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ABSTRACT

A practical method is developed for computing moments of insurance func-
tions when interest rates are assumed to follow an autoregressive integrated
moving average process.
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1. INTRODUCTION

In most of the insurance literature the theory of life contingencies is developed
in a deterministic way. This means that mortality happens according to an a
priori known mortality table and that the interest rate is assumed to have a
constant value. Nevertheless, the traditional theory of life contingencies
implicitly deals with the stochastic nature of mortality and interest rates in that
conservative assumptions are taken.

A first step forward was to consider the time until decrement as a random
variable, while the interest rate was assumed to be constant. This approach is
followed in BOWERS et al. (1987). This (as one could call) "semi-stochastic"
approach contains the traditional theory in that most actuarial functions can
be considered as the expected values of certain stochastic functions.

It is only since about 1970 that there has been interest in actuarial models
which consider both the time until death and the investment rate of return as
random variables.

BOYLE (1976) includes the stochastic nature of interest rates in assuming that
the force of interest is generated by a white noise series, that is forces of interest
in the successive years are normally distributed and uncorrelated.

In the approach of POLLARD (1971) the force of interest in a year is related
to the force of interest in the preceding years by using an autoregressive process
of order two.

PANJER and BELLHOUSE (1980) and BELLHOUSE and PANJER (1981) develop
a general theory including continuous and discrete models. The theory is
further worked out for unconditional and conditional autoregressive processes
of order one and two.
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132 JAN DHAENE

GIACCOTTO (1986) develops an algorithm for evaluating present value
functions when interest rates are assumed to follow an ARIMA (/?, 0, q) or an
ARIMA (p, 1, q) process.

The goal of this study is to state a methodology for computing in an efficient
manner present value functions when the force of interest evolves according to
an autoregressive integrated moving average process of order (/?, d, q). As will
be seen, the method developed here will require less computing time than
Giaccotto's method for autoregressive integrated moving average processes of
order (/>, 0, q) or (p, 1, q).

It should be remarked that we assume that mortality and interest rates
posses a certain stochastic nature and that only accidental fluctuations in this
mortality and interest rates are considered. Other fluctuations due to mortality
improvement, underwriting practice, the choice of a wrong interest model,
investment strategy and so on are not considered here.

2. GENERAL THEORY

The theory developed in this section is mainly based on the work of PANJER

and BELLHOUSE (1980) and BELLHOUSE and PANJER (1981).
Let D, be the stochastic variable denoting the discounted value of one dollar

payable in t years (/ = 0, 1, 2,...). The stochastic variable X, defined by

(1) D, = exp(-X() t = 0 ,1 ,2 , . . .

can be interpreted as the force of interest over the first t years.
If dj is the force of interest in the z'-th year (i = 1,2,...), then

Xo = 0

(2) * ,= X>/ t=l,2,-
;= i

It is assumed that X, is normally distributed with mean /u(t) and variance-
covariance function a(t, s). The variance of X, is equal to a(t, t) and is denoted
by a\t).

It is immediately seen that E[D\\ and E\D\D!
S] are the moment generating

functions of the normal distributed variables kX, and (kX, + IXs) calculated for
the value ( -1) . So one finds that

- - - - - • e

2

and

k2

(4) E[D*D'S] = exp \ \' '_\ \

t,k>\

2

2
, s) /, s, k,l>\
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PANJER and BELLHOUSE (1980) proved that when the X, are normally
distributed, the moments of and the correlation coefficients between interest,
annuity and insurance functions depend upon E[D^] and E[D^D'S], For a
whole life term insurance, for instance, the moments of the stochastic variable
Ax are given by

(5) E[Ak
x]=

The second moment for the life annuity ax is given by

QO t t

(6) £ [ $ = £ ' I ^ Z Z
t=\ r = l s=l

Given a model for the yearly forces of interest 8,, the problem is to find fi(t),
a2(t) and a(t, s) for t, s > 1.

3. AUTOREGRESSIVE INTEGRATED MOVING AVERAGE PROCESSES

Assume that the stochastic model governing future forces of interest 8,
(t = 1,2,...) belongs to the class of ARIMA (p,d, ^-processes. Then 8, is
generated by the stochastic difference equation

(7) Vd8, = » + bx(V
d5t-{-n) + b2{Vddt-2-ti)+ ... +bp(V

dSl-p-fi)

where Vd stand for the d-th backward difference operator:

(8) Vx5t= 7«J, = <$,-<?,_,

(9) Vdd, = ViV"-^,) d= 2 ,3 , . . .

