THE k-NORMAL COMPLETION OF
FUNCTION LATTICES
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1. Introduction. A subset G of a non-empty partially ordered set C is called
normal if it coincides with the set of all upper bounds of the set of lower bounds
of G. This is equivalent to stipulating that G be the set of all upper bounds of
some subset of C called a set of generators for G. When ordered by inclusion, the
family of all normal subsets of C forms a complete lattice with maximum
C and minimum empty or singleton. The meet operation is simply point
set intersection; whence, the meet of a family G; of normal subsets is the set
of upper bounds of \UF; where F; generates G; for each 7. A normal subset
is called proper if it is neither void nor C, and the proper normal subsets of C
form a boundedly complete lattice.

Throughout this paper, 2 denotes a fixed infinite cardinal number, and a
k-set (k-family) is a set (family) with & or less members. A normal subset of C
which has a k-set of generators will be called k-normal, and the family of all
k-normal subsets of C will be called the k-normal completion of C. The k-normal
completion of a partially ordered set is k-complete from below; that is, the
intersection of a k-family of k-normal subsets is k-normal.

From now on, S denotes a compact Hausdorff topological space, C(S)
denotes the lattice of all continuous real-valued functions on .S, B(S) the lattice
of all bounded real-valued functions on S, and N(S) the lattice of all proper
normal subsets of C(S). The latter two of these are always boundedly complete.
Given a subset F of B(S) bounded from above (below), sup F(inf F) denotes
the function obtained by taking suprema (infima) pointwise.

In (3), Dilworth proved that the map %: N(S) — B(S) given by %(G) = inf G
is bi-order reversing (hence, 1-1) and that the functions in the range of % are
precisely the normal upper semicontinuous functions; i.e., they are the func-
tions f in B(S) such that (f«)* = f. For the definitions of g* and g«, the upper
and lower semicontinuous envelopes of a function g in B(S), see (3). We call
the normal upper semicontinuous functions in B (S) simply the normal functions
on S, and we let NV (S) denote the lattice of all of these.

Dilworth gives the following formulas for the supremum (infimum) in N(S)
of a subset F of N(S) bounded from above (below):

M sup(N(S))F = (sup F)*,
@) inf (V(S))F = ((inf F)«)*.

The set of all upper bounds in C(S) of a subset E of B(S) will be denoted by
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E*. Given G in N(S) with generating set F; viz., G = F*, the image of G under
the Dilworth map % can be described in terms of the generators. For since
E1(f) = {f}* for each f in C(S), we have

h=1(sup (N (S))F) = {sup(N(S))F}* = {(sup F)*}* = F*;
whence,

3) h(F*) = sup(IV(S))F.

In this paper, we define the k-normal functions and prove that under the
Dilworth map %, the image of the set N(k,.S) of proper k-normal subsets of
C(S) is precisely the set N(&,S) of all k-normal functions. We show that
N (%, S) is a boundedly k-complete sublattice of N(S) if and only if S is a
k-space (2) and that, when this is the case, NV (&, S) is isomorphic to the lattice
of continuous real-valued functions on the k-extremally disconnected space
(2) determined by S.

2. The k-normal functions. In (2), we introduced the notion of a k-regular
closed set; namely, a subset of S of the form cl(V) where V is k-open. We say
that V is k-open if it is the union of a k-family of co-zero sets. A co-zero subset
of Sis a subset of the form f~1[U] where U is an open subset of the reals and f
is in C(S). A co-zero set can always be expressed in the form

SO<f<1)={xeS:0<fx) <1},
where fisin C(S) and 0 < f < 1.

Let Q denote the set of rational numbers.

THEOREM 1. For a normal function ¢, the following conditions are equivalent:
(1) c1 S(p > N\) s k-regular for each real number .

(2) For each real number N, S(¢ > N\) is the union of a countable family of
k-regular closed sets.

(3) For each real number N, S(¢ > \) is the union of a k-family of k-regular
closed sets.

Proof. The third condition is a trivial consequence of the second. Assuming
the third condition for A, let {V,} be a k-family of k-open sets such that
U;cl(V;) =S(¢ > N). Then V= \U,; V,is k-open and cl S(¢ > \) = cl(V).
For the remaining implication, we note from the first paragraph of the proof
of (3, Theorem 3.2) that for each real number A,

4) Sle>N =\U(g€Qq>NclSex>9),
so that, taking closures and simplifying, we have

5) clS(p > N) =clS(gx > N).

