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Complex B-splines and Hurwitz zeta functions

B. Forster, R. Garunkštis, P. Massopust and J. Steuding

Abstract

We characterize nonempty open subsets of the complex plane where the sum ζ(s, α) +
e±iπs ζ(s, 1− α) of Hurwitz zeta functions has no zeros in s for all 0 6 α6 1. This problem
is motivated by the construction of fundamental cardinal splines of complex order s.

1. Introduction

Cardinal B-splines of complex order or, for short, complex B-splines, are a natural extension of
the classical Curry–Schoenberg (polynomial) B-splines where the integral order n is replaced by
a complex number s. More precisely, complex B-splines Bs : R→ C are defined in the Fourier
domain by

F(Bs)(ω) :=
∫

R
Bs(t)e−iωt dt :=

(
1− e−iω

iω

)s
, (1)

for Re s > 1. Setting Ω : R→ C, ω 7→ (1− e−iω)/iω, one notices that graph Ω ∩ {y ∈ R :
y < 0}= ∅, implying that complex B-splines reside on the main branch of the complex logarithm
and are thus well-defined.

Complex B-splines were first investigated in [3], where several important properties of these
splines were shown. For instance, in the time domain Bs is a piecewise polynomial of complex
degree s− 1

Bs(x) =
1

Γ(z)

∑
k>0

(−1)k
(
s

k

)
(x− k)s−1

+ for all x ∈ R

with fast decay at infinity:

Bs(x) ∈ O(x−m) for m< Re s+ 1, |x| →∞.

Moreover, complex B-splines are elements of L1(R) ∩ L2(R) satisfying recursion formulas
similar to those of the classical polynomial B-splines, are scaling functions, and generate
multiresolution analyses and wavelets. But in general, they do not have compact support.
Furthermore, complex B-splines relate in a natural fashion to difference and differential
operators of fractional order. For further properties and relationships to Dirichlet averages
and fractional derivatives and integrals we refer the interested reader to [4, 5].

2. The interpolation problem for splines of complex order

In order to solve the cardinal spline interpolation problem using the classical Curry–Schoenberg
splines [1, 6], one constructs a fundamental cardinal spline function that is a linear bi-infinite
combination of polynomial B-splines Bn of fixed order n ∈ N which interpolates the data set
{δm,0 : m ∈ Z}. More precisely, one solves the bi-infinite system∑

k∈Z
c
(n)
k Bn

(
n

2
+m− k

)
= δm,0, m ∈ Z, (2)
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for the sequence {c(n)
k : k ∈ Z}. The left-hand side of (2) defines the fundamental cardinal spline

Ln : R→ R of order n ∈ N. A formula for Ln is given in terms of its Fourier transforms by

L̂n(ω) =
(B̂n(•+ n/2))(ω)∑

k∈Z(B̂n(•+ n/2))(ω + 2πk)
. (3)

Using the Euler–Frobenius polynomials associated with the B-splines Bn, one can show that
the denominator in (3) does not vanish on the unit circle |z|= 1, where z = e−iω. For details,
see [1, 6].

One of the goals in the theory of splines of complex order is to construct a fundamental
cardinal spline Ls : R→ C of complex order s= σ + it of the form

Ls :=
∑
k∈Z

c
(s)
k Bs(• − k), (4)

satisfying the interpolation problem

Ls(m) = δm,0, m ∈ Z, (5)

for an appropriate bi-infinite sequence {c(s)k : k ∈ Z} and for appropriate s belonging to some
nonempty open subset of C.

Remark 1. Note that, unlike in the case of the Curry–Schoenberg B-splines [6], which are
even functions, we consider the nonsymmetric, that is, shifted versions Bs. The reason is that
the function Ω defined above would cross the negative real axis if Ω were equal to sinc (ω/2)
resulting in the loss of well-definedness of complex B-splines. We will see that our case excludes
interpolation of B-splines with integer order s= 2n+ 1, n ∈ N0. This case, however, is covered
by the Schoenberg’s symmetric B-splines: there are interpolating B-splines of order 2n+ 1.

