
BLOCK DESIGN GAMES 

A. J. HOFFMAN AND MOSES RICHARDSON 1 

In this paper, we define and begin the study of an extensive family of simple 
^-person games based in a natural way on block designs, and hitherto for the 
most part unexplored except for the finite projective games (13). They should 
serve at least as a proving ground for conjectures about simple games. It is 
shown that many of these games are not strong and that many do not possess 
main simple solutions. In other cases, it is shown that they have no equitable 
main simple solution, that is, one in which the main simple vector has equal 
components. On the other hand, the even-dimensional finite projective games 
PG(2s, pn) with s > 1 possess equitable main simple solutions, although they 
are not strong either. These results are obtained by means of the study of the 
possible blocking coalitions. Interpretations in terms of graph theory, network 
flows, and linear programming are discusssed, as well as ^-stability, auto­
morphism groups, and some unsolved problems. 

1. Preliminaries on block designs. Block designs have long been studied 
from various points of view and have an extensive literature, an introduction 
and references to which can be found in Hall (8). 

By a block design2 we shall mean a set N of v elements {1, 2, . . . , v}, and 
a family of b distinguished subsets Wi, W<L, . . . , Wb of N called blocks, such 
that 

(a) every Wi contains k elements, k < v, 
(b) every element x belongs to r blocks. 

A block design may be specified by means of its incidence matrix A = | | a 0 | | 
with v rows and b. columns, where atj = 1 if the ith element belongs to the 
7th block and atj = 0 if not. The numbers v, b, k, r are termed parameters of 
the design. Clearly, 
(1) vr = bk, 

since each side represents the total number of ones in the incidence matrix. A 
block design is termed symmetric if v = b or, equivalently, k = r. A block design 
is termed balanced if every two elements occur together in X blocks. The 
numbers v, b, k, r, X are termed the parameters of the balanced block design 
and satisfy, in addition to (1), the relation 

(2) r(k - 1) = \(p - 1). 

dece ived January 4, 1960. Some of the work of this paper was done while this author was 
partly supported by a National Science Foundation Faculty Fellowship. 

2Also referred to as incomplete block design and tactical configuration in the literature. 
Cf. (2; 3; 4; 10; 11). 
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A symmetr ic balanced block design is often referred to as a (v} k, X)-system. 
Perhaps the most familiar balanced block designs are the finite geometries, 
projective and euclidean, where the points are taken as the elements and the 
lines as the blocks; for these, we have X = 1 since two points determine a line. 
Other balanced block designs which have long been studied are the Steiner 
triple systems (cf. 8; 10; 11) for which either v = 6t + 1, b = t(6t + 1), r = St, 
k = 3, X = 1, orz; = 6^ + 3, b = (2* + 1)(3* + 1), r = 3* + 1, k = 3, X = 1. 
T h e Steiner triple systems with v = 1, 3, 7 we shall here term trivial. The case 
v — 7 is the familiar seven-point projective plane. 

A block design is termed partially balanced if: 

(A) There exist non-negative integers Xi, X2, . . . , X̂  and positive integers 
ni, n2. . . . , nh such t h a t to every element x corresponds rij other elements, 
called jth associates of x, with the property t ha t any j t h associate of x occurs 
together with x in X; blocks, and 

(B) if x and y are ith associates then the number of elements which are 
j t h associates of x and &th associates of y is pjk\ 

The numbers v, b, k, r, Xi, . . . , X ,̂ Wi, . . . , nh, pjk
l are termed the para­

meters of the partially balanced block design. I t is understood t ha t the numbers 
Xz, flu Pjk1 are independent of the choice of element. We shall suppose t h a t 
h > 1. H h = 1, so t h a t all X̂  may be replaced by X and all nt by v — 1, then 
the block design is balanced. 

A partial ly balanced block design with two associate classes is termed group 
divisible if the elements can be divided into m groups each with n elements so 
t h a t pairs of elements in the same group occur together in Xi blocks and pairs 
of elements in different groups occur together in X2 blocks, Xi ^ X2. I t is clear 
t h a t ft\ = n — 1 and n2 = n{m — 1). A group divisible design (cf. 2; 5 ) is 
termed singular if r = Xi, semi-regular if r > Xi and rk = v\2, regular if r > Xi 
and rk > v\2. 

Let stj be the number of elements common to the ith and jth blocks of a 
design ; the matr ix S = \\sij\\ = A TA. I t is known tha t in a symmetr ic balanced 
block design all stj = X. I t is also known (cf. 5 ) t h a t : for a regular symmetr ic 
group divisible design, 

/QN ^ 0 - ^ i ) / 0 2 — z>X2) < Su < Xi if Xi > X2, 

Xi < stj < X2(> — Xi)/(r2 — z;X2) if Xi < X2; 

for a symmetr ic regular group divisible design with r2 — v\2 and Xi — X2 

relatively prime, all 

(4) stj = Xi or X2; 

for a symmetr ic semi-regular group divisible design 

(5) \ 1 < ^ < 7 ^ î ; X
2

2
r _ X i - X 1 . 

If the block design D* has parameters v*, b*, &*, r* and incidence matr ix 
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A, then the dual block design D has parameters v = 6*, b = v*, k = r*, r = &* 
and incidence matrix ^4r, the transpose of A (cf. 3; 15). 

