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Abstract Let w(z) be an arbitrary transcendental solution of the fourth (respectively, second) Painlevé
equation. Concerning the frequency of poles in |z| � r, it is shown that n(r, w) � r2 (respectively,
n(r, w) � r3/2), from which the growth estimate T (r, w) � r2 (respectively, T (r, w) � r3/2) immedi-
ately follows.
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1. Introduction

For a meromorphic function f(z) in C, denote by n(r, f) the number of poles of f(z) in
|z| � r, each counted according to its multiplicity, and put

m(r, f) :=
1
2π

∫ 2π

0
log+ |f(reiφ)| dφ, log+ x := max{log x, 0},

N(r, f) :=
∫ r

0
(n(ρ, f) − n(0, f))

dρ
ρ

+ n(0, f) log r.

The growth of f(z) is measured by the characteristic function T (r, f) := m(r, f) +
N(r, f) or the order �(f) := lim supr→∞(log T (r, f)/ log r) (for basic facts of the value
distribution theory, see, for example, [5] and [9]).

All the solutions of the Painlevé equations

w′′ = 6w2 + z, (I)

w′′ = 2w3 + zw + α, (II)

w′′ =
(w′)2

2w
+ (3/2)w3 + 4zw2 + 2(z2 − α)w +

β

w
(IV)

(where a prime denotes differentiation with respect to z, and α, β ∈ C) are meromorphic
in the whole complex plane (see [6,11,14,15,19]; see also [4]). It is an interesting and
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basic problem to estimate the growth of these solutions. For each solution w(z) of (I),
(II) and (IV), the growth is evaluated as T (r, w) � r5/2, T (r, w) � r3 and T (r, w) �
r4, respectively (see [12, 16]; see also [4]). (We write χ(r) � ψ(r) or ψ(r) � χ(r) if
χ(r) = O(ψ(r)) as r → ∞, and χ(r) � ψ(r) if χ(r) � ψ(r) � χ(r).) On the other
hand, for the first Painlevé transcendents, i.e. the solutions of (I), the lower estimate
�(w) � 5/2 was given by [10], and more precise results on T (r, w) have been obtained
recently (see [13, 17]). Furthermore, the author [13] proved that, under the condition
2α ∈ Z, every transcendental solution of (II) satisfies �(w) � 3/2, and Steinmetz [17]
obtained the following results.

(1) For most classes of transcendental solutions of (II), �(w) � 3/2.

(2) For several classes of transcendental solutions of (IV), �(w) � 2.

The purpose of this paper is to give an improvement on these results for (II) and (IV),
which is stated as follows.

Theorem 1.1. Let w(z) be an arbitrary transcendental solution of (IV) (respectively,
(II)). Then, we have n(r, w) � r2 (respectively, n(r, w) � r3/2).

Remark 1.2. This theorem implies that every transcendental solution of (IV) (respec-
tively, (II)) satisfies T (r, w) � r2 (respectively, T (r, w) � r3/2).

Remark 1.3. For special values of (α, β) (respectively, α), equation (IV) (respec-
tively, (II)) admits a one-parameter family of solutions such that T (r, w) � r2 (respec-
tively, T (r, w) � r3/2) (see, for example, [4, §§ 21, 25]).

In the proof, we employ a method different from those of [13] and [17]. The basic
idea is, roughly speaking, to combine properties of w(z) near each pole with asymptotics
of Boutroux type [1,2,8]; consequently, we get a chain of poles, from which our result
immediately follows. Several necessary lemmas are reviewed or proved in § 2. Among
them, Lemmas 2.3 and 2.4 are ones concerning a kind of uniformity of a family of elliptic
functions, which are essential in constructing a chain of poles. Other lemmas are mainly
concerned with the behaviour of w(z) of (IV) around each pole. In § 3, we prove Theo-
rem 1.1 for (IV). To do so, we treat another version of (IV) due to Boutroux [1,2], whose
solution v(t) corresponding to w(z) is asymptotic to an elliptic function in a suitable
domain. Using this fact, we find a pair of poles of v(t) that generates a chain of poles
of w(z). In the final section, we give an outline of the proof for (II), which is very similar
to that for (IV).

Quite recently, after the submission of the original version of this paper, the author
was informed that other approaches to our problem are also possible: the same result as
above can be obtained through the rescaling method [18]; and the inequalities �(w) � 3/2
(for (II)) and �(w) � 2 (for (IV)) are derived by using certain estimates for logarithmic
derivatives [7].
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2. Lemmas

2.1. Regular perturbation

Denote by B(r) ⊂ C the disc defined by |z| < r. Let F (x, u, ũ, ε) be a function analytic
for (x, u, ũ, ε) ∈ B(ξ0) × (C \ {0}) × C × B(ξ1), where ξ0 and ξ1 are positive numbers.
Consider a differential equation of the form

ü = F (x, u, u̇, ε) (2.1)

(where the superposed dot denotes differentiation with respect to x). The following lemma
is easily derived from a well-known fact on regular perturbation of differential equations
(see, for example, [3, Chapter 1, Theorem 8.3]).

Lemma 2.1. Let L, R0,± (R0,− < R0,+) and R1 be given positive numbers. Let γ be
an arbitrary curve starting from x = 0 with the properties

(i) γ ⊂ B(ξ0);

(ii) the length of γ does not exceed L.

Suppose that (2.1) with ε = 0 admits a solution ϕ0(x) satisfying ϕ0(γ) ⊂ B(R0,+) \
B(R0,−) and ϕ̇0(γ) ⊂ B(R1). Let ϕ(ε, x) be the solution of (2.1) with the initial condition
ϕ(ε, 0) = ϕ0(0), ϕ̇(ε, 0) = ϕ̇0(0). Then, for any η > 0, there exists a positive number
ε0 = ε0(L,R0,±, R1, η) independent of γ such that

sup
x∈γ, |ε|�ε0

|ϕ(ε, x) − ϕ0(x)| � η. (2.2)

Remark 2.2. In the case where F (x, u, ũ, ε) is analytic for (x, u, ũ, ε) ∈ B(ξ0) × C ×
C × B(ξ1), supposing ϕ0(γ) ⊂ B(R0) and ϕ̇0(γ) ⊂ B(R1), we have the same conclusion
as above.

2.2. A certain family of elliptic functions

Consider a family of equations

u̇2 = P (κ, u) := u4 + 4u3 + 4u2 + κu, κ ∈ C. (2.3)

Let u = �(κ, x) be an elliptic (or degenerate elliptic) function satisfying (2.3), and let
J (> 1) be a large positive number. Naturally, �(κ, x) is not a constant function. Then
we have the following lemma.

