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1. Introduction, A subset G of a non-empty partially ordered set C is called 
normal if it coincides with the set of all upper bounds of the set of lower bounds 
of G. This is equivalent to stipulating that G be the set of all upper bounds of 
some subset of C called a set of generators for G. When ordered by inclusion, the 
family of all normal subsets of C forms a complete lattice with maximum 
C and minimum empty or singleton. The meet operation is simply point 
set intersection; whence, the meet of a family Gt of normal subsets is the set 
of upper bounds of ^JFt where Ft generates Gt for each i. A normal subset 
is called proper if it is neither void nor C, and the proper normal subsets .of C 
form a boundedly complete lattice. 

Throughout this paper, k denotes a fixed infinite cardinal number, and a 
k-set (k-family) is a set (family) with k or less members. A normal subset of C 
which has a &-set of generators will be called k-normal, and the family of all 
^-normal subsets of C will be called the k-normal completion of C. The ^-normal 
completion of a partially ordered set is ^-complete from below; that is, the 
intersection of a ^-family of ^-normal subsets is ^-normal. 

From now on, 5 denotes a compact Hausdorff topological space, C(S) 
denotes the lattice of all continuous real-valued functions on 5, B (S) the lattice 
of all bounded real-valued functions on S, and N(S) the lattice of all proper 
normal subsets of C(S). The latter two of these are always boundedly complete. 
Given a subset F of B(S) bounded from above (below), sup F (inf F) denotes 
the function obtained by taking suprema (infima) pointwise. 

In (3), Dilworth proved that the map h: N (S) —•> B (S) given by h(G) = inf G 
is bi-order reversing (hence, 1-1) and that the functions in the range of h are 
precisely the normal upper semicontinuous functions; i.e., they are the func­
t ions/ in B(S) such that (/*)* = / . For the definitions of g* and g*, the upper 
and lower semicontinuous envelopes of a function g in B(S), see (3). We call 
the normal upper semicontinuous functions in B (S) simply the normal functions 
on 5, and we let N(S) denote the lattice of all of these. 

Dilworth gives the following formulas for the supremum (infimum) in N(S) 
of a subset F of N(S) bounded from above (below): 

(1) sup(N(S))F = (sup F)*, 
(2) ini(N(S))F= ((inf 70*)*. 

The set of all upper bounds in C(S) of a subset E of B(S) will be denoted by 
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E*. Given G in N(Sj with generating set F; viz., G = F*, the image of G under 
the Dilworth map h can be described in terms of the generators. For since 
^~1(f) == {/}* f° r e a c h / in C(S), we have 

h-1 (sup (N(S))F) = {sup(iV(5)),F}* = {(sup^)*}* = F*; 
whence, 
(3) h (F*) = sup (N (S)) F. 

In this paper, we define the ^-normal functions and prove that under the 
Dilworth map h, the image of the set N(k,S) of proper ^-normal subsets of 
C(S) is precisely the set N(k,S) of all ^-normal functions. We show that 
N(&, 5) is a boundedly ^-complete sublattice of N(S) if and only if 5 is a 
&-space (2) and that, when this is the case, N(k, 5) is isomorphic to the lattice 
of continuous real-valued functions on the &-extremally disconnected space 
(2) determined by 5. 

2. The ^-normal functions. In (2), we introduced the notion of a k-regular 
closed set; namely, a subset of 5 of the form cl(F) where V is &-open. We say 
that V is k-open if it is the union of a ^-family of co-zero sets. A co-zero subset 
of 5 is a subset of the form f~l[U\ where U is an open subset of the reals a n d / 
is in C(S). A co-zero set can always be expressed in the form 

5(0 < / < 1) = {x € 5 : 0 < / ( * ) < 1}, 

where / is in C(S) and 0 < / < 1. 
Let Q denote the set of rational numbers. 

THEOREM 1. For a normal function <p, the following conditions are equivalent: 

(1) cl S(<p > X) is k-regular for each real number X. 
(2) For each real number X, 5(0 > X) is the union of a countable family of 

k-regular closed sets. 
(3) For each real number X, S(<j> > X) is the union of a k-family of k-regular 

closed sets. 