Taking the Fourier transform of (4) and (5), and eliminating the expression containing the
unknowns {c(s)k : k ∈ Z}, a formula for L̂s similar to (3) is, at first, formally obtained:

L̂s(ω) =
B̂s(ω)∑

k∈Z B̂s(ω + 2πk)
. (6)

Inserting (1) into the above expression for L̂s and simplifying with the convention arg t=−π
for t < 0 yields

L̂s(ω) =
1/ωs∑

k∈Z1/(ω + 2πk)s
, Re s > 1.

(The choice arg t= π would yield the right-hand side formula with −ω instead of ω.) Since the
denominator of (6) is 2π-periodic, we may assume without loss of generality that ω ∈ [0, 2π],
and since L̂s(0) = 1 and L̂s(2π) = 0, it suffices to consider 0< ω < 2π. Setting α := ω/(2π), the
sum in the above denominator can be rewritten in the form∑

k∈Z

1
(k + α)s

=
∞∑
k=0

1
(k + α)s

+
∞∑
k=0

1
(α− 1− k)s

=
∞∑
k=0

1
(k + α)s

+ e−iπs
∞∑
k=0

1
(k + 1− α)s

= ζ(s, α) + e−iπs ζ(s, 1− α), (7)

where we take the principal value of the multi-valued function e−iπ(•) and where ζ(s, α) denotes
the Hurwitz zeta function to the parameter 0< α < 1.

The aim of this article is to characterize nonempty open subsets of the complex plane for
which (7) has no zeros for all α ∈ ] 0, 1 [. For these parameters s the interpolation property (5)
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is satisfied. To this end, in the next section, we first investigate the case of fundamental B-
splines Lσ of real order σ ∈ R. In § 4 we find trajectories of nonreal zeros. Then in the following
two sections we derive rectangular and crescent-shaped regions where (7) is zero free.

3. Special case: fundamental B-splines of real order

In this section, it is our goal to construct a fundamental cardinal spline Lσ : R→ C of real
order σ ∈ R+. To show that in this special case the denominator in (6) does not vanish, that
is, that Lσ is well-defined, it suffices to find conditions on σ so that the function (7)

ζ(σ, α) + e−iπσ ζ(σ, 1− α)

has no zeros for all α ∈ (0, 1). To this end, we use the following theorem by Spira [7].

Theorem 3.1. If Re s> 1 + α, then ζ(s, α) 6= 0.

Choosing a real σ > 2 guarantees that for 0< α < 1 neither ζ(σ, α) nor ζ(σ, 1− α) has zeros
in [2,∞)⊂ R. Firstly, assume that 0< α < 1

2 . Then

|e−iπσ ζ(σ, 1− α)| 6
∞∑
k=0

1
(k + 1− α)σ

=
1

(1− α)σ
+
∞∑
k=1

1
(k + 1− α)σ

6
1

(1− α)σ
+
∞∑
k=1

1
(k + α)σ

<
1
ασ

+
∞∑
k=1

1
(k + α)σ

= |ζ(σ, α)|.

For 1
2 < α < 1, we obtain in a similar fashion that |ζ(σ, α)|< |e−iπσ ζ(σ, 1− α)|. Hence,

|ζ(σ, α) + e−iπσ ζ(σ, 1− α)|> ||ζ(σ, α)| − |e−iπσ ζ(σ, 1− α)||> 0,

for all α ∈ (0, 1) \ { 1
2}.

Secondly, assume that α= 1
2 and that σ > 2. Then the second factor in (1 + e−iπσ) ζ(σ, 1

2 )
is nonzero by Theorem 3.1. To guarantee that the first factor is also nonzero, σ must not
belong to 2N + 1. Thus, for all 0< α < 1 and for all σ ∈ R with σ > 2 and σ /∈ 2N + 1,
ζ(σ, α) + e−iπσ ζ(σ, 1− α) 6= 0.