By convention we set V° 8, = 8,. Further £, is a normal white noise series with
mean zero and variance a2. Equation (7) can also be written as

(10) Vd, = a + b, Vd8t.y+ ... +bp V
d8t.p + ̂ t-c^t^- ... -c,f,_,

with a given by

p

(11) a = fi(l - J ] b,)

Equation (7) indicates that the process describing 8, will not necessary be
stationary. This means that the force of interest 8, will not necessary have a
constant unconditional mean, variance and autocovariance with any 8t^k for
t =£ k. The d-th difference of 8t however follows a stationary autoregressive
moving average process. This means that the series describing the interest rate
exhibits homogeneity in the sense that, apart from local level, or perhaps local
level and trend, one part of the series behaves much like any other part.
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In what follows it will implicitly be assumed that the past (p + d) forces of
interest <50, <S_,,.. . , <5,_p_rf and the past q random disturbances £ 0 , . . . , Z\-q

are known. Means, variances and covariances will always be considered as
conditional on dQ, S_u ..., 5x_p_d, £0, £_ \,..., ^\-q- Remark that if 5, fol-
lows an ARIMA (p, d, g)-process then the X, given by (2) are normally
distributed so that the theory of section 2 can be used.

The variable Y, is defined as

(12) Y, = 51-p-d+S2-p-d+ ...+S, t>\-p-d

Further we set

(13) r-,-rf = o

It follows immediately that

(14) St=Yt-Y,^ t>\-p-d

So if 5, follows an ARIMA (p,d, ̂ -process given by (10) with
<50,..., <5i-p-</, £o> •••> £i-« known then Y, follows an ARIMA (p,d+ 1, q)-
process given by

(15) Vd+l Yt = a + bx V
d+l y , _ , + ... +bp V

d+l Y^ + t.-dZ,-!- ... ~cqZ,-q

with y _ p - d , Yj-p.j,..., Yo and Zo,Z-i ,...,Zi-q known.
Now it is easy to see that the ARIMA (p, d+ 1, ^-process describing Y, can

be written as an ARIMA (/, 0, ^-process with I = p + d+l:

(16) Yt = q q

with 4>i, $2 > • • ••><!>! suitable functions of b\,..., bp.

Examples

(1) If d, follows an ARIMA (p, 0, ̂ -process then

(17) S, = fi + bl(Sl_l-M)+ ... +bp(6,-p-M) + Zt-cl£l-l- ... -cq

Y, can then be written as an ARIMA (/?+ 1, 0, ^-process given by

(18) Yt = a+d>{ F,_,+ ... +d>p+x Y.-^i + t.-aZ.-i- ... -cqZ,-q

with

p

(19)

and

(20) fc = *,.-*,._!

with b0 = - 1 and bp+l = 0
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(2) If d, follows an A R I M A (p, 1, ^ -process then

(21) VS, = /I + 6 1 ( 7 < $ , _ 1 - A 0 + ••• +bp{V6,-p-n) + $,-clSl-1- . . . - c , £ , _ ,

Y, can then be written as an A R I M A (p + 2, 0, ^ -process given by

(22) r , = a + 0 1 r / _ 1 + . . . + ^ + 2 y r _ , _ 2 + ^ - c 1 ^ _ 1 - . . . - c , ^ _ , t>\

with

(23) a = Ml ~ Z 6/)

and

(24) ^ = 6 1 -26 / _ i + */-2 i = l , . .

with b-\ = Z'p+i = bp+2 = 0 and 60 = - 1

In the next lemma we derive an expression for the Y, in terms of known
values plus a function of future error terms £,,.

Lemma 1

Assume that Y, moves according to an ARIMA (/, 0, ^-process given by (16)
and with Yo, F _ , , . . . , y t _ ; and <f0, £ _ , , . . . , £,x_q known. The Yt can be
written as

(25) Y, =

i— 1 7 = max(0, /— t)

q i - l 1 -1 r - 1

Y <f V + Y
i = l / = max(O, i - l ) i = 0

where the coefficients a, and pt are given by

(26) a0 = 1, y?0 = 1
min (/, /)

(27) a,- = Z <*/a<-7 ' ^ !

min (/, q)

(28) P, = a,-

Proof

F o r a r b i t r a r y c o n s t a n t s a, (/ = 0, 1 , . . . , ? — 1) w e find fo r t > 1

(-1 / l+j-l q t+j-l 1-1
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By interchanging the order of summation in the second member of this
equation and by using the a, and /?, defined in (26), (27) and (28) we find

( + / - 1 min(i,/) t + q—l min (;',</)

Yt = Z Y'-i Z bai-j ~ Z &-<• Z c/a<--;
i = / j=i-t+\ i=t j-l-i+l

t-l t-\

+ a £ a,- + X &£,_,-
i=0 i=0

After some straightforward calculation (25) is obtained.

Remark that the first, the second and the thirth term in the right member of
(25) are constants while the fourth term is stochastic.

In the following theorem expressions are derived for computing //(/), o2{t)
and a(t, s).