Proof. The third condition is a trivial consequence of the second. Assuming 
the third condition for X, let { Vi) be a ^-family of &-open sets such that 
^tcl(Vi) = 5(0 > X). Then V = U , Vt is &-open and cl 5(0 > X) = cl(F). 
For the remaining implication, we note from the first paragraph of the proof 
of (3, Theorem 3.2) that for each real number X, 

(4) 5(0 > X) = \J (q 6 Q, q > X) cl 5(0* > q), 

so that, taking closures and simplifying, we have 

(5) cl 5(0 > X) = cl 5(0* > X). 

Using (5) in (4) yields 

(6) 5(0 > X) = U (q e Q, q > X) cl 5(0 > q). 
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Definition. A k-normal function is a function satisfying the conditions of 
Theorem 1. 

THEOREM 2. The supremum in N(S) of a k-family (bounded from above) of 
k-normal functions is k-normal. 

Proof. Let F denote a ^-family, bounded from above, of ^-normal functions; 
according to (1), it must be shown that (sup F)* is ^-normal. But this follows 
from the fact that for each real number X, cl 5((sup T7)* > X) is equal to the 
^-regular closed set cl(U (/ G F)S(f > X)). 

THEOREM 3. If V is a k-open subset of S, there exists a k-subset F of C(S) such 
that sup F = x(V . 

Proof. First suppose F is a co-zero set and therefore of the form S(0 < g < 1) 
where g is in C(S and 0 < g < 1. For each positive integer n, let gn map the 
reals into the reals continuously as follows: 

gn(r) = r if 1 < r, 
1 - 1/n < gn(r) < 1 if \/n < r < 1, 

0 < gn(r) < 1 - 1/n if 0 < r < 1/n, 

gn(r) = 0 ifr < 0 . 

Then/W = gn o g is continuous and supfn = x(F) . 
Now let F be a &-open set, the union of a ^-family { Vf] of co-zero sets. If, 

for each if Ft is a countable subset of C(S) such that sup Ft = x(Vi), then the 
union ^Fof the Ft is a ^-subset of C(S) such that sup F = x(V). 

THEOREM 4. The Dilworth map h: N(5) -> N(S) carries N(k, S) onto N(k, S). 

Proof. If G is a proper ^-normal subset of C(S), then G = T7* for some non­
empty ^-subset F of C(S). From (1) and (3), h(G) = sup(N(S))F, a ^-normal 
function by Theorem 2. 

Now let 4> denote a positive-valued ^-normal function. For each rational 
number q, let Vq be a &-open set such that cl 5(c/> > q) = cl Vq. Let Fq be a 
^-subset of C(S) such that sup Fq = x(Vq) so that (sup FQ)* = %(cl Vq)\ and 
let qFq denote {qf:f(z Fq). Given x in S, using the upper semicontinuity of <j>, 

4>(x) = supjg £ Q: x £ cl 5(0 > q)} = sup{q G Q: x G cl Fff}; 

hence, using the positiveness, c/> = sup(ç G <2)#x(cl Fff). Therefore, 

0 = 0 * = (sup(g G 0)gx(cl 7,))* = (sup(ç G Ç)g(sup F,)*)* 
= (sup(g G Q)sup(N(S))qFg)* = sup (N(S))F, 

where F denotes the union of the qFq, a ^-subset of C(S). 
If 0 is an arbitrary ^-normal function, then a + cj> is positive-valued and 

^-normal for a suitable scalar a and the result follows. 
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COROLLARY TO THE PROOF. Every positive-valued k-normal junction is the 
supremum in N(S) of a k-famity of scalar multiples of characteristic functions of 
k-regular closed subsets of S. 

In (5), M. H. Stone proved that C(S) forms a boundedly ^-complete lattice 
if and only if the cl-open sets of 5 form a base for the open sets and a ^-complete 
Boolean algebra. An equivalent condition (2) is that every ^-regular closed set 
be open. These conditions have yet another characterization, this time in 
terms of ^-normal functions. 

Definition. We shall say that S is k-extremally disconnected when cl V is open 
for each &-open subset V of S. 

THEOREM 5. The following conditions are equivalent: 
(a) 5 is k-extremally disconnected. 
(b) Every k-normal function is continuous. 
(c) C(S) is boundedly k-complete. 