Using (3) in (4) yields

(6) S@>N =€ Qg>NclSe> 9.
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Definition. A k-normal function is a function satisfying the conditions of
Theorem 1.

THEOREM 2. The supremum in N(S) of a k-family (bounded from above) of
k-normal functions is k-normal.

Proof. Let F denote a k-family, bounded from above, of k-normal functions;
according to (1), it must be shown that (sup F)* is k-normal. But this follows
from the fact that for each real number X\, cl S((sup F)* > 1)) is equal to the
k-regular closed set cl(\J (f € F)S(f > \)).

THEOREM 3. If V is a k-open subset of S, there exists a k-subset F of C(S) such
that sup F = x(V .

Proof. First suppose V is a co-zero set and therefore of the form S(0 < g < 1)
where g isin C(S and 0 < g < 1. For each positive integer #, let g, map the
reals into the reals continuously as follows:

() =7 ifl <,
1—-1/n<g(r) <1 ifl/n <r <1,
0< g0 <1l—1/n if0<r<1/n,

2.(r) =0 if r <0.

Then f, = g, o g is continuous and sup f, = x (V).

Now let V be a k-open set, the union of a k-family {V;} of co-zero sets. If,
for each 7, F; is a countable subset of C(S) such that sup F; = x(V,), then the
union F of the F;is a k-subset of C(S) such thatsup F = x(V).

THEOREM 4. The Dilworth map h: N(S) — N(S) carries N (&, S) onto N (k, S).

Proof. If G is a proper k-normal subset of C(S), then G = F* for some non-
empty k-subset F of C(S). From (1) and (3), A(G) = sup(N(S))F, a k-normal
function by Theorem 2.

Now let ¢ denote a positive-valued k-normal function. For each rational
number ¢, let ¥V, be a k-open set such that cl S(¢ > ¢) = cl V,. Let F, be a
k-subset of C(S) such that sup F, = x(V,) so that (sup F,)* = x(cl V,); and
let gF, denote {qf: f € F,}. Given «x in .S, using the upper semicontinuity of ¢,

¢(x) =supfg € Q: x € c1S(¢ > )} =sup{g € Q:x € cl V};
hence, using the positiveness, ¢ = sup(q € Q)gx(cl V,). Therefore,

¢ = ¢* = (sup(q € Q)gx(cl V,))* = (sup(q € Q)q(sup F,)*)*
= (sup(q € Q) sup(IV(S))gF,)* = sup(IV(S))F,

where F denotes the union of the ¢F,, a k-subset of C(S).
If ¢ is an arbitrary k-normal function, then a + ¢ is positive-valued and
E-normal for a suitable scalar @ and the result follows.

https://doi.org/10.4153/CJM-1965-067-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1965-067-1

672 HENRY B. COHEN

COROLLARY TO THE PROOF. Every positive-valued k-normal function is the
supremum in N(S) of a k-family of scalar multiples of characteristic functions of
k-regular closed subsets of S.

In (5), M. H. Stone proved that C(S) forms a boundedly k-complete lattice
if and only if the cl-open sets of S form a base for the open sets and a k-complete
Boolean algebra. An equivalent condition (2) is that every k-regular closed set
be open. These conditions have yet another characterization, this time in
terms of k-normal functions.

Definition. We shall say that S is k-extremally disconnected when cl V is open
for each k-open subset V of S.

THEOREM 5. The following conditions are equivalent:
(@) S is k-extremally disconnected.

(b) Every k-normal function is continuous.

(c) C(S) is boundedly k-complete.

Proof. Assume S is k-extremally disconnected and let ¢ be a k-normal
function. Then for each real number \, S(¢ > N\) is the union of k-regular
closed sets each of which, by hypothesis, is open; hence, S(¢ > \) is open.
Thus ¢ is lower semicontinuous as well as upper semicontinuous, and is there-
fore continuous.

Assume that each k-normal function is continuous and let F be a k-subset of
C(S) bounded from above. Then sup (NN (S))F, being k-normal, is continuous.
Since C(S) C N(S), we must have sup(N(S))F = sup(C(S))F.

Assume that C(S) is boundedly k-complete and let V' be k-open. Using
Theorem 3, let F' be a k-subset of C(S) such that sup F = x(V). Then

x(cl V)= (sup F)* = sup(N(S))F = h(F*) = inf F*
> sup(CENF > sup(N(S)F = x(cl V).

In particular, x(cl V) = sup(C(S))F, a continuous function, so cl V is open.

