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On the definition of saturated formations
of groups

John Cossey and Sheila Oates Macdonald

We exhibit a closure operation which serves to define saturated

formations of finite soluble groups.

1. Introduction

Classes of groups defined in terms of closure operations have proved

both interesting and useful. Some classes originally defined in terms of

more than one operation can be defined in terms of a single closure

operation which is a product of the original operations, for example,

varieties and formations. In this paper we attempt to do the same for

saturated formations, with partial success. In Theorem 3.1 we obtain a

closure operation for saturated formations of soluble groups. This

particular operation is unusual in that it uses twice each of the original

closure operations. We do not know if this is best possible, although it

is not difficult to check that it is not possible to define such an

operation using each of the original operations once only. Our techniques

rely heavily on the solubility of the groups involved; we are unable to

say anything in the insoluble case.

2. Notation and preliminary results

For notation and basic facts about formations we refer the reader to

[2] or [3]. For the remainder of this paper all groups considered will be

finite and soluble.

If X is a class of groups, fX. will denote the formation and sfX
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the saturated formation generated by X . If X = {G} we will write fG

and sfG .

If F is a formation, G will denote the F-residual of G , that

is,

GF = r\{N : N « G and G/N f F} .

If F and 6 are formations, then

FG = {G : GG 6 F}

is also a formation.

S denotes the formation of p-groups, p a prime.

A closure operation is a map P defined on classes of groups which

satisfies:-

(i) x s v => PX s py •,

(ii) X £ PX = P{PK) .

We have:-

LEMMA 2.1. (J, J? j and $ are closure operations where:-

QK = {H : G/N = H and G i X} ;

: if. 4Bj i = 1, . . . , n; D ^ . = 1 and H/N.
^ t = l •̂  1

$X = {H : S/$(ff) - G/$(G) and G € X} u^ere $(fl) is the Frattini

subgroup of H .

We shall need the following well known fact (see, for example, the

introduction to [I]).

LEMMA 2.2. RQQK 5 QRQK = fX .

The socle of a group G is denoted by aG . If G has a unique

minimal normal subgroup we call G monolithic and 0G its monolith.

We say that a group with trivial Frattini subgroup is $-free. We

need:-
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LEMMA 2.3. If F is a saturated formation and X the class of

$-free monolithic groups in F , then

F = «? X .
o

Proof. Let G I F , then H = G/$(ff) is $-free. Let

crfl = ff x . . . x N be the decomposition of the socle of H into minimal

normal subgroups of H ; then H (. R {H/K., i = 1, . .. , r} where #. is
O 'Z' ^

a maximal normal subgroup of H containing

N x . . . x ^ _ i x # i + i x . . . x Np and avoiding il^ . Clearly H/K. € F

and i s monolithic (with monolith isomorphic to N. ) . But i t i s also

$-free since i t sp l i t s over i t s monolith.

LEMMA 2.4. Let V be the set of i-free monolithic quotients of

the group G and let F be the formation generated by

{D/oD : D i V and p \ \OD\) for each prime p dividing \G\ . Then if

H is a monolithic group in sfG whose monolith is a p-group, H i S ¥ .

Proof. Let F = U S F . Clear ly sfG = U [<bQR^nT . Let H
p \ \ \ p P

S F . Clear ly sfG = U [<bQR^
\G\ p P n

be a monolithic group in ($Qfl )nF whose monolith is a p-group. We

prove by induction on n that H € S F . For n = 0 , we have H € F

and so either H (. S F or Hi? for some a t p . In the latter casep p q H t-

H € QRQ{D/OD : q \ \OD\} .

As in [4] we can obtain an expression for H as a quotient of a subdirect

product of monolithic groups whose monoliths are p-groups. It follows

that H/aH t F and so H i S F .