Restriction. We shall henceforth confine ourselves to block designs, desig­
nated by D, of which the incidence matrices have no two column vectors 
equal, and correspondingly to block designs, designated by D*, of which the 
incidence matrices have no two row vectors equal. Thus no two blocks of a 
design D are to be equal sets.3 

If D* is a partially balanced design with all \*t > 0, then in the dual 
design D every pair of distinct blocks has a non-empty intersection. If D* is a 
balanced design with X* > 0, then in the dual design D the intersection of 
every pair of distinct blocks has X* elements. 

2. Preliminaries on simple games. Let N be a finite set {1, 2, . . . , v] of 
v players. Let 5ft be the class of all subsets of N, each of which is called a 
coalition. If © C 5ft, let © + be the class of all supersets of elements of ©, and 
let ©* be the class of all complements of elements of ©. By a simple game is 
meant an ordered pair G = (N, SB) where 9B is a subclass of 5ft satisfying 

(a) 2B = 2B+ 

Os) as n as* = 0. 
Elements of SB are termed winning coalitions, elements of ? = 5ft — 2B are 
termed losing coalitions, and elements of 33 = 8 O 2* are termed blocking 
coalitions. The simple game 4 G is termed strong if and only if 33 = 0. A simple 
game may be defined by specifying the class 26™ C SB of minimal winning 
coalitions, by virtue of condition (a). Let Wi, W2, . • • , Wb be the minimal 
winning coalitions. 

A dummy is a player i such that f(S VJ {i}) = f(S) for all 5 Ç 5ft where / 
is the characteristic function of the game. We shall confine ourselves here to 
strictly essential games, that is, having no dummies. We use the 0 — 1 
normalization. 

A vector (#i, a2, . . . , av) of non-negative real components such that 

(6) J2 at = 1 for Se SB", 
ieS 

(7) S o* > 1 for 5 G (2S W S ) - SB™ 

is termed a main simple vector (cf. 12; 14; 7). If there exists a main simple 
vector, then the finite set of imputations X = {x(S)\S G 3Bm} where 

is) [en if i G vS  
Xi \ 0 if i iS 

3It is possible for a design with distinct blocks to have a dual with two or more blocks equal; 
see for example, design S12 in (2). If, in a balanced design, X < r, then two row vectors of the 
incidence matrix cannot be equal. If, in a partially balanced design, all À; < r, the same 
conclusion holds. 

4In (12), the terminology is such that all simple games are those which are termed strong 
here and in (14). We shall use the terminology of (14) throughout. 
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is termed a main simple solution of the simple game G. A player i is indifferent 
relative to the main simple solution X if at = 0. This can occur without i 
necessarily being a dummy. We shall suppose that there are no indifferent players 
throughout. A main simple solution will be termed equitable if all the components 
ai of its main simple vector are equal. 

A necessary condition for a set X C N to be a blocking coalition is that 
the row vectors Ru i £ X, in the incidence matrix, with columns correspond­
ing to minimal winning coalitions and rows corresponding to players, shall 
have a boolean sum equal to the unit vector Ub, all b components of which are 
ones; that is, 

itX 

where the summation is boolean. 

3. Block design games. Any block design D, subject to the restriction at 
the end of § 1, in which, furthermore, every pair of blocks has a non-empty 
intersection, may be used to define a simple game, called a block design game, 
in which the players correspond to the elements of the design and the minimal 
winning coalitions correspond to the blocks of the design. Particular examples 
are the finite projective games studied in (13), symmetric balanced block 
designs, group divisible designs with all stj > 0, the duals of finite euclidean 
planes, the duals of Steiner triple systems, the duals of balanced block designs 
with X > 0, and the duals of partially balanced block designs with all \ t > 0. 

The following lemmas will be useful. 

LEMMA 1. If, in any simple game, there exists a blocking coalition B (properly) 
contained in some minimal winning coalition W, then there exists no main simple 
solution. 

Proof. If there were a main simple vector we would have 

^2 at = 1 but X ai > 1-
iiW ieB 

LEMMA 2. If every blocking coalition B in a block design game is such that the 
number of players in B is greater than k, then there exists an equitable main 
simple solution. 

Proof. We can take at = 1/k. 

LEMMA 3. If, in a block design game, there exists a blocking coalition B of 
which the number of players is less than or equal to k, then there exists no equitable 
main simple solution. 

Proof. For we would have 

J2 ai < 1 
itB 

and therefore not > 1 as required. 
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4. Some theorems on block design games. We establish some theorems 
concerning blocking coalitions and main simple solutions of various block 
design games. Examples are collected in § 8. 

THEOREM 1. A block design game is not strong if one of the following con­
ditions hold: 
(a) v = 2k, b < %C(v,k), 
(b) z; < 2^, b < C(v,k), 
(c) v > 2k, and some (v — k + I)-tuple of players constitutes a losing coalition. 

Proof. Under hypothesis (a), at least one &-tuple of players is not in 2BW 

and has its complementary &-tuple also not in 2BW, for the number of ^-tuples 
in 2BW \J 2Bm* is 2b < C(v, k). Hence 33 = 2 C\ 2* ^ 0. 

Under hypothesis (b), there exists a &-tuple not in W71 whose complemen­
tary (v — k)-tuple is not in 2B since v — k < k, while any set in 3B has at 
least k members. 

Under hypothesis (c), the complement of the given (v — k + l)-tuple is 
also in 2 since it has only k — 1 members. 

More precise information concerning blocking coalitions in various block 
design games is given in the remaining theorems of this section. 

THEOREM 2. In any simple game, if there exists a player x\ and a minimal 
winning coalition W\ containing Xi such that every other minimal winning 
coalition W containing x± intersects W\ in more than one element, then there 
exists a blocking coalition B which is a (proper) subset of Wi. Hence, under 
these hypotheses, the game is not strong and there exists no main simple solution. 

