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MANIFOLDS WITHOUT GREEN’S FORMULA*

MOSES GLASNER

Recently attention has been focused on manifolds that carry covariant
tensors that are merely bounded measurable. In terms of these tensors
global differential equations are defined and their weak solutions are called
harmonic functions. Nakai [6] initiated the classification of these manifolds
with respect to the global properties of the harmonic functions that they
carry.

The classical Green’s formula SQ(Vvo ru + vdu)dv = Swv%ds is no lon-
ger meaningful due to illusiveness of the tensor on sets of measure zero.
Previously, a great many appeals to Green’s formula were made for the
purpose of establishing orthogonality in the Dirichlet inner product. The
very definition of (weak) harmonicity on manifolds of this sort makes these
appeals unnecessary. This observation already allows one to reproduce a
considerable amount of the theory (cf. [5], [6], [7], [2]).

On the other hand, Green’s formula has been used to give more de-
tailed information and in this paper we present a substitute. Essentially, it
is fabricated from the capacitary measure and its relation to the Dirichlet
inner product introduced by Stampacchia [11]. We then apply it to gene-
ralize Sario’s principal function theorem, as well as the construction of the
operators L, and L;, and to establish the Royden-Nakai decomposition theorem
in this setting (cf. [107, [1], [3], [9], [8])-

These are some of the basic tools of the classification theory of Riemann
surfaces and Riemannian manifolds and using them one should be able to
develop a theory for the manifolds studied here.

It should also be pointed out that although Nakai (cf. [8, p.304]) and
Walsh [12] have established the principal function theorem in Brelot’s har-
monic spaces, their notions of flux on the manifolds considered in this paper
can be easily computed only by using our observations.
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1. We consider a C!, orientable, connected, separable noncompact m-
manifold R. We shall call R a Riemannian manifold if it carries a symmetric
covariant tensor (g;;) which is Lebesgue measurable and essentially bounded
in parametric balls. We further assume that there exists a covering of R
by parametric balls &= {B} in which the following ellipticity condition is
met: there exists a » such that '

@ 2T E|R = E(gi ()€ = #lE]%

for every vector éeR™, almost every x<B and every Be .

The usual definition of the Hodge star operator gives an isomorphism
of the exterior algebra of measurable forms over R. For an open set Uc
R we consider the set .7 (U) of Tonelli functions on U, i.e. the real-valued
continuous functions on U with weak exterior derivatives and finite Dirichlet

integrals Dg(f) = Sde A *df < + oo for compact sets KcU. The mixed Di-

richlet integral of e, fe 7 (U) is Dgle, f) = SKde A*df. In a parametric
ball with local coordinates # the Dirichlet integral of e, f&€ 77 (B) is

@ Dile, /)= yggecsuds,

z(K)

where (¢'’) is the inverse and g the determinant of the matrix (g;;) and e,
f=, are weak partial derivatives.

Denote by &2(U) the C' functions with compact supports in U. A fun-
ction u is called harmonic at a point xR if there is a neighborhood U of
z such that ue 7 (U) and if for every open set V with VcU we have D,
(u, ¢) = 0 for every e (V). For an open set 2 we denote by H(Q) the
space of harmonic functions on £, i.e. u€ H(Q), if « is harmonic at every
point of 2. If # is a coordinate system on a parametric ball Be &, then
a function u€H(B) is a weak solution of the uniformly elliptic equation

(/—g—gijuxi)x) =0

in 2(B). The sheaf {(#, 2)|2 open, uc H(Q)} forms a harmonic space in the
sense of Brelot (cf. [4], [5], [2]) and we shall use the results of the axiomatic
theory freely.

2. The Dirichlet integral over R of functions e, f€ 7 (R) is defined
by Dle, f) = limg.r Dgo(e, f). This limit exists for all pairs of functions with
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D(e) = limg.r Dy(e) < + o0 and D(f) < + . The Royden algebra M of R is
the set of all fe 97(R) which are bounded and D(f) < + . For a se-
quence {f,} of functions we use the notations f = C-lim f, to indicate f,
converges uniformly to f on compact subsets of R, f = B-lim f, to indicate
f=C-lim f, and {f,} is bounded and f = D-lim f, to indicate lim D(f — f,)
=0. We write f = BD-lim f,, for example, to indicate two modes of con-
vergence.

Lemma 2.1, The Royden algebra M is an algebra and a lattice under the
operations N, U of pointwise min and max. If {f.}CM, f = B-lim f, and {f.} is
D-Cauchy, then f = BD-lim f, and fe M.

Lemma 2.2, Let Q be a relatively compact open set in R and f<M with supp
fcR, then there exists {9,}CCYR) such that supp ¢,CQ and f = BD-lim ¢,.

