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SOME PROPERTIES 
OF HANKEL CONVOLUTION OPERATORS 

J. J. BETANCOR AND I. MARRERO 

ABSTRACT. Let 9Ç be the Zemanian space of Hankel transformable generalized 
functions and let 0 ^ be the space of Hankel convolution operators for 0-i^. This 0-f^ 
is the dual of a subspace 9-Ç of O^ * for which O^ * is also the space of Hankel con-
volutors. In this paper the elements of 0^% are characterized as those in £(9-^) and 
in L(!HJ) that commute with Hankel translations. Moreover, necessary and sufficient 
conditions on the generalized Hankel transform ©'S of S G O' are established in 
order that every T G 0^ such that S * T G ̂  lie in ^ . 

1. Introduction. Let \i G R, and let 9~C^ be the space of Hankel transformable func­
tions, as introduced by A. H. Zemanian [5]. We recall that H^ consists of all those in­
finitely differentiable functions <j> = cj)(x) defined on / =]0, oo[ such that the quantities 

Ymk($) - sup |(1 +x2)mCr1D)V / i-1/2(/)W| (m,k G N) 
xei 

are finite. When endowed with the topology generated by the family of seminorms 
{^J(m,fc)eNxN, ^i[i becomes a Fréchet space. The Hankel transformation 

(ÊV0XO = (°° <i>(x)^tj^xt) dx 

is an automorphism of i ^ , provided that ^i > — 1/2 (here, as usual, J^ denotes the 
Bessel function of the first kind and order /x). If ^ > —1/2, the generalized Hankel 
transformation JQ^ is defined on ^ ' , the dual space of H^, as the adjoint of £)^. Then 
!Qfp is an automorphism of H^. 

In previous papers [2] and [3], for \i > — 1 /2 , the authors have introduced and studied 
the subspace O'^ of Oi^ formed by all those T G JÇ such that 9(x) = x-^l/2(^T)(x) 
is a smooth function on / with the property that for every k G N there exists nk G N 
satisfying 

sup |(1 +j?Ynk(x-xD)k0(x)\ < +oo. 
xei 

Clearly, ^ is a subspace of O'^. The space O of all those smooth functions 6 = 6(x) on 
/ possessing the above property turns out to be the space of multiplication operators on 
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HANKEL CONVOLUTION OPERATORS 399 

J-tp and on H^ (fi G R), whereas 0 ^ is the space of convolution operators on ^ and 
o n f l £ ( / z > - l / 2 ) . 

In what follows we shall always assume that ji is a real number not inferior to — 1 / 2 
and, unless otherwise stated, that 9Ç is endowed with its weak* topology. 

In Section 2 of this paper the elements of 0 are characterized as those in L(?Ç) and 
in L(9Ç) that commute with Hankel translations. Here, as customary, LijHp) (respec­
tively, L(^)) denotes the space of all linear continuous operators from H^ (respectively, 
9{£) into itself. Furthermore, necessary and sufficient conditions on the generalized Han­
kel transform ÏQ^S of S G 0^ are established in order that every distribution T G 0^ 
such that S * T G 9^ lie in ?Ç. This is done in Section 3. 

2. Characterizing 0^ in L{9Q and in L(^). Let L(?Ç) (respectively, L(^)) 
denote the space of all linear continuous operators from J-Ç (respectively, 9{£) into itself. 
The characterization of the elements in L(9Ç) and in L(9(^) that commute with Hankel 
translations is our first objective. 

We recall that the Hankel translation rx<j> of (/> G H^ by x G / is defined as 

roo 

(Tx&(y) = Jo <KzWx,y,z)dz (yel), 

where, 
D,(x,y,z) = J^r^^2^(xt)J,(yt)J,(zt)dt (x,y9z G I) 

and J^{z) — y/zJ^{z) (z G I). The map <j> »—> rx(j> is a continuous endomorphism of 9Ç. 
Further 

(2.1) (&,Tx&(t) = r»-l/2^(xm^)(t) (tel) 

whenever </> G ̂  and x G /. 
If « G ̂ 4' and x G /, we define rxu G ̂  by transposition: 

(2.2) (rxu,<l>) = (u,Tx<i>) (</>G^). 

The following analogue of (2.1) holds for the generalized translation (2.2). 

LEMMA 2.1. Letue tt[ and x e I. Then: 

(QfauXt) = r^l/2J,(xt)(^u)(t) (t e I). 

PROOF. For u G H^, x G /, and <j> e fy, a combination of (2.1 ) and (2.2) yields: 

i&^TxU,®^) = (TxU,(t>) = (u,Tx<t>) = (£^«, £VW>) 

= <(£>>)(f), r"-'/2^(xr)(€>^)(f)) 

= <r"-1/2^(arf)(©;«)(0,(©^)(f)>. 
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The classical Hankel convolution <j> * (.p of </>, <p G 9-Ç is the function 

roo 

<j> * (f(x) = y (/>(y)(rx(̂ )(y) dy (x G /). 

