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Abstract

Let E be a totally real set on a Stein open set €2 on a complete noncompact Kéhler manifold (M, g)
with nonnegative holomorphic bisectional curvature such that (€2, g) has bounded geometry at E. Then
every function f in a C? class with compact support on €2 and 3-flat on E up to order p — 1, p > 2
(respectively, in a Gevrey class of order s > 1, with compact support on €2 and 8-flat on E up to infinite
order) can be approximated on compacts subsets of E by holomorphic functions f; on 2 with degree of
approximation equal k—P/2 (respectively, exp(—c(s)k'/26=1y).
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1. Introduction

Let ©2 be a Stein open set on a complete noncompact Kihler manifold (M, g) with
nonnegative holomorphic bisectional curvature. Let ¢ € C 2(Q) be a nonnegative
strictly plurisubharmonic function on €2 such that idd¢ > §g where § > 0. Then

E={zeQ]|¢(zx)=0}
is a totally real set. Let k > 1 be a integer and P} the orthogonal projection of
L*(Q, e avy)

to
AX(Q, e avy),

the latter space being the Bergman space, that is the subspace of L*($2, e % d Ve)
consisting of holomorphic functions in L2(Q2, e *® dVy) which is nontrivial since ¢
is strictly plurisubharmonic. If D > 0 is large enough, set

ka{zeQ‘d(z,M\Q)z%}

where d is the geodesic distance associated to g.
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DEFINITION 1.1. The manifold (€2, g) has bounded geometry at E in the sense
of Chang—Yau [3] if there is a positive real number R such that, for every point
a € E, there is an open neighborhood U, of a in 2 and a biholomorphic mapping
v, :U, = B.(0, R) of U, onto B.(0, R), the ball of radius R centered at 0 € C",
such that if g, is the Euclidean metric in C", then:

1) Wala)=0;

(i) AV}g, <g < BW,g. on U, where the constants A and B are independent of a.

In other words, there exist a covering of E by coordinate Euclidean balls of a fixed
radius in which the corresponding Euclidean metrics are uniformly comparable to the
metric g. We refer to the number R and the (nonunique) choice of constants in (ii) as
the constants associated with the bounded geometry of (€2, g) at E.

We suppose that (€2, g) has bounded geometry at E. Our main results are
as follows.

THEOREM 1.2. Let f € CPZ2(Q) with compact support and d-flat at E up to order
p — 1. Then for every compact K of E there exist C > 0 and ko € N such that for
k > ko

sup |f — Pe(f)| < Ck=P/%,
KN

If M =C" and i09¢ > 8i39 ||z, Theorem 1.2 was established by Berndtsson [1]
without d-flatness of f € Cé (€2) where the maximum is taken over E N ;. However,
the constant C depends on the maximum of the second derivative of ¢ on E N .

THEOREM 1.3. Let f € G*(R2), the Gevrey class of order s> 1, with compact
support and d-flat at E up to infinite order. Then for every compact K C E there
exist C > 0 and ko € N such that for k > kg

sup |f — P (f)I<C eXp(—c(s)kl/z(S—l))_
KNy

If Q=M and ¢ has Logarithmic growth at infinity, then Pi(f) € Ox(M). The
latter space is the complex linear space of all holomorphic functions on M of
polynomial growth of degree at most k. By [2, Theorem 1.2, p. 2] we have
dim¢c Or (M) < dimg Pi (C") and if the equality holds for some positive integer k then
M is holomorphically isometric to the complex Euclidean space C" with the standard
flat metric.

2. Proofs of Theorems 1.2 and 1.3

As in [1], the proofs are based on Hormander’s L? estimates with weights for the 3
operator [5].

THEOREM 2.1. Let X be a weakly 1-complete manifold equipped with a Kdihler
metric h possibly noncomplete. Let W be a C? function on X such that
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Ric(h) +i90W > Awy, where A is a positive continuous function on X. Then if
Ve L(20 l)(X, e~V dVy,) is 9-closed there exists a solution u of du = v such that

/ lulPe™Y dv, 5/ |5v|ie_(w+1°g“th
X X

provided that the right-hand side is finite.
Theorem 2.1 implies an Agmon-type estimate for the minimal solution of du = f.

PROPOSITION 2.2. Let Q2 be a Stein open set on a complete noncompact Kdihler
manifold (M, g) with nonnegative holomorphic bisectional curvature. Let ¢ be
a C? strictly plurisubharmonic function on 2 such that id9¢ > 8g where 8 > 0. If
ue Lz(Q, e ke dVy) is the minimal solution ofgu =, then foralla e M

/ e kotvEdCay gy - € f o e kb+EICaD) gy,
Q k Ja
PROOF. For the proof, we need the following lemma [2, Lemma 4.1, p. 17]. d

LEMMA 2.3. Let (M, g) be a complete noncompact Kdihler manifold of complex
dimension n with nonnegative holomorphic bisectional curvature. Then there exists
a positive constant C (n) depending only on the dimension n such that for every a € M
and k > 1, there is a smooth function dy on M satisfying:

() C)~' (1 + Vkd(z, w)) <di(z) < C)(1 + Vkd(z, w)), z € M;

(2)  [3dklg < C(n)Vk, on M;

(3) 18ddklg < C(n)k, on M.

