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Linear monads

B.J. Day

Amonad T = (T, u, n) on a category C is said to be linear
with respect to a dense functor N : A > C if the operator T
is the epimorphic image of a certain colimit of its values on

A . The main aim of the article is to relate the concept of a
linear monad to that of a monad with rank. A comparison is then

made between linear monads and algebraic theories.

Introduction
In Section 1 we commence with a dense functor N : A > C and a monad
T=(T, u,n) on C such that the canonical transformation
A
J C(NA, C)+TNA +~ TC 1is an epimorphism. Such a monad is called linear

or, more precisely, WN-linear. We prove that the free algebras on the

values NA form a dense full subcategory of the Eilenberg-Moore category
CT . The terminology follows that of Day [3], Section 5.

Once the foregoing result is established it allows a comparison to be
made between CT as a full subcategory of a functor category [B, V] and
the category Ct of algebras in [B, V] derived from the resultant
algebraic theory of T {ef. Diers [5]). Conditions on CT to be a
Birkhoff subcategory of Ct are examined in Section 2.

We note here that all categorical algebra is relative to a fixed

complete and cocomplete symmetric monoidal closed ground category
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V=(V,V,®, I, ...) unless otherwise indicated. The terminology and
notation are basically derived from Eilenberg and Kelly [6) and Mac Lane

[91.

1. Linear monads and rank

Throughout this section we suppose that T = (T, u, n) is a given
monad on a category C and that ¥ : A > C is a fully faithful dense
functor. The standard resolution of T into a Kleisli category and an

Eilenberg-Moore category is denoted by

M T
——
CT c
U U
F F
C
where M 1is the dense comparison functor. Furthermore, we let A denote

the full image of FN : A - CT and let N : A » CT denote the induced

functor such that FN = NF :
N L0 M )}CT
F

T
Fl
C

If we now suppose that A 1is small and CT is cocomplete then, by

N
—_—

"y
> s |

Day and Kelly [4], (7.1), we have:

T

LEMMA 1.1. The composite MN : A » C is dense iff each natural

transformation o, from cT(MiB, ¢) to cT(MiB, D) is of the form

B
CT(l, f) for a unique T-homomorphism f from C to D . //
THEOREM 1.2 (The representation theorem for monads). The compariso

functor M : CT > CT is dense and, for each algebra (C, r) € CT , the

natural transformations from CT(ML, C) to a prealgebra G : C?p >V
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correspond to the elements in the equaliser of

N
vGe VeIC

—

VGTT

where U and Tr are regarded as morphisms in CT .

For the proof see Day [2], Proposition 8.2. //

THEOREM 1.3. The composite MW : A » C' 4s dense if the canomical

transformation

c(rc, D) » J [C(Na, C), C(TNA, D)]
A

i8 a monomorphism for all C € C and D € e’

Proof. The notation U will sometimes be omitted. Suppose

a CT(FIVA, c) ~» CT(FIVA, D) is a transformation which is natural in
FNA € A . An extension 0o is defined by commutativity of

o — ¢'(#B,D)

¢ (#B,0)

2 iR

J [c(n4,B),CT(FHA,C)] [c(ma,B),C' (FWA,D)] .
4

(1,a] JA

First we note that EIK =a : the diagram

C o

T(rna ') > CT(TNA',D)

A 1K

J [c(wa,5a"),CT (oA, )] J [c(ma,ma’),C'(TnA,D)]
A (1,a] ‘4

transforms to
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c(ma,na') @ ¢ (rma’,c) B2, c(ma,mar) ® ¢ (Taa’,p)

e (rha,c) - ~ C'(

TNA,D) ,

which commutes by naturality of o . Secondly, if B8 1is a transformation
from CT(FB, C) to CT(FB, D) which is natural in FB € CT then B =B .

This follows from the diagram:

CT(TB,C) 8 — CT(TB,D)

A iK

J [c(na,B),CT(THA,C)] [c(ma,B),c (Fra,D)] ,
4

[1,8] L

which commutes by naturality of B . By Theorem 1,2 it is now required to
— - T .
show that o corresponds to the element aof(g) € VG = CO(FC, D) in the

equaliser of:

VGu
VGe VGIC .