For the proofs of these lemmas see [7] (also cf. [9]). It is relations (1)
and (2) that is the key.

CoROLLARY 2.3. If Q is a relatively compact open set in R and he MNH(Q),
then D(h, f) =0, for every feM with supp fCQ.

Indeed for every ¢, approximating f in the sense of the lemma we can
see that D(k, ¢,) = 0 from the definition of harmonicity and the existence
of a partition of unity subordinate to any finite open cover of supp ¢,.

3. A relatively compact open set 2 will be called regular if 62 is a C!
submanifold of R. For regular open sets the Dirichlet problem is solvable.

TueoreM 3.1.  Let Q,, Q be regular regions with 2cQ, There exists a
positive measure p on 8Q such that

Sso dpe = D(p, u)

Sor all oM with supp ¢<Q,, where us M such that u|Q2 =1, supp uc 2, and
us H(2,\2).

This is merely Stampacchia’s result [11, Théoréme 3.9]. His hypothesis,
the coercivity of Dg, (-, +) on the completion of the space (2, with re-
spect to the norm Saol fl#1 + D§/3(f), is verified easily in view of (1) and (2).
This has also been remarked by Maeda [5].

From the observation that the theorem depends only on the behavior
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of the functions on 2,\2 we obtain the following.

CoRrRoOLLARY 3.2.  There exists a positive measure v on a2 such that Stp dv =
D@, u,) for all ¥eM with supp¥CR\Q where u,sM such that u,|2 =0,
uolR\Qo =1 and MOEH(.QO\.Q).

Note that » and u, above are related by u« =1—u, Thus D(f, u) =
— D(f, u,) for any feM. Moreover, given any f€M we can write it as
f=¢+ ¥ where ¢, ¥eM, suppec2, and supp¥cR\2. The following
generalized Green’s formula now follows.

CororrarY 3.3 For any feM

Dif, w) = £ du—(r av.

If he MNH(Q,), then by Corollary 2.3 D(h, u) = 0 and therefore we have
the following.

COROLLARY 3.4. For he MNH(Q,), Sh dp = Sh dv. In particular Sa’y =

{a.

4. A regular boundary neighborhood W of R is the complement of a
regular region 2. We now turn to the principal function problem. Given
seH(W), when is it possible to find a p=H(R) which “imitates” s on W?
In order to describe the mode of imitation we introduce the following de-
finition of normal operators. Let L : M(a) > H°(W), where « =W, M(a) is
M restricted to a« and HS(W) are the functions in H(W) with continuous
extensions to «.

DeriniTiON.  The operator L is called normal if

(a) Lfla=7f

(b) L is linear

(¢) min, f<Lf<max,f

(d) D(Lf, u) = 0.

Here # has the same meaning as in No. 3. i.e. for a regular region 2,,

with 2cQ,, 2 = R\W, u is the function in M with #|2 =1, #|R\Q, =0, uc<
H(Q,\2). Condition (d) is independent of the particular choice of 2, but for
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the sake of clarity we keep it, as well as 2 (and W), fixed. In fact if Qf
were another regular region containing 2 and «’ the corresponding function,
then suppu# — #’ is a compact subset of W and consequently Corollary 2.3
gives D(Lf, u —u') = 0.

Tueorem 4.1.  Given ses HW)NM and L a normal operator. There exists a
pEH(R) such that p|W = s+ L(p — sla) tf and only if D(s, u) = 0.

As above the truth of D(s, #) = 0 is independent of the particular choice
of Q,.

For the necessity we observe that peH(R) implies that D(p, u) =0 by

Corollary 2.3.
To establish the sufficiency we employ the following well-known fact

(ct. [8]).

LEmMA 4.2, There exists a q=(0,1) such that qsupw |h| =sup., |k for all
he HW) which change sign on a, = 92,. '

Assume now that D(s,u) = 0. Thereis no loss in generality in assuming
that s|la =0. For if we can show the sufficiency under this additional as-
sumption, then we replace s by s’ = s — L(s|a) and the resulting p satisfies
pIW =54+ L(p—5s'|la)=s+ L(p— s|a).

Let K be the Dirichlet operator for, 2,, i.e. K : C(a,) > H°(®,) such that
Kflay= f. Also let T:C(a;) > Cla,) be the linear operator defined by Tf
= L(Kf|a)|a,, The problem can be reduced to finding a p=C(a,) such
that

3) p=Tp+ sla,.
For then the problem is solved by defining » by
p12 = Kp, p|W = s + L(Kp|a).

Indeed the maximum principle together with (3) shows that p is well-
defined on 2,nW.

