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A SIMPLE RING OVER WHICH PROPER CYCLICS
ARE CONTINUOUSIS A PCI-RING

S. BARTHWAL, S. JHINGAN AND P KANWAR

ABSTRACT. It is shown that simple rings over which proper cyclic right modules
are continuous coincide with smple right PCI-rings, introduced by Faith.

1. Introduction. Rings over which proper cyclics are injective (called PCI-rings)
have been characterized by Faith [4] and Damiano [3] as semisimple artinian rings or
simple right noetherian, right hereditary domains over which each proper cyclic module
issemisimple. For an exampleof aright PCI-ring, onemay refer to Cozzens[2]. Recently,
Huynh, Jain and L 6pez-Permouth [9] showed that simpleringsover which proper cyclics
are quasi-injective (called PCQI-rings) are same as simple PCl-rings. In this paper we
extend this result by showing that asimplering over which proper cyclicsare continuous
isindeed a PCI-ring thus obtaining the | atter result as a corollary. Our proof hasa strong
computational flavor, asit is based on looking at the form of the cyclic modulesinvolved
and on the precise computation of the intersection of certain pair of modules.

We first show that a simple ring over which proper cyclics are continuous is either
simpleartinian or aright Ore domain (Proposition 2.4). A particular instance of alemma,
which is essentially due to Stafford, is needed here. We provide a simple, self-contained
proof of it (Lemma 2.2). In Theorem 2.5, we prove our main result.

A right R-module M is called continuous if it satisfies the conditions (C1): every
submodule N of M is essentia in asummand of M, and (C2): every submodule N of M
whichisisomorphicto adirect summand of M isitself adirect summand of M. M iscalled
quasi-continuous (w-injective) if for all submodules N;, N2 of M with Ny N N2 = (0),
the projection map 7: N1 & N2 — Nj can belifted to an endomorphism of M (c.g. [13],
p. 367), equivalently, if M satisfies the above condition (C1) and the condition (C3): for
every direct summands Ny, N, of M such that N; NN, = (0), N; & N, is also a direct
summand ([13], 41.21). By a proper cyclic R-module we mean a cyclic module that is
not isomorphic to the ring R. For a right module M, soc(M), and M will respectively
denote the socle, and injective hull of M. A ring R satisfies the condition (x) if:

(%) every proper cyclic right R-moduleis continuous.

Throughout, all rings have unity and all modulesareright unital, unless otherwise stated.
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2. Ringssatisfying (x). Recall aright R-module M is said to be CSif every closed
submoduleis adirect summand of M, equivalently, if every submodule of M is essential
in adirect summand, i.e., M satisfies condition (C1) stated in the introduction. We will
need the following.

LEMMA 2.1 ([9], THEOREM A). If Ris a simple ring such that every cyclic singular
right R-module is CS, then Ris right noetherian.

Our next lemma is essentially due to Stafford ([1], Theorem 14.1). For the sake of
completeness, we give here a short direct proof.

LEMMA 2.2. Let Rbeasimple Goldieringwhichisnot artinian. Let M be a singular
R-module. If M = aR® bR for somea, b € M andif bRissimple, then M = (a+ bx)R for
somex € R

PrROCF. Since M issingular and Ris prime Goldiering, there existsaregular element
d € Rsuch that ad = 0. Now R is simple and RdR # 0, therefore, RAR = R. Thus
bR = bRdR. Since bR # 0, bxd # 0 for some x € R. Since bR is simple, bR = bxdR.
Now (a + bx)d = bxd. Thus bR = bxdR C (a + bx)R. Also, asa = (a+ bx) — bx and
bR C (a+bx)R, it followsthat aR C (a+ bx)R. ThusM = (a+ bx)R.

In ([9], Lemma3.1), it is shown that if Risasimple right PCQI-domain, then every
finitely generated artinian R-module is semisimple. With the aid of Lemma 2.2, and
using an argument similar to the one used in ([9], Lemma 3.1), we obtain the following
Lemma.

LEMMA 2.3. If R is a simple domain satisfying (x), then every finitely generated
artinian right R-module is semisimple.

PROPOSITION 2.4. Asimplering satisfying (x) is either simple artinian or aright Ore
domain.