Lemma 2.3. For each q ∈ Z, and for each κ, |κ| � J , the function �(κ, x) admits
a period ω(κ) satisfying c− � |ω(κ)| � c+ and |argω(κ) − (2q − 1)π/4| < π/4 + π/200,
where c± = c±(J) are some positive numbers independent of κ and q.

Lemma 2.4. Suppose that |κ| � J , and that ζ0 = �(κ, 0), |ζ0| > 10. Then there
exists a curve Γκ(ζ0) joining 0 to ω(κ) with the following properties.
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(i) The length of Γκ(ζ0) does not exceed L(J, |ζ0|), where L(J, |ζ0|) is some positive
number independent of κ.

(ii) Λ−(J) < |�(κ, x)| < Λ+(J, |ζ0|) along Γκ(ζ0), where Λ−(J) and Λ+(J, |ζ0|) are
some positive numbers independent of κ.

To prove these lemmas, we examine the Riemann surface Rκ of
√

P (κ, u) and its
cycles, especially in the generic case. It is easy to see that P (κ, u) admits multiple zeros
if and only if κ = 0 or κ = 32/27; then

P (0, u) = u2(u + 2)2, P (32/27, u) = u(u + 2/3)2(u + 8/3).

We may regard κ as a point in the set

EJ := {κ ∈ R0 | |κ| � J, |arg κ − π| � π},

where R0 denotes the universal covering of C \ {0}.

(A) Generic case. At first we suppose that

κ ∈ E(µ) := {κ ∈ R0 | |κ| � µ, |κ − 32/27| � µ, |arg κ − π| � π}, (2.4)

where µ = µ(J) is a small positive number which will be fixed later. Then all the zeros
of P (κ, u) are distinct, and �(κ, x) is doubly periodic. The distinct zeros are given by
u = 0, uj(κ) (j = 0, 1, 2), where

(i) the uj(κ) are continuous for κ ∈ E(µ); and

(ii) uj(κ) = (−κ)1/3e2jπi/3(1 + o(1)) as |κ| → ∞.

To define the Riemann surface and its cycles, suppose, at first, that −κ > 0, and that
|κ| is large. Let X l

κ (l = 1, 2) be two copies of P 1(C) \ (Σ0 ∪ Σ1) (P 1(C) := C ∪ {∞})
cut along the segments Σ0 := [0, u0(κ)], Σ1 := [u1(κ), u2(κ)]; and denote by Σl,−

0 , Σl,+
0

(respectively, Σl,−
1 , Σl,+

1 ) the lower and the upper (respectively, the left and the right)
edges of the cut along Σ0 (respectively, Σ1) in each X l

κ. Gluing Σ1,±
0 to Σ2,∓

0 , and Σ1,±
1

to Σ2,∓
1 , we get, from X l

κ (l = 1, 2), the Riemann surface Rκ of
√

P (κ, u). Then, define
its cycles γ1

κ and γ2
κ in the standard way.

(i) γ1
κ is a loop lying in X1

κ, surrounding the cut Σ1,±
0 in the positive sense, and not

surrounding the other one Σ1,±
1 .

(ii) γ2
κ is a loop lying in X1

κ ∪ X2
κ such that

(a) γ2
κ surrounds the branch points 0 and u1(κ) in the positive sense, and

(b) γ2
κ = γ2,1

κ ∪ γ2,2
κ , where γ2,1

κ is a curve in X1
κ joining u0(κ)/2 ∈ Σ1,+

0 to
(u1(κ)+u2(κ))/2 ∈ Σ1,−

1 , and γ2,2
κ is a curve in X2

κ joining (u1(κ)+u2(κ))/2 ∈
Σ2,+

1 to u0(κ)/2 ∈ Σ2,−
0 .
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Furthermore, for every κ ∈ E
(µ)
J := EJ ∩ E(µ), we can choose the Riemann surface Rκ

with its cycles γ1
κ, γ2

κ in such a way that Rκ, γ1
κ and γ2

κ are consequences of continuous
deformation (with respect to κ) of those for special values of κ defined above. Then
�(κ, x) admits the periods

ω1(κ) :=
∫

γ1
κ

du√
P (κ, u)

, ω2(κ) :=
∫

γ2
κ

du√
P (κ, u)

, (2.5)

which are continuous for κ ∈ E
(µ)
J , and satisfy Im(ω2(κ)/ω1(κ)) 
= 0.

(B) Degenerate and almost degenerate cases. If κ = 0 (respectively, κ = 32/27),
then �(κ, x) is simply periodic, and admits the period

ω(0) = 2πi Res(0) = πi (respectively, ω(32/27) = 2πi Res(−2/3) =
√

3π), (2.6)

where Res(u0) denotes the residue of 1/
√

P (κ, u) at the pole u = u0. Now choose the
positive number µ = µ(J) in (2.4) so small that, for every κ ∈ EJ satisfying |κ| < µ

(respectively, |κ−32/27| < µ), all zeros of P (κ, u) remain in either of the discs |u| < 1/10,
|u + 2| < 1/10 (respectively, |u| < 1/10, |u + 2/3| < 1/10, |u + 8/3| < 1/10), and that,
for κ with the same condition, a period of �(κ, x) given by

ω(κ) :=
∫

|u|=1

du√
P (κ, u)

(
respectively, ω(κ) :=

∫
|u+2/3|=1/3

du√
P (κ, u)

)
(2.7)

satisfies |ω(κ) − ω(0)| < 1/100 (respectively, |ω(κ) − ω(32/27)| < 1/100).

Proof of Lemma 2.3. We prove this lemma for q = 1; the other cases are treated
similarly. For κ ∈ EJ satisfying |κ| < µ or |κ − 32/27| < µ, the period given by (2.6) and
(2.7) satisfies π/2 < |ω(κ)| < 2π, |argω(κ) − π/4| < π/4 + π/200. Next suppose that
κ ∈ E

(µ)
J = EJ ∩ E(µ). Since E

(µ)
J is compact and simply connected, the periods given

by (2.5) have the following properties:

M−
J := inf

κ∈E
(µ)
J

min{|ω1(κ)|, |ω2(κ)|} > 0,

M+
J := sup

κ∈E
(µ)
J

max{|ω1(κ)|, |ω2(κ)|} < +∞,

ηJ := inf
κ∈E

(µ)
J

|sin(argω2(κ) − argω1(κ))| > 0.