The map (</>, (/?) i—> <j)*(p is continuous from ^ x ^ into i ^ . The generalized Hankel 
convolution w * </> of w G ̂  and </> G i ^ is the distribution given by 

(M * 0 , (/?) = (w, </> * </?) ((/? G i ^ ) . 

The map (w, </>) i—> u*<j> is separately continuous from ^ x ^ into #Ç, when 9f^ is 
endowed either with its weak* or its strong topology. Finally, for u G H^ and T G 0̂ >J|C, 
the generalized function u * T G ̂  is defined as 

(2.3) (U*T,<I>) = (U,T*<I>) W G ^ ) . 

Note that each of these definitions extends the previous one. Moreover, 

(2.4) (£>> * T)(f) = r ^ / ^ T X O t ë ^ X O (r e /) 

whenever w G ̂ Ç and T G 0^*. 
If Cy, — 2AT(/z + 1) then the element 5M of O ^ given by 

(<V 0) = cM lim x-^l'2<l>(x) ((/> G ^ ) 
JC—>0+ 

is an identity for (2.3). 
The generalized *-convolution commutes with Hankel translations: 

LEMMA 2.2. Assume that u G H! andx G /. IfT G O' *, f/ierc 

TX(M * 7) = (rxw) * T = u * for). 

PROOF. Since ^ is an automorphism of Of1^ we establish the lemma by fixing t G / 
and using Lemma 2.1, along with (2.4), to write: 

(&^rx(u * T))(t) = r^^j^xtm'^u * T){t) = r2^1j/M(^)(©;D(0(€)>)(0, 
(ô (̂rxM) * r)w = r^ll\^T){t){^rxu){t) = r2^l^(xt)(^T)(tW^u)(t\ 

(©;« * (r,70)(O = r^-1/2(©;r^(0(€>>)(0 = r 2 ^ 1 ^ * ^ WX©>X0- • 

We are now in a position to prove 

THEOREM 2.3. IfT G O'^ andh is the element of L{9Ç) defined by 

(2.5) L<j> = T*<f> (</>G^), 

then 

(2.6) TXL = LTX (xel). 
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Conversely, ifLE L(^Ç) satisfies (2.6) then there exists a unique T G O'^for which 
(2.5) holds. 

PROOF. Let T G O'^. The fact that L G L(^) defined by (2.5) satisfies (2.6) is 
contained in Lemma 2.2. On the other hand, assume that L G L(^) is such that (2.6) 
holds, and define T G H^ by 

Then 

(T * <j>)(x) = (7,rx<f>) = (<VLrx<t>) = {&^rxI4) = («„ * ^ ) W = (M>){x) (x G I) 

whenever <j> G ̂ , which proves (2.5). Since O'^ is the space of convolution operators 
of ty, it follows from (2.5) that T G O'^. As to the uniqueness assertion, note that if 
S G O'^ is such that S * 0 = 0 for every </> e fy, then S = 0. In fact, 5 * </> = 0 
(</> G 5£) and (2.4) imply r^~l/2(^S)(t)(f(t) = 0 (</? G ^ , f G /). By particularizing 
<p(r) = t^li2e-t2 (t G /) we find that r " " 1 / 2 ^ ^ * ) = 0, whence fyS = 0 and 
5 = 0. • 

The following result will help in characterizing the elements of O'^ as those in L(^) 
that commute with Hankel translations. 

LEMMA 2.4. The linear hull of the set of generalized functions of the form TX8^ (X G 
/) is weakly* dense in 9{'. 

PROOF. Since (£>^)(r) = ^+ 1 /2 (t G I), by Lemma 2.1 we have 

(&firx6fi)(t) = ^(xt) (x,t£l). 

If (j) G 9fp does not vanish identically then there exists x G / such that <j)(x) ^ 0, and 
hence 

{rxS,^) = ( f c ^ , © ^ ) = jQ (&^)(t)M*t)dt = <t>{x) ± 0. 

This means that the subset {TX6^ }xei of H^ separates points in Jf^. By [ 1 ], Problem W(b), 
this family is total in ^ with respect to the weak* topology. • 

THEOREM 2.5. IfT G O'^ and L G Ufty is defined by 

(2.7) Lu = u*T (u£ ?Ç)9 

then 

(2.8) TXL = LTX (xel), 

and also 

(2.9) II, G <£,. 
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Conversely, given L G L(^) satisfying (2.8) and (2.9), a unique T G O'^ may be found 
so that (2.7) holds. 