PrOOF. By Lemma 2.1, R is right noetherian and hence has finite right uniform
dimension. Thus, Risaright Goldiering. If Rg isuniform then either Risadivisionring
or aright Ore domain. Consider next the case when Ry is not uniform. Let the uniform
dimension of Rben > 2 and Uy, Uy, ..., U, be uniform cyclic right ideals of R such
that Uy ® Uy, @ --- @ Uy, is essential in R. We will show that R is simple artinian. It
is sufficient to show that soc(Rg) is non-zero ([1], Theorem 1.24). Suppose that there
exists 0 # U ; U;. Since R is prime Goldie, U and U; are subisomorphic to each
other ([11], p. 73, Lemma(ii)). Consequently there exists a monomorphism ¢: U; — U.
Since R is not uniform, U; # R. Therefore Uy, being cyclic, is continuous. But then,
#(U1) = Ugimplies¢(U1) C® Uj. SinceU; isuniformand ¢(U1) # 0,U; = ¢(U;) C U,
acontradiction. Thus U; isminimal. It follows that soc(Rg) # O, as desired.

Remember that aring R is said to satisfy the right restricted minimum condition
(RMC) if for every essential right ideal |, R/ isartinian. It is known that right PCI-ring
hasright RMC (c.f. [12], Corollary 5 and [8], Proposition 3.1).

THEOREM 2.5. A simple ring satisfying (x) is a PCI-ring.
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PROOF. Suppose Ris asimple ring satisfying (). By Proposition 2.4, R is a either
simple artinian or a right Ore domain. Therefore we only need to consider the latter
case. We first show that it is sufficient to show that R satisfies right RMC. Suppose we
have shown that R satisfiesright RMC.Then for every non-zerorightideal | inR, R/ is
artinian. By Lemma 2.3, R/| is semisimple. By ([8], Theorem 3.1), R/l isinjective, as
desired.

Assume on the contrary that R does not satisfy right RMC. Choose a non-zero right
ideal A of R maximal with respect the property that R/A is not artinian. Since, by
Lemma 2.1, Risright noetherian, the existence of A is guaranteed. By choice of A each
proper factor module of R/Ais artinian.

We show that R/A is uniform. Suppose, on the contrary that R/A is not uniform.
Then there exists anon-essential proper uniform submoduleU /Ain R/A. Because R/ A
iscontinuous, R/A =cl(U/A) @ V /A, wherecl(U/A) denoteaclosureof U/Ain R/A.
Since every proper homomorphic image of R/A is artinian, it follows from the above
decomposition of R/A, that R/ Aisitself artinian, acontradiction. ThusR/Ais uniform.
Note soc(R/A) = 0, else soc(R/A) is simple and so, by Lemma 2.2, R/A x soc(R/A)
is cyclic and thus continuous. But then, by ([7], Proposition 1.11), R/A =~ soc(R/A), a
contradiction.

SupposeB/Aisamaximal submoduleof R/AandletK = R/A x B/Abethe external
direct sumof R/Aand B/A. We will show that K is quasi-continuous (r-injective).

Let C/A be amaximal submodule of B/A. Since R/Ais cycllc B2 is also cyclic.

{ C/A
Indeed E/% (1+C/A)R Also E/%’ being simple, is cyclic. Let 24 = (b+C/A)R By

LemmaZ2.2,

C/A

R/A B/A - _
#A x #A = [(1+C/A.0)+(0.b+C/A)]R
= (1+C/Aba+C/AR

for some o € R But then R/A x B/A = (1. bo)R + (C/AxC/A) ie, (RIAX0) @
(0 x B/A) = (L.ba)R+(C/A x 0) + (0 x C/A).

Supposeg = (1, ba) andlet L = gR. Noteu.dim (L) < 2. Weclaim that u.dim(L) = 2.
ThisistrueincaseLN(C/Ax0) and LN(0x C/ A) both arenon-zero. We proceed to prove
neither LN(C/Ax 0) nor LN(0x C/A) canbe zero. Thisis accomplished by considering
three possible cases given below. The precise computations of the intersections of L with
(C/A x 0), and L with (0 x C/A) will play akey rolein these cases. We note

(1) LN(C/Ax0) =g(CN(ba)™A), and
(2 LN(0x C/A) =g(AN (ba)~*C).

Casel. LN(C/Ax0)=0andLN(0x C/A)#0.
SinceR/Aisuniform, LN(C/Ax 0) = OimpliesLN(R/A X 0) = 0. ThusL embedsin
. L+C/A R/A
B/A. Since (rgc7m = c/,ﬁ c CfA ~R/CandLN(0x C/A) #0, Wehavem(OXc/A)

isartinian. By Lemma 2.3 is semisimple. It follows that embedsin

Lﬁ(0>< C/A) m(0xc TA)
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soo(RIAXB/AY g RIAXB/A R/A x B/C. Since soc(R/A) = 0 and B/C issimple, it

OxC/A OxC/A
follows that WOLC 7 isalso simple. Since m(o';c Ty = LXO(SZ%A), LX()(%%A) issimple,

Lx(0xC/A)
OxC/A

acontradiction to the fact that %CX/CA/A) isaproper submodule of

CASE2. LN(C/Ax0)#0andLN(0x C/A) =
SinceB/Aisuniform, C/Aisessential inB/A. ThusLN(0x B/A) = 0. Consequently,

L embeds in R/A. As in Case 1, m is artinian and hence semisimple. Then
L R/AxB/A ~ LHC/AX0) _ R/AXB/A

LA(C/AX0) embedsin soo( (/:Axé )-But Lm(C/AxO) c/Axo C (/Z/Ax(/) ~ R/CxB/A.