Consider the set of lattice points Ωκ = {k1ω1(κ) + k2ω2(κ) | (k1, k2) ∈ Z
2}. Since

ΩJ
κ := Ωκ ∩ {x | 0 < Rex < 2M+

J , 0 < Imx < 2M+
J } 
= ∅,

we can choose ω(κ) = kκ
1ω1(κ) + kκ

2ω2(κ) ∈ ΩJ
κ satisfying |argω(κ) − π/4| < π/4 and

ηJM
−
J � |ω(κ)| � 2

√
2M+

J . Here |kκ
1 | + |kκ

2 | � hJ := 8M+
J /(ηJM

−
J ) for every κ ∈ E

(µ)
J ;

indeed, even if neither of ±ω1(κ), ±ω2(κ) is located in ΩJ
κ , the set ΩJ

κ is contained in
the parallelogram with sides [0, ε1hJω1(κ)/2], [0, ε2hJω2(κ)/2] for suitably chosen signs
ε1, ε2 ∈ {±1}. Therefore, for each κ satisfying |κ| � J , 0 � arg κ < 2π, there exists a
period ω(κ) with the desired property. �
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Proof of Lemma 2.4. First consider the case where κ ∈ EJ , |κ| < µ. To the circle
|u| = 1, add the segment [1, |ζ0|] (from 1 to |ζ0|), the arc u = |ζ0|eiφ, 0 � φ � arg ζ0 < 2π
(from |ζ0| to ζ0), and their inverses. Then we obtain a new loop γκ(ζ0) starting from and
returning to u = ζ0. The function y = �(κ, x) with �(κ, 0) = ζ0 satisfies

x =
∫

γκ(ζ0)(y)

du√
P (κ, u)

, in particular, ω(κ) =
∫

γκ(ζ0)

du√
P (κ, u)

(2.8)

(cf. (2.7)), where γκ(ζ0)(y) denotes the part of γκ(ζ0) from the starting point ζ0 to
y ∈ γκ(ζ0). Let Γκ(ζ0) be the image of the loop γκ(ζ0) under mapping (2.8). Then,
1 � |�(κ, x)| � |ζ0| along Γκ(ζ0), and the length of Γκ(ζ0) does not exceed

∫
γκ(ζ0)

|du|
|
√

P (κ, u)|
� (10/9)2

∫
γκ(ζ0)

|du| < 10|ζ0|,

because |ζ0| > 10, and because the zeros of P (κ, u) remain in the disc |u| < 1/10 or
|u + 2| < 1/10 if |κ| < µ. For κ ∈ EJ , |κ − 32/27| < µ, we can choose Γκ(ζ0) with the
same properties. Finally, suppose that κ ∈ E

(µ)
J = EJ ∩ E(µ), and recall the cycles γι

κ

(ι = 1, 2). Note that

M∗
J := inf

κ∈E
(µ)
J

min{|uj(κ)|, |uj(κ) − uj′(κ)| | 0 � j � 2, 0 � j′ � 2, j 
= j′} > 0,

and that |uj(κ)| � 2J1/3 (j = 0, 1, 2) for |κ| � J , since J is large. Hence, we may suppose
that

Λ′
−(J) < |u| < 2J, |u − uj(κ)| > Λ′

−(J) (j = 0, 1, 2) for u ∈ γι
κ, (2.9)

where Λ′
−(J) := M∗

J/4. Since the length of γι
κ is a continuous function of κ ∈ E

(µ)
J , it

does not exceed some positive number L′(J) independent of κ. Let γκ = kκ
1γ

1
κ + kκ

2γ
2
κ be

the composite cycle corresponding to the choice of ω(κ), where |kκ
1 | + |kκ

2 | � hJ (cf. the
proof of Lemma 2.3). The length of γκ does not exceed hJL

′(J). Recall the cut planes
X l

κ (l = 1, 2). For each l, denote by ζ
(l)
0 ∈ X l

κ the point corresponding to ζ0; in the case
where ζ0 ∈ Σ0 (respectively, Σ1), we regard ζ

(l)
0 as a point in Σl,−

0 (respectively, Σl,−
1 ).

For each κ, let Rl
κ(ζ0) ⊂ Rκ be the ray starting from 0 and passing through ζ

(l)
0 which is

drawn in such a way that, when traversing a cut, the ray transfers to the other plane, and
that R1

κ(ζ0)∩R2
κ(ζ0) ⊂ {0, uj(κ) (j = 0, 1, 2)}. Then, either of Rl

κ(ζ0) (l = 1, 2) intersects
γκ. Suppose, for example, that R1

κ(ζ0) ∩ γκ 
 ζκ, and take the segment [ζ0, ζκ] ⊂ R1
κ(ζ0)

starting from ζ
(1)
0 and ending at ζκ ∈ γκ. Adding [ζ0, ζκ] and its inverse to γκ, we obtain

a loop γκ(ζ0). Then, for each κ ∈ E
(µ)
J , it has the following properties.

(i) γκ(ζ0) is homotopic to γκ in Rκ.

(ii) γκ(ζ0) starts from and returns to ζ
(1)
0 ∈ Rκ.

(iii) Λ′
−(J) < |u| < Λ′

+(J, |ζ0|) for u ∈ γκ(ζ0), where Λ′
+(J, |ζ0|) := 2J + |ζ0|.
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Consider (2.8) corresponding to γκ(ζ0) of this case, and let Γκ(ζ0) be the image of
γκ(ζ0) under it. Then, by (iii), we have Λ′

−(J) < |�(κ, x)| < Λ′
+(J, |ζ0|) along Γκ(ζ0).

Furthermore, the length of Γκ(ζ0) does not exceed∫
γκ(ζ0)

|du|
|
√

P (κ, u)|
= L1 + 2L2,

where

L1 =
∫

γκ

|du|
|
√

P (κ, u)|
, L2 =

∫
[ζ0,ζκ]

|du|
|
√

P (κ, u)|
.

By (2.9), we have L1 � hJL
′(J)Λ′

−(J)−2. If [ζ0, ζκ] ∩ {u | |u| � Λ′
−(J)} = ∅, and if

[ζ0, ζκ]∩{u | |u−uj(κ)| � Λ′
−(J)} = ∅ (j = 0, 1, 2), then L2 � |ζ0−ζκ|Λ′

−(J)−2 � (|ζ0|+
2J)Λ′

−(J)−2. To treat the complementary case, suppose, for example, that Z(ζ0, κ) :=
[ζ0, ζκ] ∩ {u | |u| � Λ′

−(J)} 
= ∅. Observing that |uj(κ)| � 4Λ′
−(J) (j = 0, 1, 2), we have∫

Z(ζ0,κ)

|du|
|
√

P (κ, u)|
� 2

Λ′
−(J)3/2

∫ Λ′
−(J)

0

dλ
λ1/2 =

4
Λ′

−(J)
.