VGTT

Firstly, because a = {aFB} is natural if B € C , we see that the family

g is derived from Efc(c) : I~ CT(FC, D) by the (ordinary)

representation theorem:

A -

-
-
-~

C(B,UC)

Thus it remains to verify that a(Z) is in the equaliser of (VGu, VGIZ)

Consider Diagram 1.4; subdiagrams 1 and 4 commute by definition of o so

https://doi.org/10.1017/5S0004972700010418 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700010418

181

Linear monads

. wa..%&%.?ﬁ:§E.Jﬁ8.§vm_4 — .m; WE._E,SFU,QE._EEH_.J.B.E@J

b e
] L R
w v
[(a EN&Z 2 Vll)D Ha;; [(ocw ), 0¢ (0 m)3] %
£
,Q 0,1}, B @.um&%
_”:.3%;: s (1M :JEF.Q 2 (T°22) o |(T°1) D ?é%.i
(a*01) 2 = (9°01) 2
% T N
v v
((a“vur) ¢ (0" v)2) % [( o vaT)y 0¢ (0° V) D] %
1 TO,H; 1

¥ 1 WYIOVIaQ
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it remains to show that subdiagrams 2, 3, and 5 , and the exterior commute.

Diagram 2 becomes Diagram 1.5 which clearly commutes.

Diagram 1.6;

follows by applying the representation theorem to D € CT
this diagram then becomes Diagram 1.7.

legs are natural in D ;

Day

DIAGRAM 1.5

J[l,‘a]

thus it suffices to show that subdiagram 3' commutes.

J [C(NA,C),CT(TNA,C)]
A

I
N

T

J[cu,c),u T (re,1)

¢'(%c,c)

=3

|

Qo

_.2__.»(:

"

¢(re,c) —2—— ¢'(re,p)
(e, 1)

72¢, D)

s

J [c(na,7c),c'(Tma,0)]
A

.0
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oty

N4
m%.%&%.?ﬁ._%o ® (O°"N)D : %
7

¥
) @m..%&%.?ﬁ:%é ® (o'W : % —
4 h

N %

0T

v [ v
[{a“vuyz) 0 (2* 2] % [(o*vw,z) 0 (o) ] %

[T°Z] NS € [T°L]

(@*0,2) 0+ (0%0,2) |0

13

%
3

_V\ —q
[(a* vuz) 0% (o1, v)) %1 [(o®vwmz) 9°(o1* v H

:3;

9' T WVHOVIaQ
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DIAGRAM 1.7

2
C{ma,c)@® C(na',TNA) r &1

¢ (r%ma,1%c) @ cua’,ThA)

T® 1

J

C(TNA,TC) ® C{(NA',TNA)

1T

¢ (7%m,1%) @ ¢ (Tma’,7%ma)

compn.

compn.

J
C(NA',TC) L

d
¢ (rma' ,r%)

Again, this diagram commutes by the representation theorem applied to
cecC.

Next consider Diagram 5,which transforms to

T
c(wa,c) € (7-,D)

— J [c(rc,p),c(TNA,D)]
4

¢ (r°-,0) [c"w,1),1]

T2 2 T(2 T
¢' (r°c,p),c (7°wa,D - ¢ (r°c,p),C' (TNa,D)] .
[ el @] e | 0 ]

This diagram commutes by naturality of u : T2 > T .
that the diagram

[CT(U,l)
*

It remains to check

commutes.

This diagram transforms to
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T(rma,p),c" (Tha ,0)]
/ \al]
c'(rma’ o) [c (TnA C),CT(TIVA’,D)]

\%

[cT(zma,c),cT(rma’ ,c)]

composed with

2 CT(1 w) AT
C(WA', THA) —2= C (TNA', T°NA) ——=2E2 C(TNA', THA) ;
thus it commutes by naturality of o . //

In view of this result we make the following definition with respect

to a fully faithful dense functor N : A > C .

DEFINITION 1.8. Amonad T = (T, u, n) on C is called linear (or
N-linear) if C(NA, C) o TNA exists for all C € C and
C(N4, C) o TNA > TC 1is an epimorphism. The monad is called strictly

linear if this transformation is an isomorphism.