Now take n i l and assume the lemma true for n - 1 . Since OH is

a p-group so also is o(ff/$(fl)j . But H/${H) i QR^QR^^F . Again,

using the methods of [4] we obtain that H/${H) i QR^Aj where the A .

are monolithic with aA . a p-group and belong to [$QR )n~ F . By the
1r O

induction hypothesis A. and hence H/${.H) belongs to S F Thus

% p p
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H i S F as required.

The next lemma is rather technical in nature, and may be regarded as

a generalisation of [3] VI 7.22. For notation and results about varieties

of groups we refer the reader to [6].

LEMMA 2.5. Let M be a faithful GF(p)G module of rank r . Then

there exists a group L whieh is the split extension by G of a

metabelian class a p-group N such that y (N) - tr° , where y (N) is

regarded as a GF{p)G-module, and tr0 denotes the c-fold tensor power

of M .

Proof. Let F be the free group of rank re in the variety-

consisting of the groups of class a in the product variety A A , that

i s ,

F = F (A A n N ) .

Suppose F = (x.. : I S i S e , 1 < j < r> ; then for each g i G , we can

define an action on the generators of F by l e t t ing g act on the sets

T i = {xa x 1 - * - r}

as it does on a set of generators for M , and extending this action to an

automorphism of F . We can thus regard G as a set of automorphisms of

F . Now let K be the subgroup of F generated by all those left-normed

commutators which have an entry from some T. in more than one place or

which are of weight c and have an entry in the first two places other

than from Tj and T 2 . Let J be the subgroup of F generated by those

left-normed commutators of weight a of the form:-

Then it can be extracted from It.05 of [5] that K n J = 1 . Also it is

readily checked that K and J are normal in F and are mapped to

themselves by the automorphisms induced by G . Consider F/K . G can be

considered as a subset of the automorphism group of F/K , and it is easy

to check that it is actually a subgroup. We see that N = F/K satisfies
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the required conditions; for y (N) is an elementary abelian p-group

y (N)

of rank vc and the mapping

defined by

is clearly a module isomorphism. Hence we may take L to be the split

extension of N by G .

3. Proof of the theorem

THEOREM 3.1. s/X = ($ei?0)
2X .

Proof. We consider first the case in which X = {G} . By Lemma 2.3

sfG = $i? V where V is the set of $-free monolithic groups in sfG .

Since RQQR0
 = QR0 > the proof will be complete if we show that

V 5 QRo$QRoG ,

and, by Lemma 2.k, it will suffice to prove that if H is a $-free

monolithic group in S F then

H d QRo<bQRoG .

Since

F = QRQ{D/aD} < QRQG

we can assume H $ F ; and so oH is a p-group. Since H is 0-free

this is also its Fitting subgroup, and so H/aH € F ; say H/aH - S/T

s
where S is subdirect in ~| [ A. , A. - D./oD. . Then B = aH is an

irreducible GF(p)5/T module, and a fortiori, an irreducible 5 module.

There is a natural epimorphism from Jl" D. to ~\J A. . Let S be the

inverse image in T"f D. of S . Then, "by the definition of the D. , S
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is the split extension by S of a faithful GF(p)S module M , and

5 £ QR G . By [3] VI 7.19, B is a composition factor of flf0 for some

a . Consider the group L defined as in Lemma 2.5. Then

L/*(L) $ RQS S QRQG

and so L € <bQRQG . By [3] VI 7.21 the split extension of B by S lies

in fL and hence so does B.S/T . But this is H . Hence

H i QRQL 5 QRQ$QRQG

as required.

For the general case consider K £ sfX . Then K is obtained from

X by a finite number of applications of $ , Q and R , say

K £ {JbQR ) X . We prove by induction on n that K is obtained from a

finite number of elements of X ; the result being true for n = 0 . Now

K d ^ ^

tha t i s , K/<k{K) - S/T where S < Zn x . . . x X and X. I VbQR I""1* .

By the induction hypothesis, each X. arises from only f in i te ly many
If

members of X and hence so also does K . Thus K f sfG where G is

the direct product of these members of X and hence

K £ ($QRj2G < ($<Ji?o]
2X .
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