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Scaling the propulsive performance of
heaving and pitching foils
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Scaling laws for the propulsive performance of rigid foils undergoing oscillatory
heaving and pitching motions are presented. Water tunnel experiments on a nominally
two-dimensional flow validate the scaling laws, with the scaled data for thrust, power
and efficiency all showing excellent collapse. The analysis indicates that the behaviour
of the foils depends on both Strouhal number and reduced frequency, but for motions
where the viscous drag is small the thrust closely follows a linear dependence on
reduced frequency. The scaling laws are also shown to be consistent with biological
data on swimming aquatic animals.
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1. Introduction
The flow around moving foils serves as an abstraction of many interesting

swimming and flight problems observed in nature. Our principal interest here is
in exploiting the motion of foils for the purpose of propulsion, and so we focus on
the thrust they produce and their efficiency.

Analytical treatments of pitching and heaving (sometimes called plunging) foils
date back to the early–mid 20th century. In particular, Garrick (1936) used the
linear, inviscid and unsteady theory of Theodorsen (1935) to provide expressions
for the mean thrust produced by an oscillating foil and the mean power input and
output. Lighthill (1970) extended the theory to undulatory motion in what is called
elongated-body theory. More recently, data-driven reduced-order modelling by, for
example, Brunton, Rowley & Williams (2013), Brunton, Dawson & Rowley (2014)
and Dawson et al. (2015), has extended the range of validity and accuracy of similar
models. A drawback of these treatments, however, is that it is often difficult to extract
physical insights from them in regard to mean propulsive parameters such as thrust
and efficiency.

In this respect, scaling laws can often prove valuable (Triantafyllou et al. 2005).
In a particularly influential paper, Triantafyllou, Triantafyllou & Grosenbaugh (1993)
established the importance of the Strouhal number in describing fish-like swimming
flows, calling it the ‘dominant new parameter for fish propulsion’ and ‘the governing
parameter of the overall problem’. The Strouhal number has since been adopted in
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FIGURE 1. Time-averaged thrust coefficient CT as a function of Strouhal number St for
a heaving foil, for various heave amplitude to chord ratios, h∗. Experimental results from
the current study. The parameters CT and St are defined in § 2.

nearly all subsequent works as the main parameter of interest (see, for instance, Quinn,
Lauder & Smits 2014), although the reduced frequency is sometimes preferred for
foils with significant flexibility (Dewey et al. 2013).

Nevertheless, in conducting extensive experiments on pitching and heaving foils we
find that such flows cannot be adequately described using only the Strouhal number or
the reduced frequency. For instance, figure 1 shows the time-averaged thrust coefficient
as a function of Strouhal number for a heaving foil. We see that the ratio of the heave
amplitude to chord, h∗ = h0/c, has a significant impact on the thrust generated at a
fixed Strouhal number. Here we report these findings, together with a new scaling
analysis that helps to explain the experimental propulsive performance of rigid foils
undergoing either heaving or pitching motions.

2. Scaling laws
Consider a rigid two-dimensional foil moving at a constant speed U∞ while heaving

and pitching about its leading edge. These motions are described by h(t)= h0 sin(2πft)
and θ(t)= θ0 sin(2πft), respectively, where h0 is the heave amplitude, θ0 is the pitch
amplitude and f is the frequency; see figure 2. We are chiefly concerned with the
time-averaged thrust in the streamwise direction produced by the foil motion, Fx, and
the corresponding Froude efficiency

η=
FxU∞

Fyḣ+Mθ̇
, (2.1)

where Fy is the force perpendicular to the free stream and M is the moment taken
about the leading edge. This efficiency is the ratio of power output to the fluid to
power input to the foil. The relevant dimensionless parameters are

St=
2fA
U∞

, f ∗ =
fc

U∞
, A∗ =

A
c
, (2.2a−c)
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FIGURE 2. (Colour online) Experimental set-up and sketch of motions.

where St is the Strouhal number, f ∗ is the reduced frequency, A is the trailing edge
amplitude of the motion (h0 for heave, c sin θ0 for pitch) and c is the chord length of
the foil. Although St= 2f ∗A∗, we use all three parameters as a matter of convenience.
Force and power coefficients are defined by

CT =
Fx

1
2ρU2

∞
sc
, Cy =

Fy
1
2ρU2

∞
sc
, CP =

Fyḣ+Mθ̇
1
2ρU3

∞
sc
, (2.3a−c)

where ρ is the density of the surrounding fluid and s is the span of the foil.
We start with the notion that the forces acting on the foil are due to lift-based

mechanisms, added mass effects and viscous drag. We will assume that over our range
of Reynolds numbers the drag coefficient CD is constant, independent of the amplitude
or frequency of the actuation of the foil. This assumption will be justified by reference
to the experimental data.