Hence, L2 � (|ζ0| + 2J)Λ′
−(J)−2 + 16Λ′

−(J)−1, which completes the proof. �

2.3. Behaviour of a solution of (IV) near a pole

Let w(z) be an arbitrary transcendental solution of (IV), and denote by

Ψ(z) :=
w′(z)2

w(z)
− w(z)3 − 4zw(z)2 − 4(z2 − α)w(z) +

2β
w(z)

(2.10)

the auxiliary function satisfying

Ψ ′(z) = −4w(z)2 − 8zw(z). (2.11)

Take a circle |z| = r0 > 10 on which w(z) 
= 0,−1,∞. Let K be a positive number such
that

K > 2r−1
0 M(w; r0) + M(Ψ ; r0) + 104 + 4|α| + 2|β|, (2.12)

where M(f ; r) = max|z|=r |f(z)|, and put

DK := {z | |w(z)| > K|z|}, R(θ) := {z = reiθ | r � r0}.

Now we recall the following lemma (cf. [12, Proposition 5.3], and see also § 2.4).

Lemma 2.5. Suppose that a, |a| > r0, has the following properties:

(i) |w(a)| = K|a|; and

(ii) for a sufficiently small positive number δa,

R(arg a) ∩ {z | |a| − δa < |z| � |a|} ⊂ C \ DK ,

R(arg a) ∩ {z | |a| < |z| < |a| + δa} ⊂ DK ;

}
(2.13)

and

(iii) |Ψ(a)| � 7K2|a|3.
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Then there exist a pole σa of w(z) and the disc ∆(σa) : |z − σa| < (11/10)K−1|σa|−1

satisfying

(a) |a| − 1/10 < |σa| < |a| + 1/10;

(b) a ∈ ∆(σa);

(c) w(z) is analytic in ∆(σa) \ {σa}; and

(d) |w(z)| < K|z| on the circle ∂∆(σa).

By the same argument as in [12, § 3.2] (see also § 2.4), we have the following lemma.

Lemma 2.6. Let a′, a′′ ∈ R(arg a′) = R(arg a′′) be points satisfying (i)–(iii) above,
and let (σa′ , ∆(σa′)), (σa′′ , ∆(σa′′)) be the corresponding pairs of pole and disc given by
Lemma 2.5. Then one of the following cases occurs:

(i) ∆(σa′) ∩ ∆(σa′′) = ∅; or

(ii) ∆(σa′) = ∆(σa′′).

From these lemmas, we have the following lemma.

Lemma 2.7. Suppose that a, |a| > r0 satisfies (i) and (ii) of Lemma 2.5. Then there
exist a point a∗ ∈ R(arg a), |a∗| � |a|, a curve C0(a∗) ⊂ {z | |z| � r0} and a pole σa∗ of
w(z) with the properties:

(a) C0(a∗) joins a point za, |za| = r0, to a∗, and its length does not exceed π|a∗|/2;

(b) |w(z)| � K|z| along C0(a∗), and |w(a∗)| = K|a∗|;

(c) a, a∗ ∈ ∆(σa∗);

(d) w(z) is analytic in ∆(σa∗) \ {σa∗}; and

(e) |w(z)| < K|z| on the circle ∂∆(σa∗).

Proof. Draw the ray Ra = R(arg a). By (2.12), at the starting point za = r0ei arg a,
we have the inequalities |w(za)| < Kr0/2, |Ψ(za)| < K; and hence za 
∈ DK . Start from
za and proceed along Ra. There exists a point a1 satisfying (i) and (ii) of Lemma 2.5
(with a1 instead of a) and [za, a1] ⊂ C \ DK . Then, by (2.11),

|Ψ(a1)| � |Ψ(za)| + 4
∫

[za,a1]
(|w(s)|2 + 2|sw(s)|)|ds|

� K + 4(K2|a1|2 + 2K|a1|2)|a1|

� 4K2|a1|3(1 + 2K−1 + K−1|a1|−3)

� 5K2|a1|3,

which implies that (iii) is also fulfilled. By Lemma 2.5, there exist a pole σa1 and
the disc ∆(σa1) 
 a1. If a = a1 or if a ∈ ∆(σa1), then we get the point a∗ =
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a1 and the segment C0(a∗) = [za, a∗] satisfying (a)–(e). If a 
= a1, and if a 
∈
∆(σa1), then we take the shorter arc C1 of the circle ∂∆(σa1) from b−

1 to b+1 , where
b−
1 , b+1 ∈ ∂∆(σa1) ∩ (Ra ∪ [0, a]), |b−

1 | < |b+1 |. Replacing the segment [b−
1 , b+1 ] ⊂ Ra by C1,

we get the path R
(1)
a = (Ra \ [b−

1 , b+1 ]) ∪ C1. (When za ∈ ∆(σa1), we put

R(1)
a = ((Ra \ [b−

1 , b+1 ]) ∪ C1) ∩ {z | |z| � r0},

which starts from a point z′
a, |z′

a| = r0.) Let us restart from b+1 and proceed along R
(1)
a

until we meet a point a2 satisfying (i) and (ii) of Lemma 2.5 (with a2). Denote by R
(1)
a [a2]

the part of R(1)
a from za (or z′

a) to a2. Then the length of R(1)
a [a2] does not exceed π|a2|/2,

and |w(z)| � K|z| � K|a2| on R
(1)
a [a2]. Hence

|Ψ(a2)| � |Ψ(za)| + 4
∫

R
(1)
a [a2]

(|w(s)|2 + 2|sw(s)|)|ds|

� K + 2(K2|a2|2 + 2K|a2|2)π|a2|

� 2πK2|a2|3(1 + 2K−1 + K−1|a2|−3)

� 7K2|a2|3.

Applying Lemma 2.5, we get a pole σa2 and the disc ∆(σa2) 
 a2. By Lemma 2.6,
∆(σa1) ∩ ∆(σa2) = ∅. If a 
∈ ∆(σa2), we make the same replacement as that for ∂∆(σa1),
and obtain a new path R

(2)
a , which is a modification of R

(1)
a . We repeat this procedure.

As far as |aj | < |a|, the area of ∆(σaj ) is not less than πK−2|σaj |−2 � πK−2(|a| + 1)−2.
By this fact and Lemmas 2.5 and 2.6, we arrive at the case of a = ap or of a ∈ ∆(σap)
for some p, and get the point a∗ = ap ∈ Ra and a curve C0(a∗) terminating in a∗ with
length not exceeding π|a∗|/2. Clearly, a∗, σa∗ , C0(a∗) and ∆(σa∗) fulfil (a)–(e). �

Lemma 2.8. Suppose that a, |a| > r0, satisfies |w(a)| = K|a|. Then there exist a pole
σ


a of w(z) and the disc ∆(σ

a) such that a ∈ ∆(σ


a).

