐸 = 1

2𝑃0 + 2
3𝑃1, where 𝑃0, 𝑃1 are the two singular points

of Y. By Lemma 4.8, we find

mult𝑃2𝐹 (𝑊�•) =
1

(−𝐾𝑋 )2

∫ 6

3

𝑡 − 3
3

· 6 − 𝑡

3
d𝑡 =

1
6
,

where 𝑃2 = 𝐶 ∩ 𝐸 . Thus (𝐸,Δ𝐸 + 𝜆𝐹 (𝑊�•)) � (P1, 1
2𝑃0 + 2

3𝑃1 + 5
18𝑃2), which is K-semistable by

Lemma A.2. This concludes the proof. �

Lemma A.4. Assume that C is irreducible and has a node at x. Then 𝛿𝑥 (𝑋) = 12
7 , and it is computed

by the ordinary blowup of x.

Proof. Again we only sketch the steps. Let 𝜋 : 𝑌 → 𝑋 be the ordinary blowup of x, and let E be the
exceptional divisor. Let 𝐶 be the strict transform of C. We have 𝑇 (−𝐾𝑋 ; 𝐸) = 2,

𝑁𝜎 (−𝜋∗𝐾𝑋 − 𝑡𝐸) =
{

0 if 0 ≤ 𝑡 ≤ 3
2 ,

(2𝑡 − 3)𝐶 if 3
2 < 𝑡 ≤ 2

and

vol(−𝜋∗𝐾𝑋 − 𝑡𝐸) =
{

3 − 𝑡2 if 0 ≤ 𝑡 ≤ 3
2 ,

3(2 − 𝑡)2 if 3
2 < 𝑡 ≤ 2.

Thus 𝑆(−𝐾𝑋 ; 𝐸) = 7
6 . Let 𝜆 = 12

7 = 𝐴𝑋 (𝐸)
𝑆 (−𝐾𝑋 ;𝐸) , and let 𝑊�• be the refinement by E of the complete linear

series of −𝐾𝑋 . Since 𝑊�• is almost complete by Lemma 4.5, it suffices to show that (𝐸, 𝜆𝐹 (𝑊�•)) is
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K-semistable as in the proof of Lemma A.1 (note that Δ𝐸 = 0 in this case). By Lemma 4.8, we see that
𝐹 (𝑊�•) = 𝜇(𝑃1 + 𝑃2) for some 𝜇 > 0, where {𝑃1, 𝑃2} = 𝐶 ∩ 𝐸 . Thus (𝐸, 𝜆𝐹 (𝑊�•)) is K-semistable by
Lemma A.2 (regardless of the value of 𝜇). This proves the lemma. �

Lemma A.5. Assume that C is a union of three lines and mult𝑥𝐶 = 2. Then 𝛿𝑥 (𝑋) = 18
11 , and it is

computed by the ordinary blowup of x.

Proof. Write 𝐶 = 𝐿1 + 𝐿2 + 𝐿3, where 𝐿1 ∩ 𝐿2 = 𝑥. Let 𝜋 : 𝑌 → 𝑋 be the ordinary blowup of x, and
let E be the exceptional divisor. Let 𝐿̃𝑖 be the strict transform of 𝐿𝑖 (𝑖 = 1, 2). We have 𝑇 (−𝐾𝑋 ; 𝐸) = 2,

𝑁𝜎 (−𝜋∗𝐾𝑋 − 𝑡𝐸) =
{

0 if 0 ≤ 𝑡 ≤ 1,
𝑡−1

2 ( 𝐿̃1 + 𝐿̃2) if 1 < 𝑡 ≤ 2

and

vol(−𝜋∗𝐾𝑋 − 𝑡𝐸) =
{

3 − 𝑡2 if 0 ≤ 𝑡 ≤ 1,
4 − 2𝑡 if 1 < 𝑡 ≤ 2.