Proof. Assume S is &-extremally disconnected and let # be a ^-normal 
function. Then for each real number X, S(<j> > X) is the union of ^-regular 
closed sets each of which, by hypothesis, is open; hence, 5((/> > X) is open. 
Thus <f> is lower semicontinuous as well as upper semicontinuous, and is there­
fore continuous. 

Assume that each ^-normal function is continuous and let F be a ^-subset of 
C(S) bounded from above. Then sup(N(S))F', being ^-normal, is continuous. 
Since C(S) C N(S), we must have sup(N(S))F = sup(C(5))F. 

Assume that C(S) is boundedly ^-complete and let V be &-open. Using 
Theorem 3, let F be a ^-subset of C(S) such that sup F = x(V)- Then 

x(cl V) = (sup F)* = sup (N(S)) F = h (F*) = inf F* 

> sup(C(S))F > sup(N(S))F = x(cl V). 

In particular, %(cl V) = sup(C(S))F, a continuous function, so cl V is open. 

3. Characterization of the ^-spaces. The ^-spaces were introduced in (2) 
to describe the class of (compact Hausdorfï) spaces whose ^-regular closed sets 
form a ^-complete subalgebra of the Boolean algebra of regular closed subsets 
of S. The defining condition on S is that cl (S\M) be a ^-regular closed set 
whenever M is; or, equivalently, given V &-open, there is a &-open subset W of 
S such that W U V is dense and W C\ F is void. In this section, the ^-spaces 
are characterized in terms of their ^-normal functions. We first introduce an 
operation in N(S) analogous to/—> —/in C(S). 

Definition. For e a c h / i n N(S), set ^ / = — (/*) = (—/)*. 
It is immediate that ~ / is normal and ^ ( ~ / ) = / . Since / < g implies 

that ~g < ~f, DeMorgan's laws hold; e.g., if V ft exists in N(S), then 
A ~ft exists in N(S) and is equal to ^ V/*. 
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THEOREM 6. The following conditions are equivalent: 

(a) N(k, S) is a boundedly k-complete sublattice of N(S). 
(b) / / / is in N(k, 5), so is ~f. 
(c) S is a k-space. 

Proof. Assume (a) and let F be a given &-open subset of 5. By Theorem 3, 
let F be a ^-subset of C(S) such that sup F = X(V). Set G = {1 - / : / Ç F} 
so that inf G = x(S\V). Therefore, 

x(cl(5\cl V)) = x ( c l in t (5 \7 ) ) = ( x i n t (5 \F ) )* = ((x(S\F)*)* 

= ((infG)*)* =ini(N(S))G, 

which is ^-normal by hypothesis. This implies that cl(5\cl V) is ^-regular. 
Therefore, 5 is a &-space. 

Assume 5 is a &-space, and l e t / be fe-normal. Let X be a given real number. 
For each rational number q < X, cl S(f > q) is ^-regular: let Vq be a &-open 
subset of S such that cl(5\cl S(f > q)) = cl VQ. Then V, defined as U(fl<x) Vq 

is &-open and 

cl 5 ( ~ / > X) = cl 5( /* < X) = cl 5 ( / < X) 

= cl[U(ff<x, ( 5 \ c l 5 ( / > f f ) ) ] = c l 7 , 

a ^-regular closed set. Thus ~f is ^-normal. 
That (b) implies (a) follows from Theorem 2 and DeMorgan's laws. 

4. A second representation of N(fe, 5) when 5 is a £-space. The comple­
ment in 5 of a &-open set will be called a k-closed set; such a set is the inter­
section of a ^-family of zero sets (4). A regular (k-regular) open set is the interior 
of a closed (^-closed) set. The map M —•> int ikf carries the (complete) Boolean 
algebra of regular closed subsets of S isomorphically onto the Boolean algebra 
R of regular open subsets of 5. When 5 is a &-space, it is easy to prove that this 
isomorphism carries the ^-regular closed sets onto the ^-regular open sets. 
Thus, the collection R(&) of ^-regular open subsets of 5 forms a ^-complete 
subalgebra of R. The meet of any two elements of R is simply their intersection. 
In general, the operations of R (of R(fe)) are: 

(7) A* int Mi = i n t ( n , Mt), 

(8) V t int Mi = int cl(U* int Mt), 

(9) - i n t M = int(5\int M), 

where Mt is a family (^-family) of closed (^-closed) sets. 
Throughout the remainder of this section, S is a &-space. Let S denote the 

Stone space of R, the elements of S being ultra-filters x of R. Let r: C(S) —> N(S) 
and a: N(S) —> C(S) be the mutually inverse order-preserving functions given 
by Dilworth: 

(10) T(«)(*) = inf ( 7 € Vjsup(x 3 V)z(x), 
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(11) <x(/)(x) = inf(F G x)sup(x e V f(x). 