Proof. If (2.13) is fulfilled, then, by Lemma 2.7, the conclusion with σ

a = σa∗ imme-

diately follows. If (2.13) is not fulfilled, then there exist two possibilities:

(1) R(arg a) ∩ {z | |a| − δa < |z| < |a|} ⊂ DK ; and

(2) neither (1) nor (2.13) is valid.

Note that r0ei arg a ∈ R(arg a) \ (DK ∪ ∂DK). In case (1), we can take the segment
[a′, a] ⊂ R(arg a), r0 < |a′| < |a| such that |w(z)| � K|z| along [a′, a], and such that (2.13)
with a′ (instead of a) is valid. In case (2), we can take an arc γ(a, a′′) ⊂ ∂DK joining a

to a′′ such that (2.13) with a′′ is valid. In both cases, by Lemma 2.7, there exist a point
a


∗, a pole σ

a := σa�

∗
and the disc ∆(σ


a) such that a′ ∈ ∆(σ

a) (respectively, a′′ ∈ ∆(σ


a)).
By (e) of Lemma 2.7, we have [a′, a] ⊂ ∆(σ


a) (respectively, γ(a, a′′) ⊂ ∆(σ

a)), and hence

a ∈ ∆(σ

a), which completes the proof. �

Lemma 2.9. Let σ be an arbitrary pole of w(z) such that |σ| > 2r0. Then there exist
a point aσ ∈ ∆(σ) and a curve C0(aσ) ⊂ {z | |z| � r0} with the following properties:
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(i) C0(aσ) joins a point zσ, |zσ| = r0, to aσ, and the length of it does not exceed
π|aσ|/2; and

(ii) |w(z)| � K|z| along C0(aσ), and |w(aσ)| = K|aσ|.

Proof. Draw the ray R(arg σ), and take a point a satisfying (2.13) and

|w(z)| � K|z| along [a, σ] ⊂ R(arg σ) = R(arg a), |w(a)| = K|a|. (2.14)

By Lemma 2.7, there exist a point a∗ ∈ R(arg a), |a∗| � |a|, a curve C0(a∗) and a pole
σa∗ satisfying (a) and (b) of Lemma 2.7, and

(c) a, a∗ ∈ ∆(σa∗);

(d) w(z) is analytic in ∆(σa∗) \ {σa∗};

(e) |w(z)| < K|z| on ∂∆(σa∗).

Put aσ = a∗. Then, by (c) and (e) and (2.14), the pole σ belongs to ∆(σa∗); and, by (d),
σ = σa∗ . In this way we have shown that aσ ∈ ∆(σ) has the desired properties. �

2.4. Proofs of Lemmas 2.5 and 2.6

A. As was explained in [12, § 5.2], Lemma 2.5 (i.e. [12, Proposition 5.3]) is proved
by the same argument as that used in the proof of [12, Proposition 3.1]. We sketch the
proof of it; the reader can check the omitted details by consulting [12, § 3]. In addition
to (2.10), recall another auxiliary function of the form

Φ(z) := Ψ(z) +
4w′(z)

w(z) + 1
, (2.15)

which admits the expression

Φ(z) = E(z0, z)−1
[
Φ(z0) + 8

(
w(z0)

(w(z0) + 1)2
− E(z0, z)w(z)

(w(z) + 1)2

)

− 4
∫

γ(z0,z)

E(z0, s)
(w(s) + 1)2

(w(s)2 − 2sw(s)(w(s) − 1)

− 4(s2 − α)w(s) − 2β) ds

+ 16
∫

γ(z0,z)

E(z0, s)(w(s) − 1)w(s)
(w(s) + 1)4

ds
]

(2.16)

with

E(z0, s) := exp
(

2
∫

γ(z0,s)

w(ζ) − 1
(w(ζ) + 1)2

dζ
)

(cf. [12, § 5.2]). Here γ(z0, z) denotes a path joining z0 to z on which w(s) 
= −1, and
γ(z0, s) ⊂ γ(z0, z) denotes the part from z0 to s. Let a be a point satisfying conditions (i)–
(iii) of Lemma 2.5. Then, by (i), (iii), (2.12) and (2.15), we have |Φ(a)| � 8K2|a|3. The
following lemma corresponds to [12, Lemma 3.3].
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Lemma 2.10. Let γ(z) ⊂ U(a) := {z | |z − a| < 2K−1|a|−1} be a path starting from
a and ending at z with the following properties:

(i) ‖γ(z)‖ :=
∫

γ(z) |ds| � 1/10; and

(ii) |w(s)| is monotone increasing along γ(z).

Then |Φ(z)| < 9K2|z|3.
To prove this lemma, we first note that |w(s)| � |w(a)| = K|a| � 105 for s ∈ γ(z).

By the condition ‖γ(z)‖ � 1/10, we have 0.99|a| � |s| � 1.01|a| and |E(a, s)±1| �
exp(10−4) < 1.0002 along γ(z). Using these inequalities and (2.16), we can derive the
conclusion |Φ(z)| < 9K2|z|3 of this lemma.

Putting y(z) = 1/w(z), we write (2.15) in the form

y′(z)2 − 4y(z)2y′(z)
y(z) + 1

− 1 − 4zy(z) − 4(z2 − α)y(z)2 + 2βy(z)4 − y(z)3Φ(z) = 0,

which implies that

y′(z) = ±(1 + F (z))1/2 +
2y(z)2

y(z) + 1
(2.17)

with

F (z) := 4zy(z) + 4(z2 − α)y(z)2 − 2βy(z)4 + y(z)3Φ(z) +
4y(z)4

(y(z) + 1)2
. (2.18)

By [12, Lemma 3.4], we choose a steepest descent path γ0 starting from a and ending
at a∗ in such a way that a∗ satisfies y(a∗) = 0 or a∗ ∈ ∂U(a), and that, along γ0,
d|y(z)|/dλ = −|dy(z)/dλ| with λ := ‖γ0(z)‖. Here γ0(z) denotes the part of γ0 from a to
z. As long as ‖γ0(z)‖ � 1/10, by Lemma 2.10, we have |F (z)| � 2 × 10−3, which implies
that |y′(z) − 1| < 3 × 10−3 or that |y′(z) + 1| < 3 × 10−3. Using these facts, by the same
argument as in the proof of [12, Lemma 3.5], we obtain the following.

Lemma 2.11. There exists a pole σa of w(z) satisfying |σa−a| � 1.01K−1|a|−1 < 1/10
and |Φ(σa)| < 9K2|σa|3.

Instead of [12, Lemma 3.6], we have the following.