Remark 2. Note that the conditions on σ are independent of the branch chosen for the
multi-valued function e−iπ(•).

Let R := {x ∈ R : x> 2 ∧ x /∈ 2N + 1}. Then, since Bσ ∈ L1(R) ∩ L2(R), the fundamental
cardinal spline Lσ of real order σ with σ ∈R is also an element of L1(R) ∩ L2(R) and, in
particular, continuous on R. Figure 1 shows some of the splines Lσ in the frequency domain
and Figure 2 in the time domain.

4. Nonreal zeros

To find nonempty open subsets of the complex plane for which (7) has no zeros, we consider
a more general sum of Hurwitz zeta functions. For s= σ + it and a real parameter α ∈ (0, 1)
define

f±(s, α) := ζ(s, α) + e±iπs ζ(s, 1− α). (8)
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Figure 1. The interpolating spline L̂σ in the frequency domain for the parameters
σ = 2.0, 2.1, . . . , 2.9. (a) Absolute value. (b) Real part. (c) Imaginary part. For σ = 2.9, a value close to
the excluded exponent σ = 3, large values in a neighborhood of the singularities at ±π(2Z + 1) appear.

For σ > 1, the Hurwitz zeta function to the parameter α ∈ (0, 1] can be extended by analytic
continuation to all of C except for a simple pole at s= 1. (See, for example, [2].) Obviously, f±
vanishes at s= 2n+ 1 with n ∈ N for α= 1

2 . Further zeros can be found along the trajectories
as α varies. This is illustrated in Figure 3.

The function f± is analytic in s and α for σ > 1 and 0< α < 1. The computation of these
zero trajectories is based on the numerical solutions of the differential equation

∂z(α)
∂α

=−∂f±(z, α)/∂α
∂f±(z, α)/∂z

, (9)
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Figure 2. The interpolating spline Lσ in the time domain for the parameters σ = 2.0, 2.1, . . . , 2.9.
(a) Absolute value. (b) Real part. The imaginary part vanishes for all these parameters σ. For σ = 2
we have the classical case of linear interpolation.

where z = z(α), f±(z(α), α) = 0, and the initial conditions are provided by the zeros s= 2n+ 1,
n ∈ N, and α= 1

2 . Since the accuracy of these computations was not controlled, they cannot
be regarded as a proof for the existence of nonreal zeros.

However, we can prove the existence of zeros off the real axis. To this end, note that the
function f±(s, α) depends continuously on α for values of α near 1

2 . In fact, for all ε > 0, there
exists a δ > 0 such that for all α with |α− 1

2 |< δ

|f±(s, α)− f±(s, 1
2 )|< ε.

Let s be on a circle |s− 2n− 1|= r for n ∈ N and some 0< r < 2. Then, according to Spira’s
Theorem 3.1, the function f±(s, 1

2 ) does not vanish. In particular, |f±(s, 1
2 )|> 0. We now set

ε := |f±(s, 1
2 )|> 0, which for |α− 1

2 |< δ, implies the inequality

|f±(s, α)− f±(s, 1
2 )|< |f±(s, 1

2 )|,

for all s on the circle |s− 2n− 1|= r, for n ∈ N and some 0< r < 2.
It follows from Rouché’s theorem that for all |α− 1

2 |< δ the functions f±(s, α) and f±(s, 1
2 )

have the same number of zeros inside the disk of radius r centered at s= 2n+ 1. As
f±(2n+ 1, 1

2 ) = 0, the function f±(s, α) has at least one zero in this disk. However, such a
zero cannot be real since for real s > 1

ζ(s, 1− α)
ζ(s, α)

=− exp(±iπs)

equals one if and only if s= 2n+ 1 for some n ∈ N. Thus we have proved the following theorem.

https://doi.org/10.1112/S146115701300003X Published online by Cambridge University Press

https://doi.org/10.1112/S146115701300003X


66 B. FORSTER ET AL.

t

–4

–2

2

4

1 2 3 4 5 6 7 8 9

Figure 3. Zero trajectories zj(α) in the σ + it-plane according to equation (9) for j = 1, 2, 3, 4, defined
by f+(zj(α), α) = 0, for 0.001< α < 0.999. As starting points, we chose the zeros on the real axis and
z1(1/2) = 3, . . . , z4(1/2) = 9.