Here, V* stands for any fundamental system of neighbourhoods of x. For each 
F i n R, p(V) denotes {x £ S:X 3 V], the cl-open set determined by V. 

Now let S(k) denote the Stone space of ultra-filters of R(jfe) and, for each V 
in R(jfe), P(jfe, F) the cl-open set {y Ç S W : y 3 V). Let i: R(k) -» R denote 
the inclusion so that 7:S —» S(fe), the map dual to i, is onto and given by 

(12) 7(x) = R(k) r\x. 

For R(&) ^ x is an element of S(fe), and evidently a member of 

H {P(*, V): V G R(fc), P ( F ) 3 x} = {/(x)}. 

The map J*: C(S(k)) -> C(S) conjugate to J and given by J*(s)(x) = z(I(x)) 
is a lattice isomorphism into. Define t: C(S(k)) —» iV(5) by 

(13) t = roi*. 

THEOREM 7. TTze ma/? t carries C(S(k)) onto N(k, S); hence, these lattices are 
isomorphic. 

Proof. We first show that the ^-regular open sets form a base for the open 
subsets of S. Let U be open in 5 and x an element of U. Let F be a co-zero 
subset of S such that x € F C cl F C U. Let IF be a &-open set such that 
V C\ W is void and VVJ W dense in S. Then 5\TF is ^-closed and 
x Ç int(5\TF) C U. Thus, for each x is S, the collection O^ of ^-regular open 
neighbourhoods of x forms a fundamental system. We assert that 

(14) t(z)(x) = inf(F Ç O J s u p ( F Ç y € S(*))s(y). 

For 

/(*)(*) = ( T O J * ) ( S ) ( « ) = r ( 2 o / ) ( i ) = inf(F £ V,)sup(F Ç x £ S)*(/(x)) 

= inf(F Ç 0 , ) sup(F G x 6 S)s(J(x)) = inf(F G O J s u p ( F Ç y Ç S(k))z(y), 

using (12) in the last equality and the fact that I is onto. 
Next we compute the action of / on characteristic functions. Let N be a 

cl-open subset of S(k). Then there is a ^-closed subset M of 5 such that 
N = p(kt int M). Given x in 5 and W in O*, sup (IF £ y 6 S(«)x(iV)(y) is 
either 0 or 1: 0 if W is disjoint from int M and 1 if they meet. Therefore, 
t(x(N)) (x) is either 0 or 1, and it is 1 if and only if x is in cl int M. Therefore, 

(15) t(x(p(k, int M))) = x(cl int M) 

for each ^-closed subset M of S. Since every ^-regular closed subset of 5 is of 
the form cl int M for some ^-closed subset M, t carries the family of character­
istic functions of cl-open subsets of S(k) onto the family of characteristic 
functions of ^-regular closed subsets of S. Our result now follows from Theorem 
5, the Corollary to Theorem 4, and the fact that / is an isomorphism. 

https://doi.org/10.4153/CJM-1965-067-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1965-067-1


FUNCTION LATTICES 675 

REFERENCES 

1. W. G. Bade, The space of all continuous functions on a compact Hausdorff space, Univ. of 
California, Berkeley, 1957, unpublished seminar notes. 

2. H. B. Cohen, The k-extremally disconnected spaces as projectives, Can. J. Math., 16 (1964), 
253-260. 

3. R. P. Dilworth, The normal completion of the lattice of continuous functions. Trans. Amer. 
Math. Soc, 68 (1950), 427-438. 

4. L. Gillman and M. Jerison, Rings of continuous functions (New York, 1960). 
5. M. H. Stone, Boundedness properties of function lattices, Can. J. Math., 1 (1949), 176-186. 

University of Pittsburgh 

https://doi.org/10.4153/CJM-1965-067-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1965-067-1