Thus 𝑆(−𝐾𝑋 ; 𝐸) = 11
9 . Let 𝜆 = 18

11 = 𝐴𝑋 (𝐸)
𝑆 (−𝐾𝑋 ;𝐸) , and let 𝑊�• be the refinement by E of the complete linear

series of −𝐾𝑋 . As in previous cases, 𝑊�• is almost complete, and it suffices to show that (𝐸, 𝜆𝐹 (𝑊�•)) is
K-semistable (note that Δ𝐸 = 0). By Lemma 4.8, we have 𝐹 (𝑊�•) = 𝜇(𝑃1 + 𝑃2) for some 𝜇 > 0, where
𝑃𝑖 = 𝐿̃𝑖 ∩ 𝐸 . Thus (𝐸, 𝜆𝐹 (𝑊�•)) is K-semistable by Lemma A.2 (regardless of the value of 𝜇). This
proves the lemma. �

Lemma A.6. Assume that 𝐶 = 𝐿 ∪ 𝑄, where L is a line, Q is a conic, and they intersect transversally
at x. Then 𝛿𝑥 (𝑋) = 9

25−8
√

6
, and it is computed by the weighted blowup at x with wt(𝑢) = 1 +

√
6 and

wt(𝑣) = 2 (where u, respectively v, is the local defining equation of L, respectively Q).

Proof. For each 𝑎, 𝑏 > 0, let 𝜈𝑎,𝑏 be the quasi-monomial valuation over 𝑥 ∈ 𝑋 defined by 𝜈𝑎,𝑏 (𝑢) = 𝑎

and 𝜈𝑎,𝑏 (𝑣) = 𝑏. We first identify the minimiser of 𝐴𝑋 (𝜈𝑎,𝑏)
𝑆𝑋 (𝜈𝑎,𝑏) . For this choose coprime integers 𝑎, 𝑏 > 0,

and let 𝜋 : 𝑌 = 𝑌𝑎,𝑏 → 𝑋 be the weighted blowup at x with wt(𝑢) = 𝑎 and wt(𝑣) = 𝑏. Let E be the
exceptional divisor, and let 𝐿̃ (respectively, 𝑄) be the strict transform of L (respectively, Q). Assume
that 𝑏 < 2𝑎. Then similar to the calculations in previous cases, we have (compare to equation (4.5))

𝑁𝜎 (−𝜋∗𝐾𝑋 − 𝑡𝐸) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if 0 ≤ 𝑡 ≤ 𝑏,

𝑡−𝑏
𝑎+𝑏 𝐿̃ if 𝑏 < 𝑡 ≤ 𝑎 (2𝑎+3𝑏)

2𝑎+𝑏 ,

2𝑡−2𝑎−𝑏
𝑏 𝐿̃ + (2𝑎+𝑏)𝑡−𝑎 (2𝑎+3𝑏)

𝑏2 𝑄 if 𝑎 (2𝑎+3𝑏)
2𝑎+𝑏 < 𝑡 ≤ 𝑎 + 𝑏,

vol𝑌 |𝐸 (−𝜋∗𝐾𝑋 − 𝑡𝐸) =
(
𝑃𝜎 (−𝜋∗𝐾𝑋 − 𝑡𝐸) · 𝐸

)
= −1

2
· d

d𝑡
vol(−𝜋∗𝐾𝑋 − 𝑡𝐸)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑡
𝑎𝑏 if 0 ≤ 𝑡 ≤ 𝑏,

𝑡+𝑎
𝑎 (𝑎+𝑏) if 𝑏 < 𝑡 ≤ 𝑎 (2𝑎+3𝑏)

2𝑎+𝑏 ,

4(𝑎+𝑏−𝑡)
𝑏2 if 𝑎 (2𝑎+3𝑏)

2𝑎+𝑏 < 𝑡 ≤ 𝑎 + 𝑏,

and

𝑆(−𝐾𝑋 ; 𝐸) = 2
(−𝐾𝑋 )2

∫ 𝑎+𝑏

0
𝑡 · vol𝑌 |𝐸 (−𝜋∗𝐾𝑋 − 𝑡𝐸)d𝑡 = 10𝑎2 + 19𝑎𝑏 + 3𝑏2

9(2𝑎 + 𝑏) .
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Note that 𝐴𝑋 (𝜈𝑎,𝑏)
𝑆𝑋 (𝜈𝑎,𝑏) only depends on the ratio 𝑎