Lemma 2.12. In the disc |z − σa| < (6/5)K−1|σa|−1,

|Φ(z)| < 10K2|z|3, (2.19)

|y′(z) − 1| < 10−2 or |y′(z) + 1| < 10−2, (2.20)

0.99|z − σa| � |y(z)| � 1.01|z − σa|. (2.21)

By Lemma 2.11, we have |a| − 1/10 < |σa| < |a| + 1/10, implying (a) of Lemma 2.5.
Observing that |σa/a| < (|a| + 1/10)/|a| � 1.01, we have |σa − a| � 1.01K−1|a|−1 �
1.012K−1|σa|−1 < (11/10)K−1|σa|−1, implying (b). Assertion (c) immediately follows
from (2.21). Note that |z/σa − 1| < 10−2 on ∂∆(σa). Hence, by (2.21), |y(z)| �
0.99 × 1.1K−1|σa|−1 � 1.07K−1|z|−1 on ∂∆(σa), which implies (d). In this way we have
proved Lemma 2.5.
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B. To prove Lemma 2.6, suppose that ∆(σa′) ∩ ∆(σa′′) 
= ∅. Then either of the two
inequalities of (2.20) is valid in ∆(σa′)∪∆(σa′′); and, at the point z∗ ∈ ∆(σa′)∩∆(σa′′)∩
[σa′ , σa′′ ], we have, for example,

|y(z∗) − (z∗ − σa′)| � 10−2|z∗ − σa′ |, |y(z∗) − (z∗ − σa′′)| � 10−2|z∗ − σa′′ |.

This implies

|σa′ − σa′′ | � 10−2(|σa′′ − z∗| + |z∗ − σa′ |) = 10−2|σa′ − σa′′ |,

and hence σa′ = σa′′ , from which Lemma 2.6 immediately follows.

3. Proof of Theorem 1.1 for (IV)

Let w(z) be an arbitrary transcendental solution of (IV), and let Ψ(z) be the related
auxiliary function defined by (2.10). Recall the circle |z| = r0 > 10 on which w(z) 
=
0,−1,∞. In what follows, we suppose that

K − 1 > 2r−1
0 M(w; r0) + M(Ψ ; r0) + 104 + 4|α| + 2|β| (3.1)

(instead of (2.12)), which means that K itself also satisfies (2.12).

3.1. Equation of Boutroux type

Make the change of variables:

t = z2/2, v(t) = z−1w(z). (3.2)

Then v = v(t) satisfies an equation of the form

2vtt =
v2

t

v
+ 3v3 + 8v2 + 4v − 2t−1vt − 2αt−1v + (1/4)t−2v +

βt−2

2v
(3.3)

(where the subscript ‘t’ denotes differentiation with respect to t). Multiplying both sides
by vt/v, we see that the function

V (t) :=
vt(t)2

v(t)
− v(t)3 − 4v(t)2 − 4v(t) + 2αt−1v(t) − (1/4)t−2v(t) +

βt−2

2v(t)

satisfies the first-order equation

Vt + 2t−1V = 2t−1(−v(t)3 − 4v(t)2 − 4v(t) + αt−1v(t)).

By this fact, we have

V (t) = t20V (t0)t−2 − 2t−2
∫

C(t0,t)
s(v(s)3 + 4v(s)2 + 4v(s) − αs−1v(s)) ds, (3.4)

where C(t0, t) denotes a path joining t0 to t.
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Lemma 3.1. Let σ be an arbitrary pole of w(z) such that |σ| > 2r0, and let aσ be
the point given by Lemma 2.9. Then the corresponding point t = bσ = (aσ)2/2 satisfies
|bσ − σ2/2| < 2/K, |v(bσ)| = K and

|V (bσ)| � J0, |vt(bσ)2/v(bσ) − v(bσ)3 − 4v(bσ)2 − 4v(bσ)| � J0, (3.5)

where J0 = J0(K) is some positive number independent of σ.

Proof. Let C̃0(bσ) be the image of C0(aσ) (cf. Lemma 2.9) under the mapping t =
z2/2, and let b0, |b0| = r2

0/2, be the starting point of C̃0(bσ). By Lemma 2.9 and (3.4)
with C(t0, t) = C̃0(bσ), observing that |v(t)| � K along C̃0(bσ), we have

|V (bσ)| � |V (b0)| + 2|bσ|−2
∣∣∣∣
∫

C̃0(bσ)
s(v(s)3 + 4v(s)2 + 4v(s) − αs−1v(s)) ds

∣∣∣∣
� |V (b0)| + 2|bσ|−2

∫
C̃0(bσ)

(K3 + 4K2 + 4K + |α|K)|sds|

� |V (b0)| + |bσ|−2(2 + |α|)K3
∫

C0(aσ)
|z|3|dz|

� |V (b0)| + 4|aσ|−4(2 + |α|)K3(π|aσ|/2)4

� J ′
0(K) := |V (b0)| + π4(2 + |α|)K3.

Since |V (b0)| depends only on the initial values of w(z) on the circle |z| = r0, the constant
J ′

0(K) is independent of σ. Taking J0 = J0(K) = J ′
0(K)+(2|α|+1)K + |β|, we get (3.5).

Since aσ ∈ ∆(σ), we have

|bσ − σ2/2| = |(σ2 − (aσ)2)/2| = |σ + aσ| |σ − aσ|/2 < (11/10)(|σ| + 1)/(|σ|K) < 2/K,

which completes the proof. �

Lemma 3.2. Suppose that b, |b| > r2
0, satisfies |v(b)| = K. Then there exists a pole

τb of v(t) such that |b − τb| < 2/K.

Proof. Let z = a be a point satisfying a2/2 = b, |w(a)| = K|a|. By Lemma 2.8, there
exists a pole σ of w(z) such that a ∈ ∆(σ). Then, t = τb = σ2/2 is a pole of v(t) such
that |b − τb| = |a2 − σ2|/2 = |a − σ| |a + σ|/2 < (11/10)(|σ| + 1)/(K|σ|) < 2/K, which
completes the proof. �

3.2. Construction of a pair of poles

Consider the sectors Sq : |arg z−(2q−1)π/8| < π/8+δ (−3 � q � 4, δ > 0), the union
of which covers the full neighbourhood of z = ∞. The image of Sq under the mapping
t = z2/2 is the sector Tq : |arg t− (2q− 1)π/4| < π/4+2δ. Note that every non-zero pole
of w(z) belongs to at least one of the sectors Sq (−3 � q � 4).
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Lemma 3.3. Let τ be an arbitrary pole of v(t) satisfying |arg τ −π/4| < π/4+π/100
and |τ | > ρ∞ > 4r2

0, where ρ∞ is a sufficiently large positive number. Then there exists
another pole τ ′ of v(t) such that

0 < |τ ′ − τ | < c∗, |arg(τ ′ − τ) − π/4| < π/4 + π/100, (3.6)

where c∗ is some positive number independent of τ and τ ′.