Proof. Let W\ = {xi, x2, . . . , xk}, say, and let B = W\ — [x\\ = {x2, . . . , 
Xjc}. Now every minimal winning coalition IF different from W\ must intersect 
W\, and furthermore, by hypothesis, must intersect B. Consequently, B is a 
blocking coalition (properly) contained in W\. The last sentence of the theorem 
follows from Lemma 1. 

COROLLARY. The hypotheses and hence the conclusions of Theorem 2 are 
satisfied if the block design game D is any of the following: 

(a) a symmetric balanced block design with X > 1 ; 
(b) the dual of any balanced block design with X > 1 ; in particular, the dual 

of the design formed by the s-spaces in a projective or euclidean m-space PG(m, pn) 
or EG(m, pn) with 1 < s < m; 

(c) the dual of a partially balanced block design with all\t > 1 ; 
(d) a symmetric regular group divisible design with 1 < Xi < X2; 
(e) a symmetric regular group divisible design with Xi > X2 and X2(r — Xi) > 

r2 — v\2; 
(f) a symmetric semi-regular group divisible design with Xi > 1; 
(g) a symmetric regular group divisible design with r2 — v\2 and Xx — X2 rela­

tively prime and both Xx and X2 greater than one. 
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T H E O R E M 3. If D* is a balanced block design with parameters v*, b*, k*, r*, 
and X* = 1, then its dual D yields a game which is not strong if either 5 k = 3 
and r > 4, or k > 4 and r > 3. In particular, under these hypotheses, there 
exists a blocking coalition with k + r — 2 members. 

Proof. In D we have bk = vr and k{r — 1) = b — 1, and the intersection of 
every pair of minimal winning coalitions has just one element. Consider any 
block W = {%i, . . . ,xk] of D. There are 

r + (k - 2) (r - 1) = k{r - 1) - r + 2 = b - (r - 1) 

blocks containing a t least one of the elements Xi, . . . , xk-i, leaving r — 1 
blocks intersecting W in xk only. In these r — 1 blocks there are (r — 1) 
(fe — 1) elements other than x*. There exist (k — l )7" - 1 possible (r — 1)-
tuples with one element chosen from each of these r — 1 blocks. Excluding 
W, there are (r — 1)(& — 1) blocks containing elements of {xi, . . . , xk-i}. 
But, if k = 3 and r > 4, or if k > 4 and r > 3, then 

(* - l ) 1 - 1 > (* - l ) ( r - 1). 

Therefore, in this case, a t least one such (r — l ) - tuple {yi, . . . , yT-i} exists 
not forming a block together with any member of {xi, . . . ,xk-i}. Thus , 
{xi, . . . , xk-i, yu • • • » ^r- i} is a blocking coalition, which completes the 
proof. 

COROLLARY 1. The dual D of a non-trivial Steiner triple system D* is not 
strong. 

Proof. Except for the cases z;* = 1, 3, 7, which we have termed trivial, 
the Steiner triple systems have k* = 3 and r* > 4. Hence, in the dual , r = 3 
and k > 4. 

COROLLARY 2. 7 / D* is //ze system of lines in the finite euclidean space 
EG(m, pn) of m dimensions over the Galois field GF{pn) for m > 2 and pn > 3, 
then the dual D is not strong. 

Proof. In D* we have v* = £ww\ b* = pn<m-»(l + pn + . . . + pn(m~v), 
jfe* =/>», r* = 1 +/>* + . . . + £n ( w-1 } , and X* = 1. Hence in the dual , r > 3 
and & > 4. 

COROLLARY 3. If D* is the system of lines in the finite projective space 
PG(m, pn) of m dimensions over the Galois field GF(pn) with m > 3 and pn > 2, 
then the dual D is not strong. 

Proof. In D*, we have v* = 1 + pn + . . . + pmn, 

1* _ (1 + Pn + . • • + Pmn)d + Pn + • • • + £ (m '1)w) > r _ 1 | A 

5It is easily verified that the only remaining cases are the triangle and the seven-point 
projective plane, which are strong, and the duals of complete w-gons, n > 4, also termed 
triangular association schemes below, which are not strong. 
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r* = l + p* + . . . + pim-i)nt a n d x* = 1 Hence, in D, we have k > 4, and 
r > 3. 

5. Some games with no equitable main simple solution. 

THEOREM 4. If D* is the system of hyperplanes in the finite euclidean m-space 
EG(m, pn), m > 2, then in the dual D there exists a blocking coalition with pn 

members. 

Proof. In EG(m, pn), consider any family of pn parallel hyperplanes or 
(m — l)-spaces, one through each point of a transversal line. Their union con­
tains all the points of the space. In the dual D, these hyperplanes correspond 
to pn elements incident with all the blocks, no two of which elements occur 
together in any block. Therefore, these elements constitute a blocking coalition 
with pn members. 

COROLLARY. The block design game D, dual to the system of hyperplanes of a 
finite euclidean m-space EG(m, pn), m > 2, is not strong and has no equitable 
main simple solution. 

Proof. The last conclusion follows at once from Lemma 3 of § 3. 

THEOREM 5. In the dual D of a non-trivial Steiner triple system D*, there 
exists a blocking coalition with k members. 