2.1. Lift-based forces
The only lift-based forces we consider are those that arise when the foil is at an
instantaneous angle of attack to the free stream given by α= θ − arctan (ḣ/U∞). The

effective flow velocity seen by the foil has a magnitude Ueff =

√
U2
∞
+ ḣ2, and an

angle relative to the free stream velocity of arctan (ḣ/U∞). Hence,

Fx =−L sin (θ − α)=−Lḣ/Ueff ,

Fy = L cos (θ − α)= LU∞/Ueff ,

}
(2.4)

where L is the lift on the foil given by L = (1/2)ρU2
eff scCL and the lift coefficient

CL = 2π sin α + (3/2)πα̇c/U∞ (Theodorsen 1935). The moment about the leading
edge is M = −cL/4. Note that for a purely pitching foil, quasi-steady lift forces do
not produce any thrust. High-frequency and large-amplitude motions will strengthen
the nonlinearities in the response; the work of Liu et al. (2014) suggests that this
will alter the phase differences between forces and motions. As such, terms that are
expected to be 90◦ out of phase (for example, displacement and velocity or velocity
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and acceleration) may develop in-phase components. These phase shifts are assumed
to be constant for simplicity.

For heaving motions, neglecting viscous drag, we find

CT ∼ 2π3St2
+ 3π4St2 f ∗U∗,

Cy ∼ 2π2St+ 3π3St f ∗U∗,
CP ∼ 2π3St2

+ 3π4St2 f ∗U∗,
η∼ 1,

 (2.5)

where U∗ =U∞/Ueff = 1/
√

1+π2St2. Similarly, for small pitching motions,

CT ∼ 0,
Cy ∼ 2πA∗ + 3

2π
2St,

CP ∼
1
2π

2St A∗ + 3
8π

3St2,

η∼ 0.

 (2.6)

In these scaling relations the first term is due to the angle of attack, and the second is
due to the rate of change of the angle of attack. The ∼ sign indicates a proportionality,
and although we expect the relative magnitudes of the first and second terms to be
given by the analysis, the absolute magnitudes will need to be found by experiment.

2.2. Added mass forces
From Sedov (1965), the added mass forces per unit span on a flat plate are

Ft/s= ρπc′2V θ̇ − ρπc′3θ̇ 2,

Fn/s=−ρπc′2V̇ + ρπc′3θ̈ ,
M/s= ρπc′3V̇ − 9

8ρπc′4θ̈ − ρπc′2UV + ρπc′3Uθ̇ ,

 (2.7)

where c′ = c/2, U and V are the instantaneous velocities in the directions tangential
and normal to the plate, and subscripts t and n denote the instantaneous forces in the
same directions. In our laboratory reference frame

Fx/s = ρπc′2(ḣθ̇ cos θ −U∞θ̇ sin θ − c′θ̇ 2) cos θ
+ ρπc′2(ḧ cos θ − ḣθ̇ sin θ −U∞θ̇ cos θ + c′θ̈ ) sin θ, (2.8)

Fy/s = ρπc′2(−ḧ cos θ + ḣθ̇ sin θ +U∞θ̇ cos θ + c′θ̈ ) cos θ

+ ρπc′2(ḣθ̇ cos θ −U∞θ̇ sin θ − c′θ̇ 2) sin θ, (2.9)

M/s = ρπc′2
[
c′(ḧ cos θ − ḣθ̇ sin θ −U∞θ̇ cos θ)− 9

8 c′2θ̈

− (U∞ cos θ + ḣ sin θ)(ḣ cos θ −U∞ sin θ)+ c′(U∞ cos θ + ḣ sin θ)θ̇
]
. (2.10)

Note that for a purely heaving foil, added mass does not produce any thrust.
For heaving motions, neglecting viscous drag, we find

CT ∼ 0,
Cy ∼π3St f ∗,
CP ∼π4St2 f ∗,

η∼ 0.

 (2.11)
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Similarly, for small pitching motions,

CT ∼
1
2π

3St2
+π2St A∗,

Cy ∼
1
2π

3St f ∗ + 1
2π

2St,

CP ∼
9
32π

4St2 f ∗ + 1
2π

2St A∗,

η∼
16+ 16πf ∗

8+ 9π2 f ∗2
.


(2.12)

In these scaling relations, the first term is the absolute added mass term, while the
second term is due to being in a rotating frame of reference.