Theorem 4.1. For any n ∈ N, there exist values of α, not equal to 1
2 , so that the function

f±(s, α) has a nonreal zero s0 in a neighborhood of s= 2n+ 1.

In the following section we establish the existence of nonempty open sets on which f±(s, α)
does not vanish as a function of s for all values of α ∈ (0, 1). Actually, we obtain such a non-
vanishing of f±(2n+ z, α) for all α ∈ (0, 1) and sufficiently large n with z from a certain small
rectangle to be specified below. Comparing with Figure 3, these rectangles are nested between
the zero trajectories.

5. Zero-free rectangles

We now identify rectangles in the complex s-plane, in which f±(s, α) does not vanish for all
0< α < 1.

First, we observe that a functional equation holds for f± with respect to the parameter
0< α < 1:

f±(s, 1− α) = e±iπsf∓(s, α). (10)

Hence, we have f±(s, α) 6= 0 for 0< α < 1 if and only if f±(s, α) 6= 0 for 0< α6 1
2 . Therefore,

in the following we may assume that 0< α < 1
2 and σ > 1.

For σ > 1, we have that

ζ(σ)− 1 =
∞∑
k=2

k−σ <

∫∞
1

u−σ du=
1

σ − 1
<

∞∑
k=1

k−σ = ζ(σ), (11)

where ζ(σ) denotes the Riemann zeta function. Therefore,
1

σ − 1
< ζ(σ)< 1 +

1
σ − 1
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for the same range of σ. It is not difficult to deduce from the latter inequalities that
∞∑
k=2

1
(k + α)σ

<
1

σ − 1
and

∞∑
k=2

1
(k + 1− α)σ

<
1

σ − 1
.

We define

g±(s, α) := αsf±(s, α), (12)

which has the same zero as f±(s, α) for s ∈ C and 0< α < 1. We approximate g±(s, α) by
1 +A(s, α), where

A(s, α) := e±iπs
(

α

1− α

)s
.

It follows from the above estimates that

|g±(s, α)− (1 +A(s, α))|=
∣∣∣∣αs(ζ(s, α) + e±iπsζ(s, 1− α))−

(
1 + e±iπs

(
α

1− α

)s)∣∣∣∣
=
∣∣∣∣αs( 1

αs
+

1
(1 + α)s

+
∞∑
k=2

1
(k + α)s

+ e±iπs
(

1
(1− α)s

+
1

(2− α)s
+
∞∑
k=2

1
(k + 1− α)s

))
− 1− e±iπs

(
α

1− α

)s∣∣∣∣
6

(
α

1 + α

)σ
+ e∓πt

(
α

2− α

)σ
+

1 + e∓πt

σ − 1
ασ. (13)

Now, let s= 2n+ 2 + z, where z = x+ iy with y 6= 0, n ∈ N. Note that, for 0< α6 1
2 ,

α

1 + α
6

1
3

and
α

1 + 1− α
6

1
3
.

Hence, inequality (13) can be further estimated by

|g±(2n+ 2 + z, α)− (1 +A)|6B, (14)

where

A :=A(2n+ 2 + z, α) = e±iπz
(

α

1− α

)2n+2+z

and

B :=B(2n+ 2 + z) := (1 + e∓πy)
(

3−2n−2−x +
2−2n−2−x

2n+ 1 + x

)
. (15)

For later use we also compute

ReA=
(

α

1− α

)2n+2+x

e∓πy cos
(
±πx+ y ln

α

1− α

)
. (16)

Now we aim at describing a set S ⊂ C depending on n ∈ N, such that

g± := g±(2n+ 2 + z, α) 6= 0, ∀z ∈ S and ∀0< α < 1
2 .