To solve (3) we need to show that

(4) sup | T*(s| ao)| < ¢* sup., |s|, for all &

since P = 5‘.‘; T*(s|es) would be the solution. We note that the hypotheses
0

on s together with Corollary 3.3 give Ss dv =0. By applying Corollary 3.4
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we obtain SKs dp = Ss dv =0. Property (d) of L implies that 0= D(LKs,

u) = SKs dy — SLKs dy = — SLKs dyv. Since y is a positive measure on a,
we conclude that L(K(s|ao)[e) changes sign on «,. Thus by Lemma 4.2,
properties (a) and (c) of normal operators and the maximum principle we
have
sup | T'|(s|eo)| = supq, | L(K(s|ao)|a)]
=< gsup | L(K(s|a)|a)|
= gsup. | K(s|ao)| < gsup,, |sl.

Inequality (4) follows by repeating the argument & times.

5. We now turn to the task of demonstrating the existence of normal
operators. We shall construct operators L, and L, following the procedure
given in [1] which uses the Royden ideal boundary theory. As shown in
[1], on Riemannian manifolds with C-Ho6lder metric tensors the procedure
results in operators which coincide with Sario’s L, and L, (cf. [10]).

The Royden compactification R* of R is the compact Hausdorff' space
which contains R as an open dense subset such that the functions of M
extend to R* continuously and separate the points of R*. Let M; be the
BD-closure of the functions in M with compact supports. The Royden
harmonic boundary is the subset of R*\R given by

4 = {peR*| f(p) =0 for every feM,}.

TueoreMm 5.1, There exists a linear mapping = : M— H(W)N M such that
(5) f==afon 4UQ,
6) D(zf) < D(f).
For every he HW)NM
(7) mingus k< h|W < max,u, k.

This can be established using the techniques of [2] (also cf. [3], [9]).

6. It will be convenient to interpret L : M(a)— H°(W) as acting on
functions feM and having the property that Lf = Lf’ whenever fla = f'|a.

THEOREM 6.1. For a given feM consider F= {gesM|g|Q = f}. There
exists a unique function h&F such that D(h) = mingD(g). Moreover, the mapping
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Ly: f— h|W gives a normal operator.
If we replace the given f by

J fon @
| ((min, f)U f)Nmax, f on W,

then the family F is not disturbed. Therefore we may assume at the outset
that f satisfies

(8) min, f < f|4 < max, f.

Denote by G the family {zg|geF}. By virtue of (5) we have GCF and then
by (7) we see that min, f < h|W < max, f for any rheG.

Set d’ =infg D(h) and d =infrD(g). Clearly d’<d. On the other
hand, for every € >0 there is a g.€F such that d + e=D(g.). Since z9.€G,
we conclude by (6) that d +e=D(g9.)=D(zg.)=d’'. Hence d =d’. We can
therefore choose a sequence {k,}CG such that lim D(k,) = d. Since {h,} is
bounded there exists a subsequence, again denoted by {Z,} with & = B-lim &,
and ke H°(W). The function (h, + ha+,)/2 being in F implies that D(k, +
hasp) =4d. Thus by the parallelogram law

D(hy — hnsp) <2D(hy) + 2D(hpsp) — 4d

and consequently {%,} is D-Cauchy. We conclude by Lemma 2.1 that
h = BD-lim h,eF.

If yeM and ¢|2 =0, then 7 +rpeF for all yeR. Since D(h + rp) =
D(h) 4 2rD(h, ¢) + v*D(¢) = D(h) we must have

9) D(h, ¢) = 0.

If »’ were another minimizing function in F, then D(h, h — k') = 0. This
would give 0<D(h — k') = D(h)— D(h’) =0. Thus 2 =h' and the first as-
sertion is valid.

Now suppose f, f'eM with fla = f’|a and &, k' are the corresponding
minimizing functions. Let

_ Jfon.Q
h =
lh’onW.

Then heF and is also a minimizing function. We conclude that L, is well
defined and clearly satisfies properties (a) and (c) of normal operators.
From (9) we obtain D(h, 1 — u) =0, which is (d). To show the linearity of
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Lyset U= Lof +rLof' — Lo(f +7f"), for reR and f, f'e M. Since ¥ vani-
shes on @2, (9) again gives

D) = D(Lof, ¥) + D(rLof', ¥) — D(Lo(f +7f'), ¥) =0,

which means that ¥ = 0.
7. The operator L, is characterized in the following.

TreorREM 7.1.  To each fE€M there corresponds a constant ¢ and a function
ve M such that v|Q = f, v|d = ¢ and the mapping L, : f — v|W is a normal operator.