Proof. In D*, consider the set of r* triples containing a given element x, 
say. Delete any two of these triples, say (x, a, b) and (x, c, d) where a, b, c, and 
d are, of course, distinct elements. Then there exist triples (a, c, y) and (b, d, z) 
with y 7e- x, z ?£ x in D*, since X* = 1 and since the trivial systems have 
been excluded. Replacing the twro deleted triples by the latter two, we have 
a set of triples whose union contains all elements of D* and does not contain 
any set of all triples through any particular element. In the dual D, this 
corresponds to a set of elements incident with all blocks but not containing 
all elements of any particular block. This is a blocking coalition with k = r* 
elements. 

COROLLARY. The block design game D, dual to a non-trivial Steiner triple 
system D*, is not strong and has no equitable main simple solution. 

Proof. The latter conclusion follows at once from Lemma 3 of § 3. 

Remark 1. The system of all lines in m-dimensional finite projective space 
PG(m, 2) over the integers modulo 2, and the system of all lines in m-dimen-
sional finite euclidean space EG(m, 3) over the integers modulo 3, are Steiner 
triple systems. Of course, not every Steiner triple system is of this type. 

Remark 2. The conclusion of Theorem 3 does not hold for the dual of a 
partially balanced design with some Xz = 1 and some X̂  > 1. For instance, 
the game of Example 2 is not strong but the game of Example 6 is strong 
(see § 10, below). 
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By a triangular association scheme (cf. 2) is meant an n by n matrix in 
which: (a) the elements on the principal diagonal are left blank; (b) the 
n(n — l ) /2 positions above the principal diagonal are filled by the numbers 
1, 2, . . . , n(n — l ) /2 ; (c) the matrix is symmetric. If we take the players to 
be the numbers 1, 2, . . . , n{n — l ) /2 , and the minimal winning coalitions 
Wi, . . . , Wn to be the rows of the triangular association scheme, then it is 
easily seen that we have a block design game with v = n(n — l ) /2 , b = n, 
k = n — 1, r = 2, and every two distinct minimal winning coalitions have 
one player in common. We shall term such a game a triangular game. 

THEOREM 6. A triangular game with n > 3 has a blocking coalition with 
<& — 1 members; hence it is not strong and has no equitable main simple solution. 

Proof. Let {xi} = Wx C\ W2. Since W\ \J W2 has 2n — 3 members, and 
v > 2n — 3 for n > 3, there exists an x2 $ W\ KJ W2. Suppose, for example, 
that {x2} = W% C\ W4. Then we can choose arbitrarily xt 6 Wt (i = 
5, 6, . . . , n), distinct or not. Obviously, the distinct members of the set 
{xi, x2, X5, Xe, . . . , xn) form a blocking coalition with <w — 2 = k — 1 mem­
bers. The second assertion of the theorem follows from Lemma 3. 

Remark 3. In fact, it is easy to see that there exists a blocking coalition with 
[{n + l) /2] members, where [x] is the largest integer <x, but this stronger 
result does not seem to have any interesting game-theoretic implications. 

6. Even-dimensional finite projective games. In (13), finite projective 
games PG(h, pn) were defined as follows: the players are the points of the 
finite projective space PG(h, pn) of dimension h > 1 over the Galois field 
GF(pn), and the minimal winning coalitions are the (s + l)-spaces if h = 2s + 
1, and the ^-spaces if h = 2s. As noted in (13), the odd-dimensional finite 
projective games are not strong and have no main simple solution since the 
s-spaces are blocking coalitions contained in the minimal winning coalitions 
(cf. Lemma 1, above). In (13), it is also proved that the plane games PG(2, pn) 
are not strong except for pn = 2, but that all of them have equitable main 
simple solutions. We shall now round out this discussion by disposing of the 
games PG(2s, pn) with s > 2. 

THEOREM 7. The games PG(2s} pn), s > 2, are not strong. 

Proof. Consider any (s + l)-space Ps+i in PG(2s, pn). Since any s-space 
intersects P s + i in a space of dimension at least one, a set B will be a blocking 
coalition if it consists of points of Ps+i such that B meets every line of Ps+i 
but contains no s-space of Ps+i. We show that such a set B exists. Introduce 
a homogeneous co-ordinate system (x0, Xi, . . . , xs+i) into Ps+i in the usual 
way by means of an (s + l)-simplex of co-ordinates as+i. 

Case 1. Suppose either pn 9e 2, or pn = 2 and 5 is even. Let B be the set of 
all points x of Ps+i such that the number Z(x) of zero co-ordinates of point x 
satisfies 1 < Z(x) < s. 
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We prove first t h a t every line / of Ps+i intersects B. Clearly, / meets the 
s-space xo = 0 in a t least one point x. If Z(x) 9e s + 1, it is the desired point 
of B. If Z(x) = s + 1, then let the remaining non-zero co-ordinate of x be 
Xi, i 9e 0. Let j ' be a point of intersection of / with the s-space xt = 0. If 
Z(y) 7e- s + 1, it is the desired point of B. If Z{y) = 5 + 1, then the point 
x + y is a point of / having Z(x + y) = s, and is therefore in B. 

We mus t still prove t h a t B contains no s-space of P s + i . Let an equat ion of 
an arb i t rary s-space of Ps+i be 

(8) aoxo + aixi + . . . + as+1xs+1 = 0. 

If a t least one coefficient, say ao, is equal to zero, then the point (1, 0, 0, . . . , 0) 
is a point of the s-space not in B. If all coefficients of (8) are different from 
zero, we consider two cases, pn = 2 or pn ^ 2. If pn = 2, and s is even, then 
s + 2 is even, and, since all at = 1 by hypothesis , we have 

s+l 

^2 ai = Omod 2; 

hence (1, 1, . . . , 1) is a point of the s-space not in B. If pn ^ 2, let c ^ 0, 1 
and consider the numbers 

(9) a0 + at + . . . + as 

and 

(10) a0 + a i + . . . + a s_i + c as. 