However, in considering (16) for α close to 1
2 this would result in restricting z to a small

neighborhood of the real axis. Therefore, we split the procedure into two steps.

Step 1. We find an interval I for α close to 1
2 such that ReA> 0. Then we choose a rectangle

S, to be determined later in Step 2, so that B < 1.
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Step 2. For the remaining values of α /∈ I, we show that |A|+B < 1 is satisfied for the rectangle
S. By (14) and the weaker formulation

|g± − 1|6 |A|+B < 1

this implies that g± is close to 1 and therefore g± 6= 0.
To this end, let 0<X < 1

2 and 0< Y . Denote by

S := S(n, X, Y ) := {s ∈ C : s= 2n+ 2 + z, |Re z|6X, |Im z|6 Y } (17)

the rectangle in the complex s-plane of width X and height Y and with center 2n+ 2, n ∈ N.
We start with step 1. In fact, from equation (16) we see that ReA> 0 if the cosine term is

positive. This is the case for

−π
2

6±πx+ y ln
α

1− α
6
π

2
,

which is equivalent to ∣∣∣∣±πx+ y ln
α

1− α

∣∣∣∣6 π

2
.

Due to the inverse triangle inequality, this estimate is implied by

|±πx|+
∣∣∣∣y ln

α

1− α

∣∣∣∣6 π

2
,

which, on the other hand, is implied by s ∈ S and

πX + Y

∣∣∣∣ln α

1− α

∣∣∣∣6 π

2
.

This is equivalent to s ∈ S and

πX − π/2
Y

6 ln
α

1− α
6
π/2− πX

Y
.

The left-hand inequality is satisfied if s ∈ S and

C(X, Y ) :=
exp((πX − π/2)/Y )

1 + exp((πX − π/2)/Y )
< α6

1
2
,

since the right-hand inequality holds trivially for X < 1
2 . In view of this and expression (14),

it follows that g±(s, α) 6= 0 provided X and Y are chosen so that

B < 1 for all s ∈ S and C(X, Y )< α6 1
2 . (18)

Step 2 is now easy. For g± 6= 0 we need to show that

|A|+B < 1 for 0< α6 C(X, Y ) and for all s ∈ S. (19)

Note that the term B does not depend on α and that the function α 7→ α/(1− α) is increasing
for 0< α6 1

2 . If

J(n, X, Y ) :=
(

C(X, Y )
1− C(X, Y )

)2n+2−X

eπY + (1 + eπY )
(

3−2n−2+X +
2−2n−2+X

2n+ 1−X

)
< 1,

then (19) holds. Employing the above expression for C(X, Y ), J(n, X, Y ) simplifies to

J(n, X, Y ) = eπ(X− 1
2 )(2n+2−X)Y −1

eπY + (1 + eπY )
(

3−2n−2+X +
2−2n−2+X

2n+ 1−X

)
.

Note that the first exponential term is less than one only if X < 1
2 . Thus, both inequalities (18)

and (19) are satisfied if s ∈ S such that J(n, X, Y )< 1.
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We now show that for given n ∈ N and 0<X < 1
2 , there always exists a Y so that

J(n, X, Y )< 1. For this purpose, observe that

3−2n−2+X +
2−2n−2+X

2n+ 1−X
<

(
1
2

)2n+2−1/2

+
(

1
2

)2n+2−1/2

=
(

1
2

)2n+1/2

.

Hence, J(n, X, Y )< 1 if, for instance,

eπ(X− 1
2 )(2n+2−X)Y −1

eπY < 1
2 and (1 + eπY )( 1

2 )2n+1/2 < 1
2 .