We choose an exhaustion {R,}; of R by regular regions such that R, =
2 and R; = 2,. Apply Theorem 3.1 and Corollary 3.2 with R, and R, play-
ing the roles of 2 and 2, respectively. Denote the resulting «, g, v by u,,
ttn, va respectively. Take v,eM with v,|2 = f, v,|R\R, = ¢y, v,€ H(R,\2).
The constant ¢, is chosen so that D(v,, u,) =0, i.e. Sf dp, — SC" dy, = 0.

Since Sd;zn = de,,, the constant ¢, is in the interval [min, f, max, f]. Then

{va} is bounded by sup.|f| and consequently there is a subsequence with
v = B-limv, e HY(W). In addition

D(Vnsp, Vo — Vnip) = (Cn — Cnap)DWnap, 1 — #nap) = 0.

Hence {v,} is D-Cauchy and Lemma 2.1 gives v = BD-limv,eM. Choose a
convergent subsequence of {c,} with limit c€[min, f, max, f1. Then v—¢
= BD-lim v, — c,€ M, which implies that »|4 = ¢ and in turn that the original
sequence {c,} is convergent. From (7) we deduce that v|W depends only
on fla and consequently L, is well-defined. Moreover (7) gives property (c)
of normal operators. Properties (a) and (b) follow trivially from the con-
struction. Finally note that D(v,, #, — u;) =0, since supp #, — u;CR,NW
and conclude that D(v., #,) = D(v,, #,) = 0 which gives D(v, u,) = 0, i.e. pro-
perty (d).

8. Another application of the generalized Green’s formula is the
Royden-Nakai decomposition which we proceed to describe. A Riemannian
manifold R is called parabolic or hyperbolic according as 4 =¢ or 4+ ¢. As
in No. 7 we consider an exhaustion of R by regular regions {R,}7 such that
2 = R, and we use the symbols u,, #, for the « and g that result from ap-
plying Theorem 3.1 with R, and R, playing the roles of @ and £, respe-
ctively. By the maximum principle we see that {«,} forms a decreasing
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sequence and again by Corollary 2.3 we have D(#nsp, #nsp — #,) = 0. Thus
#o = BD-lim u, exists, u.€H(W) and is either strictly less than 1 on the in-
terior of W or identically 1. It can easily be seen that (cf. [6], [3])

Lemma 8.1. R is parabolic if and only if D(u..) = 0.

The norms of the measures g, on a are given by D(u,) which are
bounded. Thus there exists a subsequence of {z,} converging in the weak*
sense to a nonnegative measure g, on a.

Lemma 8.2.  For ge M,, D(g, u.) = Sg dp..

For the proof take a sequence {g,}cM with compact supports such that
g = BD-limg,. For a fixed k take n, so large that supp g.Csupp #.. Then

for every n=wn, we have D(g;, u,) = Sg,c dp, and letting n— oo gives D(gy,

Ueo) = Sgk dp.. Now letting k— oo gives the assertion.

CoroLLARY 8.3. D(u.) = Sd#“" In particular, if R is hyperbolic, then .,
is nonzero.

This follows by noting that u.€M,. The Royden-Nakai decomposition
now follows.

THEOREM 8.4.  Suppose that R is hyperbolic and fe 7 (R) with D(f) < + oo.
There exists a unique pair h, g such that f=h+ g, he H(R) and there exists a
sequence {9.}C M with compact supports with g = CD-lim g,.

For the proof we consider first the positive part f* of f. Taking our
exhaustion {R,}; of R we let %/ be the continuous function on R such that
hi = f* on R\R, and h,€H(R,). Set g,= f*—h,. Then as in preceding
arguments we can see that D(f*) = D(h;)+ D(g,) and D(h}., — h;) = D(h;)
— D(hzip).

Since {4} is eventually positive harmonic on compact sets a subsequence
converges uniformly on compact sets to a harmonic function k'€ H(R) or to
+ oo, Assume the latter alternative. By Lemma 8.2 and the Schwarz

inequality we have
Shé — f dpe = D(— g, #s) = D'*(g7)D""*(u) = DV*(f) DV*(us).

This is a contradiction in view of the facts that f is finite on @, D(«..) is
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nonzero and . is nontrivial. Thus #’€H(R) and also ¢’ = CD-lim g/ exists.

The above procedure gives f~ = A"+ g” with the same properties.
Then f=(h'—h")+ (9 —g") is the desired decomposition. If f =k, + g,
were another decomposition of this sort, then 2, — 72 = g — g, would be the
CD-limit of a sequence {¢,}CcM with compact supports. The harmonicity
of hy— h gives D(hy—h, ¢,) =0 and consequently D(h,— k) =0, i.e. hy— h
is a constant k. But then k is the BD-limit of the sequence of functions
{(pnN1El)U(— |k])} with compact supports. Thus ke M,. Since R is hyper-
bolic, 4 # ¢ and k must be 0.
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