Note that soc(B/A) = 0 and soc(R/C) = B/C. Thus m must be simple. Since

AR L+é%i§°’, it follows that L+é%i§°’ is simple, acontradiction to the fact that

7982(/(:/@50) is a proper submodule of L+é%/:é°).

CAsE3. LN(C/Ax0)=0andLN(0x C/A) =0.

Asin Case 1, L embedsin B/A. Also, asL N (0 x C/A) = 0 we have, from (2),
g(AN (ba)™1C) = 0. Thus AN (ba)~1C C r.anng(g). But r.anng(g) = AN (ba)~*A C
AN (ba)~1C. It follows, then, r.anng(g) = AN (boc)*lA AN (ba)~1C. Notice that
AN (ba)~1C # 0, because R is uniform. Since L =~ m and by assumption L is
uniform, we have Am(bR) iz is uniform. But then AN (ba)~*C = A or (ba)~'C, for
otherwise zpmye @ Am(ba;‘fc C apayTe- contradicting the uniformity of zeRrs:-

If AN (ba)™1C = A, thenL =~ R/A. But L embedsin B/A. Therefore R/A embedsin
B/A, acontradiction since R/A is continuous.

If AN (ba)~1C = (ba)~1C, then, because R is a domain, we have L = (ba) e =
% C R/C. SinceR/Cisartinian, L is artinian, a contradiction again.

Thus, neither LN(C/A X 0) nor LN (0 x C/A) can be zero. Consequently, u.dim(L) is
2. HenceL isessential in K. By hypothesis, L is continuous and hence quasi-continuous
(m-injective). Since L is essential in K, for every idempotent ¢ € End(K) o) C
L ([7], Theorem 1.1). Since End(K) = End(R/A X B/A) End(R/A X R/A) for

every f € End(R/A), (f 0) is an idempotent in End(K). Thus, (O (1)) (b_lo:r) =

1 f

(f(‘)gb r) € L. Thus, for every r € R, ff + bar = bar; for somer; € A. Hence

ff = bary — bor € B/A. Consequently,f(R/A) C B/A for every f € End(R/A) In

particular f(B/A) C B/Aforeveryf End(R/A) = End(B/A) It followsthat both R/ A

and B/A are quasi-injective. Consequently, (B/A x 0) @ (0 x B/A) is quasi-continuous.
Suppose ¢ is any idempotent endomorphismin End(R). Then

#(K) = ¢(L+[(C/Ax0) & (0x C/A))
C ¢(L+[(B/Ax 0)& (0 x B/A)])

C ¢(L) +¢((B/Ax0) & (0x B/A))
CL+(B/Ax0)@(0xB/A] CR/AxB/A=K.
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Thus K is quasi-continuous. Consequently, B/A =~ R/A ([7], Proposition 1.11) and so
B/A = R/A, because R/A s continuous and uniform, a contradiction to the maximality
of B/A. Hence R/ isright artinian for every non-zeroright ideal | of R. This provesR
isaPCl-ring.

It is known that a PCI-ring is either semisimple artinian or asimple right noetherian,
right hereditary domain (c.g. [3], [4]). Thefollowing corollary is now immediate.

COROLLARY 2.6. A simple ring satisfying () is either simple artinian or a right
noetherian, right hereditary domain.

Since a PCQI-ring satisfies (), we obtain the following.
COROLLARY 2.7 ([9], THEOREM B). A simple PCQI-ring isa PCl-ring.

A ring Ris said to be aright Sl-ring if al singular right R-module are injective. We
have shown that in the proof of Theorem 2.5, that if Risasimple ring satisfying (x) then
R/1 is semisimple for every essential right ideal | of R. It follows that Ris right SI-ring
([8], Proposition 3.1). Conversely, asimpleright Sl-ring satisfies (x). We, thus, have the
following.

COROLLARY 2.8. Asimplering satisfies (x) if and only if it is simpleright Sl-ring.

We conclude with examples of rings satisfying condition (x). For the nonsimplering
R= g B , Where D isadivision ring and A is a division subring of D, it is shown

in ([10], Theorem, p. 141) that every proper cyclic right R-module is continuous. An
exampleof asimplering R over which every proper cyclic right R-moduleis continuous,
equivalently, every proper cyclic right R-module isinjective (by Theorem 2.5), is given
in[2].
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