2.3. Summary
Combining lift-based and added mass forces, for purely heaving motions we have

CT = c1St2
+ c2St2 f ∗U∗ −CDh,

CP = c3St2
+ c4St2 f ∗ + c5St2 f ∗U∗,

η=
c1 + c2 f ∗U∗

c3 + c4 f ∗ + c5 f ∗U∗
,

 (2.13)

where we have included the drag force for heaving motions (CDh) in the thrust scaling.
The expression for the efficiency given here neglects the drag force, and so it should
be interpreted as an inviscid scaling result. We will show the effects of viscous drag
on the efficiency later in the text.

For purely pitching motions

CT = c6St2
+ c7St A∗ −CDp,

CP = c8St2
+ c9St2 f ∗,

η=
1
f ∗

c6 f ∗ + c7/2
c9 f ∗ + c8

,

 (2.14)

where CDp is the drag coefficient for pitching motions. The constants c1 to c9 will
need to be found by experiment. Note that the expressions for efficiency only hold in
the limit of negligible drag, so that they represent inviscid estimates.

3. Experimental set-up
Experiments on a pitching or heaving foil were performed in a water tunnel. The

foil was suspended in a free-surface recirculating water tunnel with a 0.46 m wide,
0.3 m deep and 2.44 m long test section. The tunnel velocity was varied from 60 to
120 mm s−1, with a typical turbulence intensity of 0.8 %. A free-surface plate was
used to minimize the generation of surface waves. The experimental set-up is shown
in figure 2.

A teardrop foil was used for the experiments, with a chord of c=80 mm, maximum
thickness 8 mm and span s= 279 mm, yielding an aspect ratio of AR= 3.5 and chord-
based Reynolds number of Re = 4780 at 60 mm s−1. To ensure that the flow was
effectively two-dimensional, the gaps between the foil edges and the top and bottom
surfaces of the water channel were less than 5 mm. Either pitching or heaving motions
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FIGURE 3. Heaving motions. Time-averaged (a) thrust and (b) power coefficients as
functions of the scaling parameters (2.13) for various h∗ = h0/c.

were used. A servo motor (Hitec HS-8370TH) was used to pitch the foil about its
leading edge, and a linear actuator (Linmot PS01-23x80F-HP-R) was used to heave
it on nearly frictionless air bearings (NewWay S301901). The pitch amplitude was
varied from θ0 = 3◦ to 15◦ in intervals of 2◦, the heave amplitude was varied from
h0 = 5 mm to 15 mm in intervals of 2 mm and the frequency of actuation f was
chosen so that the Strouhal number varied from St= 0.05 to 0.4 in intervals of 0.025
(while maintaining f < 2 Hz). Pitch and heave motions were sampled continuously via
encoders.

The foil thrust and efficiency were measured using a six-component force and
torque sensor (ATI Mini40), which has force and torque resolutions of 5 × 10−3 N
and 1.25 × 10−4 N m in the x- and y-directions, respectively, and 10−3 N and
1.25 × 10−4 N m in the z-direction. The force and torque data were acquired at a
sampling rate of 100 Hz. During each experimental trial, the motion ran for 30 total
cycles: the first five cycles were warm-up cycles, the following 20 cycles were for
data acquisition, and the last five cycles were cool-down cycles. Each trial was run
at least 6 times to ensure the repeatability of the data. Altogether, data were acquired
for more than 1000 individual experiments.

4. Heave results
Time-averaged thrust and power coefficients for the foil in heave are shown in

figure 3. The data were taken at a fixed velocity of 60 mm s−1. Performing a least-
squares linear regression, the scaling constants were determined to be c1= 3.52, c2=

3.69, c3 = 27.47, c4 = 13.81, c5 = 5.06 and a drag coefficient of 0.15 (2.13). The
values of the constants should not be taken to be universal; they are simply the values
that work best for our data. The collapse of the data is relatively insensitive to the
exact values of some of the constants, but the analysis indicates that each term in the
model is of O(1) importance, indicating that the physical mechanisms identified here
are significant in explaining the data.

The thrust data collapse well onto a single curve, suggesting that the simplified
physics used in our model are sufficient to explain the behaviour of the thrust. As
shown in § 2, the St2 term corresponds to the angle of attack and the St2 f ∗U∗ term
corresponds to the rate of change of angle of attack. We see therefore that the
thrust for heaving motions is entirely due to lift-based forces and that the effects of
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FIGURE 4. Heaving motions. Efficiency as a function of (a) St, and (b) f ∗. Solid lines
indicate the scaling given by (2.13); dashed line indicates the scaling with CDh = 0.

unsteadiness on the mean thrust are well captured by the rate of change of angle of
attack.