At least one of these is not zero, because if both were zero then subtract ion 
would yield (c — l)as = 0 and hence as = 0 cont rary to the hypothesis t h a t 
all at 7e 0. If (9) is not zero, then the point 

( i , i , . . . , i , i , - O B + - - - + g ' ) 

satisfies (8) bu t is not in B. If (10) is not zero, then the point 

[ ., , -, ao + • • . + a8-i + c as\ 

satisfies (8) bu t is not in B. 

Case 2. Suppose pn = 2, and s is odd, s > 3. Let B be the set of all points 
xof P s + i with Z{x) 7+ 1, 5 + 1. 

We prove first t h a t every line / of P s +i intersects B. Let x be a point common 
to I and the e s p a c e x0 = 0. If x j * (0, 1 , 1 , . . . , 1), (0, 1 , 0 , . . . , 0), 
(0, 0, 1, 0, . . . , 0) , . . . , (0, 0, . . . , 0, 1), then x Ç B. If x is one of these 
points , let y be a point common to / and the s-space yt = 0, where the ^'th 
co-ordinate of x is 1, so t h a t x ^ y. Suppose, for example, i = 1. If y ^ (1, 0, 1, 
. . . , 1), (1 , 0, 0, . . . , 0), (0, 0, 1, 0, . . . , 0) , . . . , (0, 0, . . . , 0, 1), then y G 
B. I t is easily seen t h a t in any of the remaining cases, Z(x + y) =2, s, or 0. 
Hence x + y is a point of / belonging to B. 
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I t is still necessary to prove t ha t B contains no s-space of P s+i- Let (8) be 
again an equation of an arbi t rary s-space of Ps+i. If a t least one coefficient, 
say a0, is zero, then the point (1, 0, . . . , 0) satisfies (8) bu t is not in B. If all 
ai 7e 0, then all at = 1, and, since 5 is odd, the point (0, 1, 1, . . . , 1) satisfies 
(8) bu t is not in B. This completes the proof. 

Geometrically, in Case 1, B consists of all the points of the face-planes of 
dimensions s, . . . , 1 of the co-ordinate simplex as+i excluding the vertices. 
In Case 2, B consists of all the points of Ps+i excepting the vertices of o-s+i and 
the points of the ^-face-planes not lying on face-planes of lower dimension. 
I t is not difficult to count the number of points in B and to see t h a t this 
number is greater than the number of points in an s-space. But in the next 
theorem we shall show t h a t this must be t rue for any blocking coalition in 
PG(2s, pn), s > 2; and hence, by Lemma 2, t h a t there exists an equitable 
main simple solution. 

In PG(2s, pn), let at be the number of points in an espace , and let a / be 
the number of ^'-spaces containing a given j - space . 

L E M M A 4. If r < s, then aT-i > 1 + as. 

Proof. By an easy calculation, we get 

. rn I | A z 

Oir-1 = 7™ = 1 + P + P + . . . + £ = OL2s-r. 

. 2sn 

• -r t 
P 

But r < s implies 2s — r > s, or 2s — r > s + 1. Hence a2s-r — a s > as+1 — 

as = £(*+!)». Since pn > 1, we have a2s-r — as > 1. 

T H E O R E M 8. The games PG(2s, pn), s > 2, have equitable main simple solu­
tions. 

Proof. By Lemma 2 it suffices to show tha t if B is any blocking coalition, 
then the number \B\ of points in B is greater than as. Suppose, contrarywise, 
t h a t \B\ < as. 

If every line joining two points of B were contained in B, then B would be 
a espace. If t > s, B could not be a blocking coalition since it would contain 
an 5-space or minimal winning coalition. If / < s, then there would be an s-
space in PG(2s, pn) not meeting B, contrary to the assumption t h a t B is a 
blocking coalition. Therefore, there exists a line / with a t least two points in 
B and a t least one point x not in B. 

We now prove inductively t ha t for each r < 5 — 1 there exists an /--space 
containing x bu t not intersecting B. For r = 0, the point x suffices. Suppose 
the assertion is correct for r < s — 1. By Lemma 4, there are more than 
1 + as {r + l)-spaces containing the given r-space; since only one of them can 
contain /, there are more than as (r + 1)-spaces containing the given r-space 
b u t not containing /. One of these (r + l)-spaces does not intersect B, since 
a t most one of them can meet a given point of B; for, if two of them contained 
the same point of B, then this point would be in the intersection of these two 
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(r + 1)-spaces which is the given r-space, contradict ing the induction hypo­
thesis t h a t this r-space does not intersect B. Th i s completes the induction. 

In part icular, there exists an (s — 1)-space containing x b u t not intersecting 
B. Every s-space containing this (s — l)-space meets B in a t least one point 
since B is a blocking coalition. Bu t the s-space determined by / and the given 
(s — 1)-space meets B in a t least two points . Therefore \B\ > 1 + as, con t ra ry 
to the supposition t h a t \B\ < as. Th i s completes the proof. 

7. Affine resolvable g a m e s . In this section, we examine certain simple 
games formed from block designs b u t not using all the blocks of the design 
as minimal winning coalitions. 