The latter inequality holds if

Y <
1
π

ln(22n−1/2 − 1) =: Y1,

and the former if

π

[
(X − 1

2 )(2n+ 2−X)
Y

+ Y

]
< ln

1
2
.

Solving this quadratic inequality for Y yields

Y <
ln 1

2

2π
+

√(
ln 1

2

2π

)2
+
(
X − 1

2

)
(2n+ 2−X) =: Y2.

Therefore, choosing
Y <min{Y1, Y2}

implies J(n, X, Y )< 1. Note that in this case, the sequence {J(m, X, Y ) : m> n} is
decreasing.

The above arguments now yield the following result.

Theorem 5.1. Let 0<X < 1
2 and Y > 0. Assume that s ∈ S(n, X, Y ), n ∈ N, and 0< α < 1.

Then f±(s, α) 6= 0 provided J(n, X, Y )< 1. Moreover, J(m, X, Y )< J(n, X, Y ) if m> n,
m ∈ N.

For an illustration of Theorem 5.1, see Figure 4.

6. Crescent-shaped zero-free regions

Again, in view of (10), we consider only 0< α6 1
2 . Recall that for s= σ + it, we have by (12),

(13), and (15)∣∣∣∣αsf±(s, α)−
(

1 + e±iπs
(

α

1− α

)s)∣∣∣∣ 6

(
α

1 + α

)σ
+ e∓πt

(
α

2− α

)σ
+

1 + e∓πt

σ − 1
ασ

6 (1 + e∓πt)
(

3−σ +
2−σ

σ − 1

)
. (20)

For a better understanding of the zero trajectories of f±(s, α) described in Figure 3, we consider
the zero trajectories of the approximation term in expression (20). These trajectories are circles
in the s-plane; namely, we have

1 + e±iπs
(

α

1− α

)s
= 0 for 0< α < 1,

if and only if
s ∈ {z ∈ C : |z − (n− 1

2 )|= n− 1
2 , n ∈ Z}.

Figure 5 shows that these circles match the zero trajectories of f±(s, α) very well.
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Figure 4. The blue rectangles are the explicitly calculated zero-free regions for f±(s, α), α ∈ (0, 1), in
the s-plane. The black curves are the zero trajectories z(α) of f±(z(α), α) = 0, where 0.001< α < 0.999.
The blue boxes are given by the choice X = 0.4< 1

2
and an appropriate Y , such that J(n, X, Y )< 1,

see Theorem 5.1. In fact, the triples (n, X, Y ) = (1, 0.4, 0.53), (2, 0.4, 0.73), (3, 0.4, 0.86) satisfy the
conditions.

1 2 3 4 5 6 7 8 9

t

–4

–2

2

4

Figure 5. The dashed curves (circles) are the zero trajectories of 1− e±iπs(α/(1− α))s,
0< α6 1, in the s-plane. The black curves are the zero trajectories z(α) of f±(z(α), α) = 0,
for 0.001< α < 0.999.
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Figure 6. The dashed lines are two adjacent zero trajectories of f±(s, α). The crescent-shaped
region can be bounded by circles of radius n+ 1± δ/2 with center n+ 1± δ/2.

Now let n ∈ N. In view of Figure 5, we aim at finding crescent-shaped zero-free regions which
lie between two adjacent zero trajectories, see Figure 6. These crescent-shaped regions have
the form

ZF (n, σ0) :=
{
s :
∣∣∣∣s− 2n+ 2 + δ

2

∣∣∣∣=
2n+ 2 + δ

2
, 0< |δ|6 δ0, σ0 6 σ 6 2n+ 2 + δ0

}
, (21)

where δ0 < 1 defines the width of the crescent along the real axis and where 2< σ0 := σ0(n)<
2n+ 2 + δ0 is a lower bound for the extent of the crescent. The quantity σ0 will be specified
below.

For s ∈ ZF (n, σ0), we observe that(
σ − 2n+ 2 + δ

2

)2
+ t2 =

(
2n+ 2 + δ

2

)2
.