First, suppose that © is bounded on M. Let u € L*(Q2, e *? d V,) be the minimal
solution of du = v. Put

up = ue %

where d; as in Lemma 2.3. Since u is orthogonal to all holomorphic functions
on L2(Q, e % d V) and 2 is bounded, then uy is orthogonal to all holomorphic
functions on L2($2, e k9+dx), By Theorem 2.1 uy is the minimal solution for some
d-equation. Since

kiddp —idddy > k(8 — C(n))g > Csg

if 6 is large enough, since a positive multiple of ¢ does not change the set E. So it
follows from Theorem 1.2 that

1 _
/Q |uy|*e T gy, < o /Q |Jug|ge 0T qv,. (*)

Since
guk =(v— ukgdk)eidk
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and |ddy| ¢ =C (n)Vk, taking C; large enough, we can absorb the contribution to ()
coming from the second term urddy in the left-hand side of (). By Lemma 2.3(1) di
is comparable to \/Ed (z, a), then Proposition 2.2 follows if €2 is bounded.

If 2 is unbounded, then Q = | ; where (£2;) is an exhaustion of £ by bounded
Stein domains on M. We apply the above consideration on each €2; and passing to a
weak limit, we obtain the conclusion of Proposition 2.2 (see [4, p. 982] for @ ¢ C"). O

Since (€2, g) has bounded geometry at E there is a positive real number R such that,
for every pointa € E, there is an open neighborhood U, of a in €2 and a biholomorphic
mapping ¥, : U, — B.(0, R) of U, onto B.(0, R), the ball of radius R centered at
0 € C", such that if g, is the Euclidean metric in C", then:

1) Wala)=0;
(i) AV}g. < g < BW.g. on U, where the constants A and B are independent of a,
hence

AllWa (Il <d(z, a) < B|W. ()] Vz € Us.

If k > max(A_z, B_Z), then

g ! (Be(O, ﬁ)) C B(a, %) C w;l(Be <0, ﬁ)) cC U,.

2.1. Proof of Theorem 1.2

PROOF. Let f € Cé’(Q) and 9-flat at E up to order p — 1. The function f, = f o
llla_l : B.(0, R/ZA\/E) — C is C? on a neighborhood of B, (0, R/ZA\/z) and 9-flat
at a up to order p — 1. By Taylor’s formula, if w € B.(0, R/2Ak)

9 fa

3wj

(w)

< COISllepeellwl”™

whence by (ii),

a _ R
3£@ls < C(p. Hd@ P! Vze B(a, ﬁ)

Hence,

= _ R
0f@)g <C(f. A, B, RKI"P vzev:=| | B(a, m)

acE

By Proposition 2.2 the minimal solution uy of du = 3 f verifies

C _
[ et RO ay, < T [ apReteico gy,
Q Q
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Let K be a compact subset of E. If ae€ KN, then B(a, R/ZA\/E) C Q%
if D> R/2A. Also B(a, R/2AVk) C Ky ={z € Q|d(z, K) < R/2AVk} cC Q if
k > ko(K). Since ¢ (a) = D¢ (a) = 0, by Taylor’s formula, if z € B(a, R/ZA\/E),

¢(z) <C sup |D*¢ld*(z, a) < C(K)d*(z, a).

ZGKkO

Hence,

C _
/ lug|> dV, < — / |af|§e*k¢*m’<'~“) dVy. (k)
B(a,R/2v/k) k Jo

Since 9 (uy o llla’l) zgfu on B,(0, R/ZB\/%), we have the following well-known
a priori estimate

|u 2 C kn lI/_l * 2d 1 Y 2
k@l =< [(W, ) ukl Ve+k sup [0 fal
B.(0,R/2Bk) Bo(0,R/2B/K)

for some constant C > 0 (see Wermer [7, Lemma 16.7, 16.8] or Hormander and
Wermer [6, Lemma 4.4]). By (ii) we deduce

1 _
lug(@)|* < C(k" / lug* dV,y + ¢ Sup Iaflz)-
B(a,R/2k) B(a,R/2Vk)

Thus,

C
lug(a)|* < C k" lug |2 dV, +
gt

B(a,R/2VE) kP

Thanks to (xx) we deduce

C _
u(@)® < k”;( sup  [af%e*® +  sup ek¢) / e~VEta gy,
suppt (f)NV supp(/H\V supp(f)

C
T

Since Ric(g) > 0, by the coarea formula and Bishop’s comparison theorem
/ e VK@D gy, < ck ",
M
Also since (supp(f) \ V) N E =@, we have e *¢ < ¢=C* on supp(f) \ V. Finally,
C C
sup Ju(@l* = sup |f = Pu(f)? < o+ Ce = oo
KN KNy kp

This finishes the proof of Theorem 1.2. O
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2.2. Proof of Theorem 1.3

PROOF. Now let f € G*(2) with compact support and d-flat at E up to infinite order.
If p e Nand w € B.(0, R/2A/k) by Taylor’s formula

’ fa

3@1‘

=Y ot s | Dy,

la|=p weB.(0,R/2AVk) oy

Since Cf’p! <a! if p=|a| and Zlﬂ\=p 1<(p+1)? <Cy2” where Cy, Cy are
constants, then

dfa

0w,

W)| < el FIsCPHEY ™ (p + DY lw|?

where || f|s is the G*-norm of f. Since (p+ 1)! < p!2P and s > 1 we have
infp.EN(ZSCHu)||)1”(p!)s_1 < Aexp(—B|lw||'/=%)) where A, B> 0 are constants.

Hence,
Igf(Z)I <C CXp(—Bd(z, a)l/(lihv)) VZ S B(a’ X )
g= i
Thus,
F) R
0f(@)lg < Cexp(=Bk'/2179) vzeV = B(a, —)
g LEJE 2Vk
Following the same lines as Section 2.1, we deduce that
sup | f — Pr(f)] < C exp(—c(s)k'2179), -

KNy
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