Theorem 1

If Y, follows an ARIMA (/, 0, ^-process given by (16) then /i(t), a2(t) and
a(t, s) can be computed by

/ / q

(29) /u(t) = a- Y0(l — X d>i) + Z <t>iM(t-i) ~ X c,ri(t-i) t > 1

( = I / = I / = i

w h e r e /x(0) = 0 a n d n(-i) = - ( < 5 0 + . . . + < ? , _ , • ) / = 1 , . . . , / - 1

r & i < o
and 7/(0 = i

[ 0 / > 0

(30) a 2 (0 = a2 X

with V ( 0 ) = 0 and the ;?, defined in (26), (27) and (28).

(31) a(r,s) = <

Proof

From (2), (12) and (16) we obtain

X,= -YQ + a+4,Yt_x+ ... +^ / r / _ ; + <Jt-c1 <?,_,- ... -cqZt-q t> 1
Taking the expected value of both members gives (29).

(30) and (31) follow immediately from (25).
The results obtained in lemma 1 and theorem 1 become much simpler if Y,
follows an ARIMA (/, 0, 0)-process. The expressions to compute fi(t), a2(t)
and a(t, s) for this case are stated in the following theorem.

https://doi.org/10.2143/AST.19.2.2014904 Published online by Cambridge University Press

https://doi.org/10.2143/AST.19.2.2014904


STOCHASTIC INTEREST RATES 137

Theorem 2

If Y, follows an ARIMA (/, 0,0)-process given by (16) with
cl = c2 = ... = cq = 0 then /i(t), o2(t) and a(t, s) can be computed by

(32) 0(0 = a~ ro(l -
/ = i / = I

where //(0) = 0 and ^ ( ~ 0 = ~(<5o+ •••

(33) <72(r) = a2

with CT2(0) = 0 and the a, defined in (26) and (27)
S

(34) a(t, s) = a1 £ a,_,a,_,- ? > .y > 1

The proof follows immediately from theorem 1 by deleting the terms in
c, (i = \,...,q).

4. REMARKS

The method described by GIACCOTTO (1986) for ARIMA (p, 0, q)- and
ARIMA (p, 1, ̂ -processes requires for the computation of o2(t) values of
Xj{t) and j , ( / ) (i = l,...,t), which can be computed recursively but that
depend on /. In the method developed here for computing a2(t), the algorithm
is written so that the a,- and /?,-values are independent of /.

We remark from theorem 1 and 2 that o2(t) and a(t,s) are independent of
the past forces of interest c50,<5_,,...,^1_/. So it follows that when the same
interest rate model is used from year to year with only the past / forces of
interest and the past q disturbances changing, the a2(t) and a(t, s) remain the
same. Only the /x(t) will have to be recomputed every year.

5. EXAMPLE

To use our results the following procedure should be followed:

1) Choose an ARIMA (p, d, q) interest rate model and estimate the parame-
ters involved, (see e.g. Box and JENKINS (1970)).

2) Write Y, as an ARIMA (p + d+ 1, 0, ^-process.
3) Compute the a,-'s and the /?/s.
4) Compute fi(t), a2(t), a(t,s).
5) Compute the moments of actuarial functions.

To illustrate the procedure assume that we have the following model for the
interest rate:

S, = 0.08 + 0.6 (<?,_,- 0.08)- 0.3 (<5,_2- 0.08) + & t > 1
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where £,, is a white noise series with variance 0.0016 and So = 0.06 and
<J_! = 0.07.

Using (18), (19) and (20) Y, can be written as

Y, = 0.056+1.6 r , - , - 0 . 9 r,_2 + 0.3r,_3 + £( t > 1

The a,, n{t), o2{t) and a{t, s) can then be computed by using theorem 2 and
formula (26) and (27).

In table 1 at, n(t), o2(t), E[D,] and Var [Dt] are given for / = 0, 1 , . . . , 5. In
the last column the discounted value of 1 $ payable in t years computed with a
constant force of interest equal to the unconditional expected value of 6, is
given. In the example described here the stochastic approach leads to higher
single premiums. This fact could be expected by observing So and 3 _, .

TABLE 1

MEAN AND VARIANCE OF A PAYMENT OF 1 $ DUE IN t YEARS

t

0
1
2
3
4
5

a,

1
1.6000

1.6600
1.5160

1.4116

M(t)

0
0.0710

0.1516
0.2347

0.3163
0.3964

(72(0

0
0.0016
0.0057

0.0101

0.0138

0.0170

E[D,\

1
0.9322

0.8618
0.7948

0.7339
0.6784

Var[Z>,]

0
0.0014

0.0042
0.0064

0.0075
0.0080

exp(-0.08 0

1
0.9231
0.8521

0.7866

0.7261

0.6703
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