PROOF. That L given by (2.7) satisfies (2.8) is a consequence of Lemma 2.2. Obvi­
ously, it also satisfies (2.9). 

Conversely, let L G L(}Ç) be such that both (2.8) and (2.9) hold. Then 

(2.10) L(u * ^ ) = u * (L^) (M G ?Ç). 

To demonstrate (2.10), define from H^ into 9{^ the linear map 

Aw = L(u * 8p) - u * (L5M) (w G ^Ç). 

The definition of A is consistent by virtue of (2.9). Since A G £(^Ç)> its kernel is a 
closed subspace of H^. In view of (2.8) this kernel contains rxè^ (x G /), and hence 
(Lemma 2.4) it is also dense in !HJ. Therefore (2.10) holds. 

Now, letting T = L6^ we have 

u * T = u * (L5^) = L(u * 6^) = Lu, 

which proves (2.7). 
As to the uniqueness assertion, assume that S G O'^ is not the zero distribution, so 

that </> G ïHp exists for which 5 * <j> ^ 0. Since ^Ç separates points in ^ we may find 
u G H^ such that 

(w*S,</>) = (w,S*(/>) ^ 0 . 

This completes the proof. • 

3. A property of convolution operators. Motivated by Theorem 2 in [4], the pur­
pose of this section is to establish: 

THEOREM 3.1. Let [x > —1/2. For S G O'^, the following are equivalent: 
(i) To every k G N there correspond m, n G N and a positive constant M, such that 

max sup{\(r]DYr^^2(&J)(t)\ :tel,\x-t\ ^ ( l+x 2 ) "*} >(l-^x2yn 

0<£<ra 

whenever x G /, x > M. 
(ii) If Te O'^ andS*Te?Ç, then T G 9Ç. 

PROOF. Suppose that condition (ii) is not satisfied. Then there exists T G O' such 
that S * T G ^ , but T £ H^. This means that r^]/2(&^T)(t) G O, 

r ^ - ^ ^ s w x ^ r K O G ^ , and ̂ r £ ̂ . 
Since both r^-{/2(^S)(t) and r ^ _ 1 /2(©^r)(0 lie in O, to every £ G N there corre­

spond r ^ N , M f > 0 satisfying 

(3. l) \(rlDYr^-^\^S)(t)\ < MKI + t2r (t G /), 
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and se eN,Ni > 0 satisfying 

(3.2) | ( r l D Y r ^ l ' 2 ( ^ T ) ( t ) \ < Ne(i +t2)^ (t G /). 

Moreover, as fe'^T ^ i ^ , there are lo.no G N and a sequence {(,}7GN
 m L such that 

tj —> oo and 

(3.3) | ( r lD)'T"- , / 2(^T)W|i=« y | > (1 + fy)""0 0' € N). 

Set k = S(0+i +HQ + 2, and define 

(3.4) Bu = {tel:\t-tj\<(l+tjrk} (/GN). 

From (3.2) and (3.3) we infer that, for sufficiently large j , 

(3.5) inf K r ' D ï V - ' / ^ D W l > ^(1 +^r"° > 0. 

In fact, if 7 is large enough and if t G 2^*, then 

- (tj+a+i?)-*)(i+*?r* sup I ^ D ^ V ^ ^ C ^ O O I 

> (1 +*?)-"<> _ c(l + *?)V'-*+I 

= (i+r?rwo-c(i+^r,io~1, 
where C > 0 is a constant independent fromj. This proves (3.5). 

Now r*À-l/2(&fiS)(t)(&fiT)(t) G ̂ , and therefore 

(3.6) sup K r ^ ) ^ - 2 ^ 1 ^ ; ^ ) ^ ; ^ ) ! = 0((1 +/?r w ) (*,* G N, y— oo). 

Certainly, for fixed ^ G N w e may write 

sup \(rlDYr2^l(^S)(t)(^T)(t)\ 
KB» 

= sup \(y-lD)Y2"~\^S)(y)(^T)(y)\y^tj\ 
\t\<d+tj)-k 

<cn/ sup (i + (r+^)2)"B<cIIf4i + /?-(i + /?r*)"n, 

where Cn^ > 0 is a constant, and the right-hand side of this inequality is clearly 

Next we aim to prove that 

(3.7) max sup | ( r 1 D) ' r / 1 - 1 / 2 (£ ' S)(t)\ = 0((1 + f2)-") (m,n G N, y — oo), 
0<i<mteB 
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a contradiction to (i). In the sequel, n will denote an arbitrary positive integer. 
We first assume that £o = 0 and proceed by induction on m. 
In view of (3.5) and (3.6), we have 

sup I r ^ / ^ s x o l < 2(1 + /?r sup |r2*-k©;s)(0(©;W)l 
t€BjJc t£BjJc 

= o(a+t]rn) o'->oo). 
Thus, condition (3.7) is satisfied for m = 0. 