𝑏 ; thus by continuity [3, Proposition 2.4], we have

𝐴𝑋 (𝜈𝑎,𝑏)
𝑆𝑋 (𝜈𝑎,𝑏)

=
9(𝑎 + 𝑏) (2𝑎 + 𝑏)

10𝑎2 + 19𝑎𝑏 + 3𝑏2

for all 𝑎, 𝑏 ∈ R+. It achieves its minimum 𝜆 = 9
25−8

√
6

when 𝑎
𝑏 = 𝜇 := 1+

√
6

2 > 1
2 . In particular, we have

𝛿𝑥 (𝑋) ≤ 𝜆. It remains to show 𝛿𝑥 (𝑋) ≥ 𝜆.
Choose a sequence of coprime integers 𝑎𝑚, 𝑏𝑚 > 0 (𝑚 = 1, 2, · · · ) such that 𝜇𝑚 := 𝑎𝑚

𝑏𝑚
→ 𝜇

(𝑚 → ∞). Let 𝜋𝑚 : 𝑌𝑚 = 𝑌𝑎𝑚 ,𝑏𝑚 → 𝑋 be the corresponding weighted blowup, and let 𝐸𝑚 be the
exceptional divisor. Let 𝑃 (𝑚)

1 = 𝐿̃ ∩ 𝐸𝑚, 𝑃 (𝑚)
2 = 𝑄 ∩ 𝐸𝑚, and let 𝑊 (𝑚)

�• be the refinement by 𝐸𝑚 of the
complete linear series associated to −𝐾𝑋 . As before, 𝑊 (𝑚)

�• is almost complete by Lemma 4.5. Using
the above calculations and Lemma 4.8, we have

𝐹 (𝑊 (𝑚)
�• ) =

𝑐 (𝑚)1
𝑏𝑚

𝑃 (𝑚)
1 +

𝑐 (𝑚)2
𝑎𝑚

𝑃 (𝑚)
2 ,

where

𝑐 (𝑚)1 =
20𝜇3

𝑚 − 8𝜇2
𝑚 + 𝜇𝑚 + 1

9𝜇𝑚 (2𝜇𝑚 + 1)2 , 𝑐 (𝑚)2 =
4

9(2𝜇𝑚 + 1)2 .

Let Δ𝑚 = Diff𝐸𝑚 (0) = (1 − 1
𝑏𝑚

)𝑃 (𝑚)
1 + (1 − 1

𝑎𝑚
)𝑃 (𝑚)

2 , 𝜆𝑚 = 𝐴𝑋 (𝐸𝑚)
𝑆 (−𝐾𝑋 ;𝐸𝑚) , and let

𝑟𝑚 := 𝛿(𝐸𝑚,Δ𝑚 + 𝜆𝑚𝐹 (𝑊 (𝑚)
�• );𝜆𝑚𝑐1 (𝑀 (𝑚)

�• )) = 𝛿(𝐸𝑚,Δ𝑚 + 𝜆𝑚𝐹 (𝑊 (𝑚)
�• )), (A.4)

where the last equality follows from equation (3.1). Then by Corollary 3.3, we obtain

𝛿𝑥 (𝑋) ≥ min{𝜆𝑚, 𝑟𝑚𝜆𝑚} (A.5)

for all m. Note that 𝜆𝑚 → 𝜆 as 𝑚 → ∞.
We claim that 𝑟𝑚 → 1 as 𝑚 → ∞. Since 𝐸𝑚 � P1, by Lemma A.2 this is equivalent to

1 − mult
𝑃

(𝑚)
1

(Δ𝑚 + 𝜆𝑚𝐹 (𝑊 (𝑚)
�• ))

1 − mult
𝑃 (𝑚)

2
(Δ𝑚 + 𝜆𝑚𝐹 (𝑊 (𝑚)

�• ))
→ 1

when 𝑚 → ∞. It is straightforward (though a bit tedious) to check that

LHS = 𝜇𝑚 ·
1 − 𝜆𝑚𝑐

(𝑚)
1

1 − 𝜆𝑚𝑐
(𝑚)
2

→ 𝜇 · 9𝜇(2𝜇 + 1)2 − 𝜆(20𝜇3 − 8𝜇2 + 𝜇 + 1)
9𝜇(2𝜇 + 1)2 − 4𝜆𝜇

= 1.