A balanced design is termed affine resolvable if the b blocks can be divided 
into r classes of n blocks each, such t h a t : 

(a) every one of the classes of n blocks contains a complete replication of 
the v e lements; 

(b) any two blocks of different classes have the same number of elements 
in common. 
Then (cf. 1) we have b = nr, v = nk, b = v + r — 1, and stj = \Bt O Bj\ = 
k2/v if Bt and Bj are in different classes. If we arbi t rar i ly select one block from 
each class as a minimal winning coalition, we obta in a simple game, with 
|3BW| = r = b/n, which we term an affine resolvable game. N o t all these games 
formable from a given affine resolvable balanced design need have the same 
number of players. For example, an affine resolvable balanced design with 
v = 12, b = 22, r = 11, k = 6, X = 5, n = 2 is given (cf. 1) by the blocks 

Bx = (1, 3, 4, 5, 9, 11) Bl2 = (2, 6, 7, 8, 10, 12) 
B2 = (2, 4, 5, 6, 10, 1) Bu = (3, 7, 8, 9, 11, 12) 
Bz = (3, 5, 6, 7, 11, 2) Bu = (4, 8, 9, 10, 1, 12) 
B, = (4, 6, 7, 8, 1, 3) Bn = (5, 9, 10, 11, 2, 12) 
Bh = (5, 7, 8, 9, 2, 4) B16 = (6, 10, 11, 1, 3, 12) 
Be = (6, 8, 9, 10, 3, 5) B17 = (7, 11, 1, 2, 4, 12) 
B7 = (7, 9, 10, 11, 4, 6) B18 = (8, 1, 2, 3, 5, 12) 
Bs = (8, 10, 11, 1, 5, 7) B19 = (9, 2, 3, 4, 6, 12) 
B, = (9, 11, 1, 2, 6, 8) B20 = (10, 3, 4, 5, 7, 12) 
B10 = (10, 1, 2, 3, 7, 9) B21 = (11, 4, 5, 6, 8, 12) 
Bn = (11, 2, 3, 4, 8, 10) B22 = (1, 5, 6, 7, 9, 12) 

where Bt and Bi+u (i — 1, . . . , 11) const i tu te the ith class. One affine resolv­
able game with eleven players has Bt(i = 1, . . . , 11) as minimal winning 
coalitions. Another affine resolvable game with twelve players has Bj(j = 
12, . . . , 22) as minimal winning coalitions. In both cases \Bt P \ Bj\ — k2/v = 
3 if i 9^ j . In the first case {1, 3, 4} is a blocking coalition; in the second case 
{12} is a blocking coalition. M a n y other affine resolvable games can be formed 
from the same design. 
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Another example of an affine resolvable balanced design is an EG(2,pn), 
where the classes of blocks are the parallel pencils of lines. Selecting one line 
from each parallel pencil, we have an affine resolvable game with \Bt P\ Bj\ = 1 
if i 9± j . 

As an immediate consequence of Theorem 2 and Lemma 1, we have the 
following theorem. 

THEOREM 9. If an affine resolvable balanced design has k2/v > 1, then any 
affine resolvable game obtained from it as above is not strong and has no main 
simple solution. 

8. Interpretation in terms of linear graphs and network flows. Any 
simple game G can be represented as an even (or bipartite, or simple) graph, 
as follows. Let the two vertex sets be 9Bm = {Wu W2, . . . , Wb} and N = 
{1 ,2 , . . . , ? ;} and let Wt G 2Bm and j £ N be joined by an arc if and only if 

j is a member of Wt. Each vertex Wt has degree \Wi\, the number of members 
of Wt. The many-valued mapping T: N —•> 2Bm, where T(j) is the set of all 
minimal winning coalitions to which j belongs, is such that T - 1 ^ P\ T~lW j 9^ 
</> for i 9^ j , or, in other words, TT^Wi = 2Bm for each Wt. If G is a block 
design game then the degree of every vertex Wt of 2Bm is k and the degree of 
every vertex j of N is r. To a blocking coalition of any simple game G in this 
representation corresponds a subset B of N such that YB = 2BW but B ~£> Y~l 

Wt for any Wt Ç 95T. 
We can convert this graph theoretic representation into a network flow 

representation as follows. Join all vertices of N to an input vertex / , and all 
vertices of 9BW to an output vertex Z7, as in Fig. 1, illustrating the dual of 
EG(2, 2) with z/ = 6, 0 = 4, ife = 3, r = 2 (cf. Example 1, § 10). Putting 
capacities cfj on the arcs as indicated in the figure, a blocking coalition cor­
responds to a flow %ij yielding maximum output but with the restriction that 

F I G . 1. 
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the flow shall not be different from 0 at any entire set of vertices of the form 
Y~lWu Wt G SBW. This can, in turn, be expressed as a linear programming 
problem: find xtj such that 

a y 

for each vertex f3 ̂  I, U, and such that 

(1) ^ XJU = max = b 

subject to the constraints 

(2) 0 < Xij < cijf 

with the additional restriction that 

(3) for each j £ 2BW there exists an i = i(j) Ç r _ 1 ( j ) such that 

x a = 2-j %ij = u. 
j 

If such a flow exists, a blocking coalition is given by the set 

| * eN\ Y,Xij > o | . 

If such a flow does not exist, the game is strong. By the methods of Goldman 
and Tucker (6), all extreme feasible vectors of the linear programme given by 
(1) and (2) can be determined, and then each Wj Ç $£m(j = 1, 2, . . . , b) can 
be examined to see if the additional restriction (3) is satisfied. For if any feasible 
vector is on a co-ordinate (n — r) -plane 

X i^ Xi2 . . . X ir — U 

then so is some extreme feasible vector. 
Thus the results of the preceding sections are readily interpreted in terms 

of linear graphs or network flows, as desired. 