COROLLARY 1.9. If T on C <s N-linear then the canonical diagram

¢l ———— [A°P,v]

[F°P 1]

¢ ——— [A°P,v]

commutes (to within a natural isomorphism) where the horizontal functors
are fully faithful. - //

2. Comparison with algebraic theories

Let N: A>C and T =(T, g, n) be as in Section 1. Then
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t =FP . AP > Z°P = T is an N-algebraic theory in the sense of Diers

[5]. Thus we form the category Ct of t-algebras by means of the
pullback

P— 7}
U [t,1]

C [Aop > V] )
where the horizontal functors are fully faithful.

By Corollary 1.9, CT is a full reflective subcategory of [T, V]
and it lies in Ct . This gives a reflection S : Ct - CT :

T S

H

t

C C

¢

THEOREM 2.1. If T is strictly linear then c' s category

equivalent to ct .

Proof. Because C(NA, C) o TNA = TC we have that T preserves
N-absolute colimits. Thus the hypotheses of Diers [ 5], Theorem 5.1, are
satisfied by F —U . //

Now suppose that C has canonical factorisations for the system

{strong epimorphisms and monomorphisms} (ef. Freyd and Kelly [7]).

PROPOSITION 2.2. If the transformation

A
(2.1) J C(NA, C) ® C(NA', THA) - C(NA', TC)

is a strong epimorphism in V and C(NA, C) o TNA exists in C and
C(NA, =) : C » V preserves strong epimorphisms for all A € A, then the
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wunit n of the reflection S —H 1is a strong epimorphism.

Proof. On applying - o NA' +to both sides of (2.1) we see that
C(NA, C) o TNA ~ TC 1is a strong epimorphism. Thus Theorem 1.3 applies and
also T preserves strong epimorphisms since, if e : ¢ >+ D is a strong

epimorphism in C , we have that

C(NA,C)oTNA + TC

C(1,e)o1 Te

C(NA,D)oTNA -~ TD

commutes. Thus the diagonal is a strong epimorphism so Te 1is a strong
epimorphism. Now consider the fdctorisation ne : € »~»D>>3C in C .
It is required to show that D has a T-algebra structure. This structure

is derived from the following diagram:

A CC
J C(ma,c) ®C(MA',TNA) — C(MA',C)
a
c(ma',mCc)
b
|
C(M',mp)————~ -+ C(na',D)

c(ma',rsc) —————— C(MA',5C) ,
where a and b are both strong epimorphisms and the top morphism cC
is derived from the Ct—structure on C 1in the following manner. An

algebra (C, g) € ct comprises C € C together with

A
Lo J C(na', TNA) @ C(NA, C) » C(MA', C) ;

that is, a structure for the monad [¢, l]E- on [AOP, V] where
T [t, 1] . Then, by factorisation, the dashed arrow provides a

T-algebra structure on D, using the density of N . //
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PROPOSITION 2.3. Suppose the unit n of the reflection S —H 1is a
strong epimorphism and C has kernel pairs. If U : ¢l > reflects

kernel pairs then ¢" is closed in €Y under coequalisers.

Proof. Both U and Ut create kernel pairs and we omit them from

the notation. Let ¢q : HC - D be a coequaliser in Ct and let
t

p=n,-q. Let (nl, 112] be the kermel pair of ¢ in C° and let
(¢l, ¢2) be the kernel pair of p in CT . This gives
#sp ——22 5 yg
\ / \ )
D
"2
"o
p
HSD

where O 1is monic, so nP is monic and thus is an iscmorphism. This

implies that p 1is the coequaliser of (H¢1.HA, H¢2.HA] in CT and that

this latter pair is a kernel pair in Ct . Thus [¢lk, ¢2A) is a kernel

pair in C , so A is an isomorphism, so 6 is an isomorphism, so n, 1is
. . . T

an isomorphism, as required to show that D 1lies in C . //

A
COROLLARY 2.4. If J C(ma, C)®C(ua', TNA) » C(NA', TC) s a

strong epimorphism in V and C(NA, C) o TNA exists in C and C(NA, -)

preserves strong epimorphisms for all A € A and C has kernel pairs

reflected by U : CT + C, then CT 18 a Birkhoff reflective subcategory of

¢t . //

PROPOSITION 2.5. If ¢t is cocomplete and C(NA, -) preserves

coequalisers of reflective pairs, then ¢t is monadic over C iff
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(a) f <8 a coequaliser in Ct iff Uéf 18 a coequaliser in
C, and

®) Ut reflects kernel pairs.