Remark 3.4. This lemma is concerned with a pole of v(t) in T1, whose corresponding
pole of w(z) belongs to S1. For poles in the other sectors Tq (q 
= 1), we can show
analogous facts.

Proof. Suppose that τ satisfies |arg τ − π/4| < π/4 + π/100 and |τ | > ρ∞, where
ρ∞ will be chosen afterwards. Let σ = (2τ)1/2 be the corresponding pole of w(z), which
satisfies |σ| > 2

√
2r0. By Lemmas 2.9 and 3.1, there exists a point b := b(2τ)1/2

satisfying

|b − τ | < 2/K, |v(b)| = K, |κb| � J0 = J0(K), (3.7)

where
κb := vt(b)2/v(b) − v(b)3 − 4v(b)2 − 4v(b). (3.8)

In (3.3), we put t = b + x. Then u = u(b, x) = v(b + x) is a solution of

2ü =
u̇2

u
+ 3u3 + 8u2 + 4u − 2b−1(u̇ + αu)

1 + b−1x
+

b−2(u + 2β/u)
4(1 + b−1x)2

(3.9)

(where the superposed dot denotes differentiation with respect to x), with the initial
condition u(b, 0) = v(b), u̇(b, 0) = vt(b). If |b| is large, (3.9) is regarded as a perturbed
equation of

2ü =
u̇2

u
+ 3u3 + 8u2 + 4u. (3.10)

Let u0(x) be a solution of (3.10) satisfying u0(0) = u(b, 0) = v(b), u̇0(0) = u̇(b, 0) = vt(b).
Since

vt(t) = −z−2(z−1w(z)) − (z−1w(z))2(1/w(z))′ = −z−2v(t) − v(t)2y′(z),

by (2.20), we have |vt(b)| � K2/2 > 0, guaranteeing that u0(x) is not a constant function.
This is also a solution of (2.3) with κ = κb (cf. (3.8)), and we write u0(x) = �(κb, x). To
apply Lemma 2.1, we choose constants successively by the following process.

(i) Let J0 be the constant of (3.7) given by Lemma 3.1. In Lemma 2.3, we put J = J0.
Then, by (3.7) and Lemma 2.3, the elliptic function u0(x) = �(κb, x) admits a
period ω(κb) such that

c−
0 � |ω(κb)| � c+0 , |argω(κb) − π/4| < π/4 + π/200, (3.11)

with c±
0 := c±(J0). We put

c∗ := c+0 ν0 + 1, (3.12)

where ν0 is a positive integer such that

6/K < c−
0 ν0 sin(π/200). (3.13)
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(ii) In Lemma 2.4, put J = J0, ζ0 = �(κb, 0) = u0(0) = v(b) implying |ζ0| = K (cf.
(3.7)). Then, by Lemma 2.4 and the periodicity of �(κb, x), there exists a curve
Γ∗(κb) joining 0 to ν0ω(κb) such that the length of it does not exceed ν0L0 and
such that

Λ0,− < |�(κb, x)| < Λ0,+ along Γ∗(κb) (3.14)

for L0 := L(J0,K), Λ0,− := Λ−(J0) and Λ0,+ := Λ+(J0,K).

(iii) Put ρ∞ = 2r2
0 + ν0L0 + 2. Since |b| > |τ | − 1 > ρ∞ − 1 (cf. (3.7)),

{t | |t − b| < ν0L0 + 1} ⊂ {t | |t| > 2r2
0}. (3.15)

We apply Lemma 2.1 with ε = b−1 to (3.9). In its application, we put ϕ0(x) = u0(x) =
�(κb, x), ϕ(ε, x) = u(b, x), and choose the curve and the constants as follows:

γ = Γ∗(κb), L = ν0L0, ξ0 = ν0L0 +1, R0,± = Λ0,±, ξ1 = (ν0L0 +1)−1/2

and
R1 = Λ1 := 2(J0 + Λ3

0,+ + 4Λ2
0,+ + 4Λ0,+)1/2Λ

1/2
0,+,

because |�̇(κb, x)| = |P (κb, �(κb, x))|1/2 < Λ1 along Γ∗(κb) (cf. (3.14)). Note that all
the constants above are independent of κb, |κb| � J0, and that all the suppositions of
Lemma 2.1 are fulfilled. Then, for |b| > ε−1

0 , we have

|u(b, ν0ω(κb)) − �(κb, ν0ω(κb))| = |v(b + ν0ω(κb)) − v(b)| � 1, (3.16)

where ε0 = ε0(ν0L0, Λ0,±, Λ1, 1) is independent of τ ; if necessary, we re-choose ρ∞ so large
that ρ∞ > ε−1

0 +1. By (3.16), K ′ = |v(b+ν0ω(κb))| � |v(b)|−1 = K−1. By (3.1), (3.15)
and Lemma 3.2 with K ′, we see that the point b′ := b + ν0ω(κb) belongs to the domain
|t| > 2r2

0, and that there exists a pole τ ′ of v(t) satisfying |b′ − τ ′| < 2/(K − 1) < 3/K;
this, together with (3.7), yields |b − τ | + |b′ − τ ′| < 5/K. Hence, by (3.11) and (3.13),

|arg(τ ′ − τ) − π/4| = |arg(b′ − b + (τ ′ − b′) − (τ − b)) − π/4|
� |arg(b′ − b) − π/4| + sin−1((|τ ′ − b′| + |τ − b|)/|b′ − b|)
� π/4 + π/200 + sin−1((5/K)/(c−

0 ν0))

< π/4 + π/100,

and, by (3.12) and (3.13),

|τ ′ − τ | � |ν0ω(κb)| + |b − τ | + |b′ − τ ′| < c+0 ν0 + 5/K < c∗,

|τ ′ − τ | � |b − b′| − |τ ′ − b′| − |τ − b| � c−
0 ν0 − 5/K > 6/K − 5/K = 1/K.

This completes the proof of Lemma 3.3. �
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3.3. Completion of the proof of Theorem 1.1

Fix the positive number ρ∞ of Lemma 3.3. Consider the domains

Dk := {t | |arg(t − ρ∞e(1+2k)πi/4) − (1 + 2k)π/4| < π/4 + π/100} ⊂ {t | |t| > ρ∞}

(k = 0, 1, 2, 3) in the t-plane, the union of which covers the full neighbourhood of t = ∞.
By the transcendency of w(z), there exists a pole σ of w(z) such that the corresponding
pole τ0 = σ2/2 of v(t) belongs to

⋃3
k=0 Dk (see [4, § 10]); without loss of generality,

we may suppose that τ0 ∈ D0 (cf. Remark 3.4). Note that D0 ⊂ {t | |arg t − π/4| <

π/4 + π/100, |t| > ρ∞}. By Lemma 3.3 with τ = τ0, there exists a pole τ1 satisfying

0 < |τ1 − τ0| < c∗, |arg(τ1 − τ0) − π/4| < π/4 + π/100.