Now suppose that (3.7) holds for some m. We must prove that it also holds for m + 1. 
By Leibniz's rule, 

r^-l/\^T)(t)(rlD)m+h-^x'\^S)(t) 

= E^iy (m | *W (* G /). 

Bearing in mind (3.2), (3.6) and the induction hypotheses, we find that 

supkr^r^-^r^1/2^^)^^1^)1^-1/^©;^))! = o((i+jrn) 
teBjt 

as j —> oo, whenever 0 < / < m + 1. Consequently 

satisfies this very estimate, and from (3.5) we conclude 

sup \(rlDT+lr»-l/2(&^S)(t)\ 

< 2(1 + /?)"<> sup |r""1/2(©JlD(0(r1D)wtlr'i-1/2(©^S)(0| 

= 6>((l + f2)-") (/ —oo). 

This shows that (3.7) holds when £Q = 0. 
Next, assume that £o ^ 0 and £o is the smallest positive integer for which no e N and 

a sequence {(/}7<EN in I may be found so that (3.3) (and hence, (3.5), with large enough 
j) is satisfied. This means that 

(r xDYr^ l l2(^T){t) = o((l + f2)-n) (I <l0, t^ oo). 

Arguing as in the proof of (3.6) we are led to 

(3.8) sup |(r 1D)£r^1/2(©;r)(0| = o((i + t]yn) a < «0, y - oo). 

By virtue of Leibniz's rule, 

r"-l'2(&liS)(t)(t-lD)eor^-^2(^T)(t) 
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Then, from (3.1), (3.6) and (3.8) it follows that 

(3.9) sup Ir^1^^^)^-1^)^^-1/^^)! = o((i + tjyn) (/-> oo). 

Finally, using (3.5), (3.6) and (3.9) we obtain (3.7) by an argument similar to that em­
ployed in the case £o = 0. This completes the proof that (i) implies (ii). 

Conversely, suppose that (i) does not hold. Then there exist k G N and a sequence 

{(/}iGN in A with h —• °°> s u c n that 

(3.10) max sup | ( r " ^ / r " " 1 / 2 ^ ' S ) ( / ) | < (1 + t2)~j (/' G N), 
°^3teBM * J 

where the sets Bjk are given by (3.4). There is no loss of generality in assuming that 
t0 > 1 and tj+\ > tj + 1. Let a G ©(/) be such that 0 < a < 1, supp a =[1/2,3/2], and 
a(l) = 1, and set 

/ 1 \ °° 
Oj(t) = a (l + -(t-tj)(l+t})k), 0(/) = £0,-(') itel). 

V l ' 7=0 

The sum defining 6 is finite, because suppfy = Bjk (/ G N) and #;* D ̂  — 0 0 J £ N, 
i ^ 7). If £ j G N and t G %* then, for some am G R (0 < m < £), we have 

Kr^)^^)! = Kr1©)^)! = E \amr'-mirOj(t)\ 
m=0 

< 2f+m £ Kzr^wl 
m=0 

< Q 2 - " ( l + /2)W £ ^ M l , = 1 + i ( , - 0 ) ( 1 + ^ | 

<Q(1+*?)*' < Q ( 1 + ^ , 

where Q > 0 denotes an appropriate constant (not necessarily the same in each occur­
rence). Then 

(3.11) \(t-lD)e0(t)\ < Q ( l + t2)u (t G /), 

thus proving that 6 G O. Hence, there exists 7 G O ^ such that (&^T)(t) = t»+l/26(t) 
(t G /). Let n, t G N. The function 

(l + fnrlD)lr2»-\^s)(t)(^T)(t) (ter) 

is bounded on the interval 0 < t < tn+M — (1 + tl+ki)~
k. Lettingy = n + kl + r (r e N) 

and t G #/,*> Leibniz's rule, along with (3.10) and (3.11), implies 

Id + /2y,(r,D)<r2"-1(^S)(0(^D(/)| = |(i +f2)"(r,D)V"-1/2(£;s)«0(Ol 
< c(i +/2y+*'(i +/?)""-" < c, 
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where C > 0 is a suitable constant (concerning the value of C, we make the same con­
vention as before). This shows that r^l/2(&^S)(t)(^T)(t) G ^ . But &J £ ^ , 
since 

Ç-l/2(&fiT)(tj) = (x(l) = l 

as tj • oo. We conclude that T G Of and that S * T e ?Ç although T £ fy, which 

contradicts (ii) and completes the proof. • 
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