9. Miscellaneous remarks. Unsolved problems. In Luce (9), it is 
proved that a necessary and sufficient condition for a simple game to be h-
unstable is that there exist an (h + 1)-element winning coalition and that 
the intersection of all (h + 1)-element winning coalitions be empty. 

THEOREM 10. A block design game is h-stable for 1 < h < k — 1 and h-
unstable for k — 1 K h < v — 1. 

Proof. There exists a winning coalition with h + 1 members if h > k — 1. 
Clearly, for h = k — 1, the intersection of all (h + 1)-element winning coali­
tions is empty since r < b. As long as there remain two different elements to 
adjoin to the (h + 1)-element sets to obtain (h + 2)-element sets, induction 
shows that the intersection of all (h + 1)-element winning coalitions is empty 
for h < v — 1. This completes the proof. 
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We define an automorphism (collineation or perhaps cowineation) of a 
block design with incidence matrix A = | |a^| | to be a permutation wR of the 
rows of A (elements or players) which carries columns of A (blocks) into 
columns of A. Let wc be the permutation of the columns induced by the per­
mutation TTR. We shall assume that A has neither duplicated columns nor duplica­
ted rows. Let GR be the group of all automorphisms TR and let Gc be the group 
of all irc. 

LEMMA 5. If wR induces wc then in the dual design the automorphism irc 

induces irR. 

Proof. Let wR carry the matrix A into the matrix B. Then 

bij = Q<TrR(i),i = <*>i,TCu) 

for all i, j . Hence TR is induced by TC. 

LEMMA 6. No two different row permutations TR ^ irR can induce the same 
column permutation. 

Proof. If so, then 

for all i, j and hence 
Q"*R(i),J = a*'R(i),J 

for all i, j contrary to hypothesis. 

THEOREM 11. The automorphism groups of dual designs are isomorphic (as 
groups j even though of different degrees). 

Proof. Obviously, the product of two row permutations induces the product 
of the induced column permutations. Hence, with our restriction of non-
duplication of rows and columns of A, the homomorphism is one-to-one, and 
onto. 

The following unsolved problems seem to be difficult : 

1. How can one determine the automorphism group of a block design 
(without examining one by one each of the permutations of the symmetric 
group on v letters to see if it is an automorphism, although this might be feasible 
within limits with a computer) ? This is solved for the desarguesian finite pro­
jective spaces and the associated euclidean spaces. Further, what can be said 
of the transitivity of this group acting on elements and on blocks? 

2. What is the minimum number of members in a blocking coalition of a 
block design game? This is unsolved even for finite projective planes, except 
forPG(2,3). 

3. Do the block design games, not covered by (13) or the corollaries of 
Theorem 2, above, possess main simple solutions? 
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4. To determine all block design games given the parameters v, b, k, r such 
that bk = vr. That is, to determine all v X b matrices A with atj = 0 or 1 such 
that the row sums are all equal to r, the column sums are all equal to k, and 
the elements stj of 5 = ATA are all positive. 

5. If v = b and (hence) k = r, when do there exist permutation matrices 
P, Q such that PAQ = AT where A is the incidence matrix? When do there 
exist permutation matrices P , Q such that PAQ is a symmetric matrix? When 
is there a row permutation such that RA is symmetric? What are general 
criteria for permutation equivalence of matrices with elements equal to 0 or 
1? for general matrices? 

10. Examples. We collect in this section some concrete examples illustrating 
some of the preceding theorems. Other examples of block designs yielding 
simple games can be found in (2). 

Example 1. The finite euclidean plane EG {2, 2) has v* = 4, 6* = 6, k* = 2, 
r* = 3, X* = 1 and (Fig. 2) incidence matrix 

a b c d e f 

1 1 1 1 0 0 0 
2 1 0 0 1 1 0 
3 0 1 0 1 0 1 
4 0 0 1 0 1 1 

In the dual game we have y = 6, 6 = 4, k = 3, r = 2 and the intersection of 
every pair of blocks has one element. The incidence matrix of the game is the 
transpose of the above. The sets {a , /} , {b, e}, {c, d) are blocking coalitions 
illustrating Theorem 1(a). By Lemma 3, there is no equitable main simple 
solution. But in this example, it is easy to give a direct proof that no main 
simple solution exists at all. For the linear system (6), (7) becomes, with 
obvious changes in notation: 

Xa ~\~ Xf) ~\~ X 

Xfr 

X^a 

%b 

= 1 
"l X^d ~T~ % e -L 

"T" %d I OCf = 1 

•A/ g I X g I X f — X 

+ Xf> 1 
+ xe > 1 

xc i" X'd ^ r . 

This implies xa = xf > | , xb = xe > \, xc = xd > % so that a contradiction 
would result. 
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Example 2. The symmetric partially balanced block design designated as 
Rl in (2) has v* = b* = 6, ** = r* = 3, Xx = 2, X2 = 1, Wl = 1, n2 = 4 and 
incidence matrix 

a b c d e f 
1 ~r 0 ~cT 1 ~Ô~ 1 
2 i 1 0 0 1 0 
3 0 1 l 0 0 1 
4 i 0 l 1 0 0 
5 0 1 0 1 1 0 
6 0 0 1 0 1 1 

The dual has v = b = 6, k = r = 3, every pair of blocks has an intersection 
of one or two elements, and the incidence matrix is the transpose of the above. 
The set {a, b, c] is a blocking coalition. This illustrates Theorem 1. 