This implies that τ1 ∈ D0 and that

D
(1)
0 := {t | |arg(t − τ1) − π/4| < π/4 + π/100} ⊂ D0.

Therefore, Lemma 3.3 is applicable to τ = τ1 as well, and there exists another pole τ2
satisfying the relations

τ2 ∈ D
(1)
0 ⊂ D0

and
D

(2)
0 := {t | |arg(t − τ2) − π/4| < π/4 + π/100} ⊂ D

(1)
0 ⊂ D0.

We can repeat this procedure and we get an infinite sequence of poles {τν}ν�0 of v(t)
such that

|arg(τν+1 − τν) − π/4| < π/4 + π/100, 0 < |τν+1 − τν | < c∗.

This implies that n(ρ, v) � ρ/c∗ + O(1), and hence n(r, w) � n(r2/2, v) � r2, which
completes the proof of Theorem 1.1 for (IV).

4. Outline of the proof of Theorem 1.1 for (II)

Theorem 1.1 for (II) is proved by an argument parallel to that used for (IV).

A. Let w(z) be an arbitrary transcendental solution of (II). Then v = v(t) = z−1/2w(z)
with t = (2/3)z3/2 is a solution of

vtt = 2v3 + v − t−1vt + (2/3)αt−1 + (1/9)t−2v. (4.1)

The function

V (t) := vt(t)2 − v(t)4 − v(t)2 − (4/3)αt−1v(t) − (1/9)t−2v(t)2

satisfies
Vt + 2t−1V = −2t−1v(t)4 − 2t−1v(t)2 − (4/3)αt−2v(t),
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from which we derive

V (t) = t20V (t0)t−2 − 2t−2
∫

C(t0,t)
(sv(s)4 + sv(s)2 + (2/3)αv(s)) ds,

where C(t0, t) is a path joining t0 to t. The corresponding elliptic function �∗(κ, x),
κ ∈ C, satisfies

u̇2 = P̂ (κ, u) = u4 + u2 + κ. (4.2)

For each q ∈ Z, and for each κ, |κ| � J , we find a period ω(κ) of �∗(κ, x) with the same
property as in Lemma 2.3. Furthermore, if |κ| � J , and if �∗(κ, 0) = ζ0, |ζ0| > 10, then
there exists a curve Γκ(ζ0) joining 0 to ω(κ) with the property (i) of Lemma 2.4 and

(ii′) |�∗(κ, x)| < Λ(J, |ζ0|) along Γκ(ζ0) for some Λ(J, |ζ0|) independent of κ.

B. Instead of (2.10), consider the auxiliary function

Ψ(z) := w′(z)2 − w(z)4 − zw(z)2 − 2αw(z).

Take a circle |z| = r0 > 10 on which w(z) 
= 0,∞. For K satisfying K > 2r−1/2
0 M(w; r0)+

M(Ψ ; r0) + 102 + 2|α|, we put DK := {z | |w(z)| > K|z|1/2}. Starting from [12, Propo-
sition 5.1], by the same argument as in § 2.3, we obtain the (II) versions of Lemmas 2.8
and 2.9.

Lemma 4.1. Suppose that a, |a| > r0, satisfies |w(a)| = K|a|1/2. Then there exist a
pole σ


a of w(z) and the disc

∆̂(σ

a) : |z − σ


a| < (11/10)K−1|σ

a|−1/2

such that a ∈ ∆̂(σ

a).

Lemma 4.2. Let σ be an arbitrary pole of w(z) such that |σ| > 2r0. Then, there exist
a point aσ ∈ ∆̂(σ) and a curve Ĉ0(aσ) ⊂ {z | |z| � r0} with the following properties:

(i) Ĉ0(aσ) joins a point zσ, |zσ| = r0, to aσ, and the length of it does not exceed
π|aσ|/2; and

(ii) |w(z)| � K|z|1/2 along Ĉ0(aσ), and |w(aσ)| = K|aσ|1/2.

C. Make the replacement K → K − 1 in the supposition on K (cf. (3.1)). Concerning
v(t), instead of Lemmas 3.1 and 3.2, we have the following.

Lemma 4.3. Let σ be an arbitrary pole of w(z) such that |σ| > 2r0, and let aσ be
the point given by Lemma 4.2. Then the corresponding point bσ = (2/3)(aσ)3/2 satisfies
|bσ − (2/3)σ3/2| < 2/K, |v(bσ)| = K, |V (bσ)| � J0, and |vt(bσ)2 − v(bσ)4 − v(bσ)2| � J0

for some J0 = J0(K) independent of σ.

Lemma 4.4. Suppose that b, |b| > r
3/2
0 , satisfies |v(b)| = K. Then there exists a pole

τb of v(t) such that |b − τb| < 2/K.
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D. The union of the sectors Ŝq : |arg z − (2q − 1)π/6| < π/6 + δ (−2 � q � 3) covers
the full neighbourhood of z = ∞. The image of Ŝq under the mapping t = (2/3)z3/2 is
T̂q : |arg t − (2q − 1)π/4| < π/4 + 3δ/2. For an arbitrary pole τ ∈ T̂1 (with 3δ/2 = π/100)
of v(t) with sufficiently large modulus, we can find another pole τ ′ with the same property
as (3.6). To show this fact, in place of (3.9), we treat the perturbed equation

ü = 2u3 + u − b−1(u̇ − 2α/3)
1 + b−1x

+
b−2u

9(1 + b−1x)2
(4.3)

for b close to τ . This is obtained from (4.1) by the change of variables t = b + x,
u(b, x) = v(b + x). Let �∗(κb, x) be a solution of (4.2) with κ = κb := vt(b)2 − v(b)4 −
v(b)2 satisfying �∗(κb, 0) = v(b), �̇∗(κb, 0) = vt(b). The solution of (4.3) with the initial
condition u(b, 0) = v(b), u̇(b, 0) = vt(b) is asymptotic to �∗(κb, x) in a suitable domain.
By the same argument as used in § 3.3 together with Remark 2.2, we construct a sequence
of poles of v(t) satisfying n(ρ, v) � ρ, which implies the estimate n(r, w) � r3/2.
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of differential equations, linear or nonlinear (ed. C. J. Howls, T. Kawai and Y. Takei),
pp. 261–269 (Kyoto University Press, Kyoto, 2000).

https://doi.org/10.1017/S0013091503000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091503000440