Hence,

t=±
√
σ(2n+ 2 + δ − σ), (22)

which gives ∣∣∣∣e±iπs( α

1− α

)s∣∣∣∣= exp
(
σ ln

α

1− α
∓ sgn(t)π

√
σ(2n+ 2 + δ − σ)

)
(23)

and

arg
(
e±iπs

(
α

1− α

)s)
=±πσ + sgn(t)

√
σ(2n+ 2 + δ − σ) ln

α

1− α
. (24)

Here, we defined sgn(t) :=±1 according to whether t > 0 or t < 0, and sgn(0) := 0.
As we did in § 5, we prove that αsf±(s, α) 6= 0 by distinguishing two cases: (i) the

modulus (23) is not close to one; and (ii) (23) is close to one but the argument (24) is not close
to π (mod 2π).

Assume s ∈ ZF (n, σ0). In view of (23), we see that

1
2

6

∣∣∣∣e±iπs( α

1− α

)s∣∣∣∣6 3
2

(25)
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–1

Figure 7. The desired inequality (30) is illustrated by the light grey area. The dark grey area is
implied by (25) and (27). It is now obvious that this area has no common points with the white circle
B1/2(−1), which has to be excluded to satisfy (30).

holds if and only if

ln
α

1− α
=
ε± sgn(t)π

√
σ(2n+ 2 + δ − σ)
σ

for ln
1
2

6 ε6 ln
3
2
. (26)

Equations (25) and (26) imply the following equivalences: the inequalities in (25) and the
inequality ∣∣∣∣arg

(
e±iπs

(
α

1− α

)s)∣∣∣∣6 π

2
(mod 2π), (27)

are satisfied if and only if (26) and∣∣∣∣±π ± πδ + sgn(t)ε

√
2n+ 2 + δ − σ

σ

∣∣∣∣6 π

2
(mod 2π) (28)

are valid. Recalling the ranges for δ and ε, (28) is true if, for instance,

σ >
2n+ 2 + δ0

µ
=: σ1, (29)

where

µ0 := 1 +
(

ln 2
π

)2
< µ < 1 +

[
π

ln 3/2

(
3
2
− δ0

)]2
=: µ1.

The value for the lower bound µ0 for µ will become clear below.
We claim that for s ∈ ZF (n, σ1) the inequality∣∣∣∣1 + e±iπs

(
α

1− α

)s∣∣∣∣> 1
2

(30)

is true for all 0< α < 1. Indeed, if for a given s ∈ ZF (n, σ1) there is no α for which (26) is
satisfied, then (30) is automatically true. On the other hand, if there exists an α so that (26)
(or equivalently (25)) holds, then it follows from the definition of σ1 that (27) is satisfied and
therefore (30) is true. For an illustration of the considered sets, see Figure 7.
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2

4

6

t

–10

–8

–6

–4

–2

38 40 41 42 43

8

10

Figure 8. Crescent-shaped (red) and rectangular (blue) zero-free regions near s= 42 of
f±(z(α), α) = 0 with 0< α< 1. The calculations are based on the values J(20, 0.4, 2)< 1 for the blue
rectangle (cf. Theorem 5.1) and on Er(20, 40.02)< 1

2
for the crescents. The black curves are the zero

trajectories z(α), f±(z(α), α) = 0.

Next, we consider the error term (20) in the approximation of αsf±(s, α) by (1 + e±iπs)
(α/1− α)s. In view of (22), we observe that for s ∈ ZF (n, σ0) the error term

(1 + e∓πt)
(

3−σ +
2−σ

σ − 1

)
is less than 1/2 provided we can find a σ0 > σ1 so that

Er(n, σ0) :=
(

1 + eπ
√
σ0(2n+2+δ0−σ0)

)(
3−σ0 +

2−σ0

σ0 − 1

)
<

1
2
.