Example 3. The symmetric regular group divisible partially balanced block 
design designated as R2 in (2) has z>* = b* = 6, r* = k* = 4, Xj = 3, X2 = 2, 
ni = 2, n2 = 3 and incidence matrix 

a b c d e f 

1 T~ 0 ~Ô~ 1 T~ 1 
2 1 1 1 1 0 0 
3 0 1 0 1 1 1 
4 1 1 1 0 1 0 
5 0 0 1 1 1 1 
6 1 1 1 0 0 1 

Here stj = 2 or 3 and indeed {1, 2} is a blocking coalition contained in the 
minimal winning coalition a in accordance with Corollary (d) of Theorem 2. 
The dual has v = b = 6, k = r = A, every pair of blocks has an intersection 
of 2 or 3 elements, and its incidence matrix is the transpose of the above. In 
accordance with Theorem 2, there is a blocking coalition contained (properly) 
in a minimal winning coalition, namely, {a, b, c}, which is a proper subset of 
blocks 2 or 4, or {a, d] which is a proper subset of blocks 1 or 2. In fact the 
dual is isomorphic to the original design as can be seen by performing the 
permutations 

/123456\ , /abcdefX 
Vl52634>' a n d Vacedfby 

on the rows and columns respectively. 

Example 4. Let EG (2, 3) be the euclidean plane over the integers modulo 3, 
with v* = 9, b* = 12, ** = 3, r* = 4, X* = 1. The projective plane PG(2, 3) 
has the cyclic representation 
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0 1 2 3 4 5 6 7 8 9 10 11 12 
1 2 3 4 5 6 7 8 9 10 11 12 0 
3 4 5 6 7 8 9 10 1 1 1 2 0 1 2 
9 10 11 12 0 1 2 3 4 5 6 7 8 

Taking the line {12, 0, 2, 8} as line at infinity, and deleting its points, we 
derive the incidence matrix of EG(2, 3) : 

a b c d e f g h i j k 1 

1 T" 1 ~ô~ 0 ~0~ 1 0 0 I T 0 0 1 
3 1 0 1 1 0 0 0 1 0 0 0 0 
4 0 1 0 1 1 0 0 0 1 0 0 0 
5 0 0 1 0 1 1 0 0 0 1 0 0 
6 0 0 0 1 0 1 1 0 0 0 1 0 
7 0 0 0 0 1 0 1 1 0 0 0 1 
9 1 0 0 0 0 0 1 0 1 1 0 0 
10 0 1 0 0 0 0 0 1 0 1 1 0 
11 0 0 1 0 0 0 0 0 1 0 1 1 

In the dual, we have v = 12, b = 9, k = 4, r = 3, every pair of blocks 
intersects in one element, and the incidence matrix is the transpose of the 
above. Note that EG(2, 3) is also the simplest non-trivial Steiner triple system. 
The process of Theorem 5 applied to {a, b,f, / } , choosing / = [1, 5, 6], / = 
[1, 7, 11], yields e = [4, 5, 7] and k = [6, 10, 11] as substitutes, producing the 
blocking coalition {a, b, e, k}. But this is not minimal since (a, e, k) is also a 
blocking coalition. 

Example 5. One of the Steiner triple systems with v* = 13 (cf. 8) has the 
incidence matrix 

abc d e f JL h i j_ k 1 m n o pqr s t u v w x y z 
1 1 1 1 1 1 1 0 0 ~0 0 0 0 0 0 ~0 0 0 0 0 0 0 0 0 0 0 0 
2 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 10 0 0 0 0 1 1 1 0 0 
4 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 
5 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 10 0 10 0 11 
6 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 110 10 10 
7 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 
8 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 
9 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 
10 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 
11 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 
12 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 
13 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 
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The dual has v = 26, b = 13, k = 6, r = 3, every pair of blocks intersects in 
one element, the incidence matrix is the transpose of the above, and {a, m, s, w, 
f) is a blocking coalition. 

Example 6. The design T9 of (2) has v* = 10, b* = 6, k* = 5, r* = 3, Xi = 
lf \ 2 = 2, n\ — 6, fi2 = 3, and incidence matrix 

a b c d e f 
1 ~T 1 ~0~ 0 T~ 0 
2 0 0 1 0 1 1 
3 1 0 0 1 0 1 
4 0 1 1 1 0 0 
5 0 1 0 1 0 1 
6 0 0 1 1 1 0 
7 1 0 1 0 0 1 
8 1 1 1 0 0 0 
9 1 0 0 1 1 0 

10 0 1 0 0 1 1 

The dual has v — 6, b = 10, k = 3, r = 5, and the incidence matrix is the 
transpose of the above. This game is strong, and has a main simple vector 
at = 1/3 (i = 1,2, . . . , 6 ) . 

Example 7. The design SR14 of (2) is a symmetric semi-regular group 
divisible design with v = b = 9, k = r = 6, Xi = 3, X2 = 4, and incidence 
matrix : 

a b c d e f g h i 

1 T~ 1 1 1 T" 1 0 0 ~Ô 
2 1 0 1 1 0 1 1 0 1 
3 1 0 1 0 1 1 1 1 0 
4 1 1 1 0 0 0 1 1 1 
5 1 1 0 1 1 0 1 1 0 
6 1 1 0 1 0 1 0 1 1 
7 0 0 0 1 1 1 1 1 1 
8 0 1 1 0 1 1 0 1 1 
9 0 1 1 1 1 0 1 0 1 

Here all stj > Xi = 3, and indeed {1, 2, 3} is a blocking coalition contained in 
the minimal winning coalition a, as promised by Corollary (f) of Theorem 2. 
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