Likewise, the power data collapse well onto a single curve, although there is some
spread in the data for the stronger motions. The angle of attack, the rate of change
of angle of attack and added mass contribute to the power scaling. Power for heaving
motions is thus affected by both lift-based and added mass forces, and the essential
effects of unsteadiness on the mean power are well captured by the rate of change
of angle of attack and added mass. It should be noted that the collapse of the mean
power data is relatively insensitive to the values of the constants. The mean power
is a weakly nonlinear function of the scaling parameter, suggesting the limits of our
model; this is likely caused by the modification of the added mass (Liu et al. 2014).

The efficiency data are given in figure 4, presented as a function of Strouhal
number (a) and as a function of the reduced frequency (b). For heaving motions,
the scaling arguments indicate that the efficiency in the absence of drag should be
approximately constant (for our constants and range of parameters). For higher values
of the reduced frequency we observe that the efficiency data approach a constant,
marked by a dashed line. The efficiency deviates from this trend for lower values
of the reduced frequency and for smaller heave amplitudes due to the viscous drag
on the foil. As motions become weaker, they produce less thrust. The drag, however,
remains essentially constant. Thus as the motions become weaker, the drag will
constitute a larger portion of the net streamwise force, eventually overtaking any
thrust produced and leading to a negative efficiency.

5. Pitch results

Time-averaged thrust and power coefficients for pitching foils are shown in figure 5.
The data were taken at a fixed velocity of 60 mm s−1. Performing a least-squares
linear regression, the scaling constants were determined to be c6 = 2.55, c7 = 0, c8 =

7.78, c9 = 4.89 and a drag coefficient of 0.08 (2.14). Note that the thrust is affected
by only the Strouhal number, as seen in previous work (Koochesfahani 1989). The
values of the constants should be interpreted the same was as noted at the beginning
of § 4. The term multiplied by c7 is negligible, indicating that it expresses the product
of two terms (in this case displacement and velocity) that are 90◦ out of phase.
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FIGURE 5. Pitching motions. Time-averaged (a) thrust and (b) power coefficients as
functions of the scaling parameters (2.14), with c7 = 0.
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FIGURE 6. Pitching motions. Efficiency as a function of (a) St, and (b) f ∗. Solid lines
indicate the scaling given by (2.14); dashed line indicates the scaling with CDp = 0.

The thrust data follow our scaling model well. Although the pitch data are a
bit more scattered than the heave data, the collapse is still evident and the thrust
coefficient varies linearly with the scaling parameter as expected. As shown in § 2,
the St2 term corresponds to added mass, and so the thrust for pitching motions is
entirely due to added mass forces, which capture all of the effects of unsteadiness.

The power data also follow our scaling model well. Power in pitch is governed by
the rate of change of angle of attack (the St2 term), and by added mass forces (the
St2 f ∗ term). These two terms alone capture the essential effects of unsteadiness on
the mean power. As found for heaving motions, the mean power for pitch is a weakly
nonlinear function of the scaling parameter, indicating the limits of our model.

In figure 6 we present the efficiency data as a function of Strouhal number (a)
and as a function of the reduced frequency (b). The scaling result in the absence
of drag is given by c6/(c8 + c9 f ∗) (see (2.14)), shown in the figure by the dashed
line. Clearly, the reduced frequency collapses the data for faster motions, whereas the
Strouhal number does not. As found for heaving motions, the pitching data deviate
from the scaling for slower motions where viscous drag becomes a significant portion
of the net streamwise force. The solid lines show the curve fits after taking the drag
into account. The inviscid scaling suggests that in order to maximize efficiency, the
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reduced frequency should be minimized, but viscous drag begins to be important at
some point, and so for maximum efficiency an intermediate reduced frequency is best.

The inviscid scaling for the efficiency can be rewritten as (c6/c9)/(c8/c9+ f ∗). The
efficiency curve thus behaves as f ∗−1, but translated to the left by an amount c8/c9.
The amount of leftward translation thus depends on the relative strengths of the terms
corresponding to the coefficients c8 (rate of change of angle of attack) and c9 (added
mass). From the perspective of maximizing efficiency, a smaller translation is better
(e.g. f ∗−1 without any translation approaches infinity as f ∗ approaches zero). It is clear
that we may alter the amount of translation, and thus the efficiency, by changing
the relative strengths of lift-based and added mass forces. This could be achieved,
possibly, by adding higher harmonics to the motion. This approach is currently under
investigation.