The above inequality together with (30) imply then that f±(s, α) 6= 0, for all s ∈ ZF (n, σ0)
and all 0< α < 1. To establish the existence of such a σ0, we use the fact that σ0 > 2 and the
estimate

3−σ0 +
2−σ0

σ0 − 1
6 2 · 2−σ0 ,

to show that

Er(n, σ0) 6 (1 + eπ
√
σ0(2n+2+δ0−σ0)) · 2 · 2−σ0 < 1

2 .
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Figure 9. Fourier representation of the interpolating splines of complex order for s= 4 + k0.1i (left
column) and s= 10 + k0.1i (right column), k = 0, 1, . . . , 5. Upper row: absolute values, center: real
parts and lower row: imaginary parts.

For this purpose, we set σ0 := rσ1, where 1 6 r 6 µ, use (29), and define a continuous function
∆ : [1, µ]→ R by

∆(r) := 1 + eπσ1

√
r(µ−r) − 2σ1r−2.

Now, ∆(µ) = 2− 2σ1µ−2 = 2− 22n+δ0 < 0. On the other hand,

∆(1) = 1 + eπσ1
√
µ−1 − 2σ1−2 = 1 + eπσ1

√
µ−1(1− e(σ1−2/ ln 2−πσ1

√
µ−1)

= 1 + eπσ1
√
µ−1(1− e−(σ1−1)(π

√
µ−1−ln 2)−(π

√
µ−1+ln 2))> 0,

since µ > 1 + ((ln 2)/π)2. Hence, there exists a r0 ∈ (1, µ) so that ∆(r0) = 0. Now choose
µ ∈ (µ0, µ1) so that σ0 := σ1r0 > 2. Then Er(n, σ)< 1/2, for all σ > σ0 and n ∈ N.

Thus we have proved the following result.

Theorem 6.1. Let n ∈ N and let 0< δ0 < 1. Then there exists a σ0 ∈ (2, 2n+ 2 + δ0) so
that for all s ∈ ZF (n, σ0) and all 0< α < 1, f±(s, α) 6= 0.
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Figure 10. Time domain representation of the interpolating splines of complex order for s= 4 + k0.1i
(left column) and s= 10 + k0.1i (right column), k = 0, 1, . . . , 5. Upper row: absolute values, center:
real parts and lower row: imaginary parts.

7. Fundamental cardinal splines of complex order

The previous sections now provide us with a means to construct a fundamental cardinal spline
of complex order

Ls :=
∑
k∈Z

c
(s)
k Bs(• − k)

solving the interpolation problem (5) for specific values of s ∈ C.

Theorem 7.1. Suppose that Bs is a B-spline of complex order s with Re s > 2. Assume
that s lies in one of the following regions:

(i) s ∈ S(n, X, Y ) (see (17)); or
(ii) s ∈ ZF (n, σ0) (see (21)).

Then

Ls(x) :=
1

2π

∫
R

ω−s eiωx dω

ζ(s, ω/2π) + e−iπsζ(s, 1− ω/2π)
(31)
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is a fundamental interpolating spline of complex order s in the sense that

Ls(m) = δm,0 for all m ∈ Z.

The Fourier inverse in (31) holds in the L1 and L2 sense.

For an illustrative example of a fundamental interpolating spline of complex order s, see
Figures 9 and 10.

8. Concluding remarks

If we specify values for s or α then more can be said about zero-free regions. For instance, if
α is sufficiently far from zero and one, then one can prove the non-vanishing of f±(s, α) for
all sufficiently large |t|. This can be proved by using estimates like (11). Moreover, for α= 1

2
there are no further zeros other than s ∈ 2N + 1, a fact which follows immediately from the
factorization

f±(s, 1
2 ) = ζ(s, 1

2 )(1 + exp(±iπs)) = 0.

And, as we have seen in the proof of Theorem 4.1, there are no further real zeros. It seems
that many techniques from the theory of zeta functions can be applied to deduce information
on the distribution of zeros of f±. (See [2].)
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