This proves the claim. Letting 𝑚 → ∞ in equation (A.5), we obtain 𝛿𝑥 (𝑋) ≥ 𝜆 as desired. �

Corollary A.1. In the situation of Lemma A.6, let 0 < 𝜀 � 1 be a rational number. Then the pair
(𝑋, (1 − 𝜀)𝐶) is log Fano and 𝛿(𝑋, (1 − 𝜀)𝐶) = 9

25−8
√

6
.

Proof. We continue to use the notation from Lemma A.6. Since (𝑋, 𝐶) is lc, it is clear that (𝑋, (1−𝜀)𝐶) is
log Fano. Let 𝐿∩𝑄 = {𝑥, 𝑦}, let 𝜈 be the quasi-monomial valuation that computes 𝛿𝑥 (𝑋) in Lemma A.6,
and let 𝜆 = 9

25−8
√

6
. Note that 𝜈 is an lc place of (𝑋,𝐶): that is, 𝐴𝑋 (𝜈) = 𝜈(𝐶). Then by Lemma A.6,

we get 𝐴𝑋, (1−𝜀)𝐶) (𝜈) = 𝜀𝐴𝑋 (𝜈) = 𝜀𝜆𝑆𝑋 (𝜈) = 𝜆𝑆𝑋, (1−𝜀)𝐶 (𝜈) and hence 𝛿(𝑋, (1 − 𝜀)𝐶) ≤ 𝜆. To get
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the reverse inequality, we shall prove

𝛿𝑧 (𝑋, (1 − 𝜀)𝐶) ≥ 𝜆 (A.6)

for any closed point 𝑧 ∈ 𝑋 . In any case, we have 𝐴𝑋 (𝜈) ≥ 𝜈(𝐶), and hence 𝐴𝑋, (1−𝜀)𝐶 (𝜈) ≥ 𝜀𝐴𝑋 (𝜈) ≥
𝛿𝑧 (𝑋) · 𝜀𝑆𝑋 (𝜈) = 𝛿𝑧 (𝑋) · 𝑆𝑋, (1−𝜀)𝐶 (𝜈) for any divisorial valuation 𝜈 whose centre contains z. It follows
that 𝛿𝑧 (𝑋, (1 − 𝜀)𝐶) ≥ 𝛿𝑧 (𝑋), and hence by Lemma A.6, equation (A.6) holds when 𝑧 ∈ {𝑥, 𝑦}.
If 𝑧 ∉ Supp(𝐶), then 𝜈(𝐶) = 0 for any divisorial valuation 𝜈 whose centre contains z, hence by the
definition of stability thresholds we get 𝛿𝑧 (𝑋, (1− 𝜀)𝐶) = 𝛿𝑧 (𝑋 )

𝜀 ≥ 𝜆 when 0 < 𝜀 � 1. Thus it remains
to consider the case when 𝑧 ∈ Supp(𝐶) \ {𝑥, 𝑦}. For simplicity, we assume 𝑧 ∈ 𝑄 (the other case 𝑧 ∈ 𝐿
is similar). Consider the refinement (denote it by 𝑊�•) by Q of the complete linear series associated to
−𝐾𝑋 . Note that 𝛿(𝑊�•) > 0. Since −(𝐾𝑋 + (1 − 𝜀)𝐶) ∼Q −𝜀𝐾𝑋 , by Theorem 3.2, we have

𝛿𝑧 (𝑋, (1 − 𝜀)𝐶) = 𝜀−1𝛿𝑧 (𝑋, (1 − 𝜀)𝐶;−𝐾𝑋 ) ≥ min
{
𝐴𝑋, (1−𝜀)𝐶 (𝑄)
𝑆𝑋, (1−𝜀)𝐶 (𝑄) , 𝜀

−1𝛿𝑧 (𝑊�•)
}
≥ 𝜆

when 0 < 𝜀 � 1. Hence equation (A.6) also holds in this case. The proof is now complete. �

Proof of Theorem 4.6. This follows from the combination of Theorem 4.9, Lemmas A.1, A.3, A.4, A.5,
A.6 and Corollary A.1. �
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