6. Rescaling thrust
If we consider motions where the viscous drag term is small, the thrust coefficients

for heaving and pitching motions in (2.13) and (2.14) reduce to

CTh = c1St2
+ c2St2 f ∗U∗,

CTp = c6St2,

}
(6.1)

respectively, where we have taken c7= 0 as shown by the data. It is apparent that we
may eliminate St from both expressions by rescaling the thrust, reducing the number
of necessary scaling parameters. We rewrite the thrust laws as

C∗Th = 4c1 + 4c2f ∗U∗, (6.2)
C∗Tp = 4c6, (6.3)

where we define a new thrust coefficient

C∗T =
Fx

1
2ρf 2A2sc

(6.4)

based on a characteristic velocity scale fA. Since C∗T does not contain the free stream
velocity U∞, equation (6.3) indicates that for pitching motions the dimensional thrust
should be independent of the free stream velocity.

The results, scaled as suggested by (6.2) and (6.3) are shown in figure 7. They show
that the non-dimensional thrust coefficient C∗T is indeed a linear function of reduced
frequency for heaving motions for large values of f ∗ (U∗ varies only approximately
10 % for our data, effectively constant), and a constant for pitching motions.

The experimental results presented thus far have all been taken at a single
free stream velocity. To verify that the thrust results are truly independent of
velocity, the velocity was varied from 60 to 120 mm s−1. Figure 8 shows that
the dimensional thrust is independent of free stream velocity for pitching motions,
and only weakly depends on free stream velocity for heaving motions, confirming our
scaling arguments. Although not shown here, we note that the data taken at different
velocities follow the scaling laws given by (2.13) and (2.14), with the same values
for the coefficients as found in §§ 4 and 5.

6.1. Biological data
It is instructive to test our scaling arguments against biological observations. Figure 9
shows fluke-beat frequency and non-dimensional fluke-beat amplitude as functions of
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FIGURE 7. Newly non-dimensionalized thrust as a function of reduced frequency for (a)
heaving and (b) pitching. Equations (6.2) and (6.3) are shown by the dashed lines. Colours
are the same as in figures 3 and 5.
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FIGURE 8. Dimensional thrust as a function of frequency at various free stream velocities
for (a) pitching at θ0 = 7◦ and (b) heaving at various h∗ = h0/c.

length-specific swimming speed for several odontocete cetaceans (Rohr & Fish 2004).
The data indicate that in order to increase their swimming speeds, these cetaceans
increase their fluke-beat frequency while maintaining constant fluke-beat amplitude.
In fact, their speeds increase at the same rate as their frequencies. In terms of non-
dimensional variables, they are maintaining a constant reduced frequency.

Recall from § 2 that our scaling arguments indicate that the efficiency scales
with f ∗−1. Suppose that a swimmer wants to always swim as efficiently as possible.
According to our scaling arguments, this corresponds to swimming at the value of
reduced frequency which gives the greatest efficiency. Thus as a swimmer changes
its speed, it must change its frequency accordingly in order to maintain the same
reduced frequency. This is precisely what the biological data show.

7. Conclusions
Using only quasi-steady lift-based and added mass forces, new scaling laws

for thrust coefficients, side force coefficients, power coefficients and efficiencies
were obtained for a rigid foil undergoing oscillatory heaving and pitching motions.
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FIGURE 9. (Colour online) (a) Fluke-beat frequency and (b) non-dimensional fluke-beat
amplitude as functions of length-specific swimming speed for several odontocete cetaceans.
Adapted from Rohr & Fish (2004).

The analysis indicates that the foil performance depends on both Strouhal number and
reduced frequency. Water tunnel experiments on a nominally two-dimensional rigid
foil showed that the scaling laws give an excellent collapse of the data. Viscous drag
was seen to add an approximately constant negative offset to the thrust coefficient,
but it causes the rapid decrease in efficiency seen for slower motions (low Strouhal
number or small reduced frequency), and our scaling laws captured this behaviour
well. For both heaving and pitching motions, the scaling indicates that slower motions
lead to greater efficiency, as long as the motions are not so slow that viscous drag
becomes a substantial component of the net streamwise force.

Biological observations of the swimming behaviour of odontocete cetaceans were
shown to be consistent with our scaling arguments. When these aquatic creatures
swim, they change their fluke-beat frequency in order to change their swimming
speed while maintaining a constant fluke-beat amplitude. Under the premise of
swimming as efficiently as possible, this behaviour of maintaining a constant reduced
frequency is consistent with the scaling arguments presented.

Finally, observations of the weak dependence (or even independence) of dimensional
thrust on free stream velocity led to the introduction of a new non-dimensionalization
for thrust. The new non-dimensionalization reduces the thrust to only a linear function
of reduced frequency for heaving motions, and to a constant value for pitching
motions. The experimental data were shown to validate the new scaling, which is
independent of Strouhal number.
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