Proof. 1If Ct is cocomplete then Ft —'Ut exists and UtFt

preserves coequalisers of reflective pairs since Ut : Ct -+ C creates
coequalisers because C{(NA', -) preserves them (ef. Diers [5], Proposition
1.1). Thus the result follows from Borceux and Day [1], Corollary 6.2. //

PROPOSITION 2.6. Suppose C and ¢t are cocomplete and let

K: [T, V]~ ¢t denote the canonical reflection. If Ut preserves

epimorphisms and those unit components of the form T(tA, -) - KT(tA, -)

Tt

are epimorphisms, then U F~  generates a linear monad.

Proof. We have
A'
vtrtm = u%” clua’, ¥A) @ T(tA', -)] = vPk(TCta, -))
by the representation theorem because ¥ 1is fully faithful. Also

A
utrtc = UtKU Clwa, C) @ T(t4, -))

Thus, to show that

tLt

A .t
(2.2) J c(na, ¢) . U"F*NA > U'F

c

is an épimorphism consider the following diagram
4 t 4 t
[ctm.crotriea,-) — [ ctm.cr.vtariza,e)
(2.2)

£ (A
2 U KU c(ya,c) ® T(tA,-)]

iR

}

y A
UtU C(NA,c).T(m,-)] — UtU C(IVA,C’).](T(tA,—))
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The bottom arrow is an epimorphism by hypothesis,so (2.2) is an

epimorphism, as required. //

3. Example

Supposc¢ the ground category V has canonical E - M factorisations
for the system E - M = {strong epimorphisms and monomorphisms} (see Freyd
and Kelly [7]). Suppose also that V has arbitrary cointersections of

E-quotients and that finite powers preserve strong epimorphisms.

DEFINITION 3.1. A functor G : A >V from a category A with
finite products to V 1is said to E-preserve finite products if the
canonical morphism G x A') +» GA x GA' 1is a strong epimorphism for all

A, A' € A

DEFINITION 3.2. Let M : A+ B be a functor between categories with
finite products. Then V is said to satisfy axiom E(m) if the left Kan
extension of a functor G : A+ V which E-preserves finite products along

M again E-preserves finite products.

One then obtains results precisely analogous to those obtained for

axiom m 1in Borceux and Day [1], Sections 1 and 2.

DEFINITION 3.3. If T is a finitary algebraic theory (see Borceux
and Day [1], Definition 3.1) then a functor ¢ : T - V which E-preserves
finite products is called an E-algebra (of T ).

Now let T denote the category of “E-algebras for T , regarded as a

full subcategory of [T, V] . Let Tb dencte the ordinary category of
algebras of T ; namely, the full subcategory of [T, V] defined by the

finite-product-preserving functors. Then there are inclusions

T‘b c Tl < [T, V] . The second embedding is coreflective and the
coreflection maps G to the union of the E-algebras which are

M-subfunctors of G ; the coreflection counit lies in M . The first

embedding is reflective and the reflection maps A € 79 to the largest Tb

E-quotient of A ; the reflection unit is in E . Thus we have
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Tb : Tq : [T,V]

I
v () = ]

where Vf is the initial finitary theory and where the centre adjunction

.

is a strictly linear monadic situation.

THEOREM 3.4. If V satisfies the hypotheses of this section (and
satisfies axiom E(w) ) then amonad T on V generates a Birkhoff sub-

category of an algebraic category Tb 1ff

(@) V' has coequalisers,
m
(b) I [m, X] ® [n, Tm] » [n, TX] is a strong epimorphism, and

(e) U: vt s v reflects kernel pairs.

T . . T .

Proof. Because V has coequalisers iff |  is cocomplete (see
Linton [§]) the conditions are sufficient by Corollary 2.4, Necessity of
{a) is clear since Tb is always cocomplete. Moreover, if VT is a
Birkhoff subcategory of Tb then the unit of the composite reflection
79 > Tb > VT is a strong epimorphism. This implies that (b) is necessary.
Finally, the functor Ut : Tb + U reflects kernel pairs and the Birkhoff

property implies that the embedding VT c Tb reflects kernel pairs, so (¢)

is necessary. //

An example of a monad which satisfies (a) and (b) but not (e) is the

reflection to Hausdorff k-spaces from non-Hausdorff k-spaces.
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