3. Characterization of the k-spaces. The k-spaces were introduced in (2)
to describe the class of (compact Hausdorff) spaces whose k-regular closed sets
form a k-complete subalgebra of the Boolean algebra of regular closed subsets
of S. The defining condition on S is that cl(S\M) be a k-regular closed set
whenever M is; or, equivalently, given V k-open, there is a k-open subset W of
S such that WU V is dense and W M\ TV is void. In this section, the k-spaces
are characterized in terms of their k-normal functions. We first introduce an
operation in N (S) analogous to f — — f in C(S).

Definition. For each fin N(S), set ~f = — (fx) = (—f)*.

It is immediate that ~f is normal and ~(~f) = f. Since f < g implies
that ~g < ~f, DeMorgan’s laws hold; e.g., if V f; exists in N(S), then
A ~ f;exists in N(S) and is equal to ~ Vf..
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THEOREM 6. The following conditions are equivalent:

(@) N(k,S) is a boundedly k-complete sublattice of N (S).
(b) If f is in N(k, S), so is ~.

(c) Sisa k-space.

Proof. Assume (a) and let V be a given k-open subset of S. By Theorem 3,
let F be a k-subset of C(S) such that sup FF = x(V). Set G = {1 — f:f € F}
so that inf G = x(S\ V). Therefore,

x(clS\cl 1)) = x(clint(S\V)) = (x int(S\V))* = ((x(S\V))*
= ((inf G)+)* = inf(N(S))G,

which is k-normal by hypothesis. This implies that cl(S\cl V) is k-regular.
Therefore, S is a k-space.

Assume S is a k-space, and let f be k-normal. Let X\ be a given real number.
For each rational number ¢ < A\, cl S(f > ¢) is k-regular: let V, be a k-open
subset of .S such that cI(S\cl S(f > ¢)) = cl V,. Then V, defined as U« V,
is k-open and

cdS(~f >N =cS(fs <N =S <N
= cl[Upany S\l S(f > )] =cl 7,

a k-regular closed set. Thus ~f is k-normal.
That (b) implies (a) follows from Theorem 2 and DeMorgan’s laws.

4. A second representation of N(%, S) when S is a k-space. The comple-
ment in S of a k-open set will be called a k-closed set; such a set is the inter-
section of a k-family of zero sets (4). A regular (k-regular) open set is the interior
of a closed (k-closed) set. The map M — int M carries the (complete) Boolean
algebra of regular closed subsets of S isomorphically onto the Boolean algebra
R of regular open subsets of S. When .S is a k-space, it is easy to prove that this
isomorphism carries the k-regular closed sets onto the k-regular open sets.
Thus, the collection R (k) of k-regular open subsets of S forms a k-complete
subalgebra of R. The meet of any two elements of R is simply their intersection.
In general, the operations of R (of R(%)) are:

8) Vint M; = int cl(\J; int M),
9) —int M = int(S\int M),

where M, is a family (k-family) of closed (k-closed) sets.

Throughout the remainder of this section, S is a k-space. Let S denote the
Stone space of R, the elements of S being ultra-filtersx of R. Let 7: C(S) — N (S)
and o: N(S) — C(S) be the mutually inverse order-preserving functions given
by Dilworth:

(10) 7(2)(x) = inf(V € Vy)sup(x 3 V)z(x),
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(1) o(f)(x) = inf(V € X)sup(x € V f(x).

Here, V, stands for any fundamental system of neighbourhoods of x. For each
Vin R, p(V) denotes {x € S:x 3 V}, the cl-open set determined by V.

Now let S(%) denote the Stone space of ultra-filters of R (%) and, for each V
in R(%), p(k, V) the cl-open set {y € S(k): y 3 V}. Let 4: R(k) — R denote
the inclusion so that I:S — S(%), the map dual to 7, is onto and given by

(12) Ix) =R(¢)Nx.
For R(k) M x is an element of S(&), and evidently a member of
N {plk, V): VERK),p(V) 3 x} = {I(x)}.

The map I*: C(S(k)) — C(S) conjugate to I and given by I*(z) (x) = z(I(x))
is a lattice isomorphism into. Define ¢: C(S(k)) — N(S) by

(13) { =r10ol*

THEOREM 7. The map t carries C(S(k)) onto N(k,S); hence, these lattices are
isomor phic.

Proof. We first show that the k-regular open sets form a base for the open
subsets of S. Let U be open in .S and x an element of U. Let V be a co-zero
subset of S such that x € V' C cl V C U. Let W be a k-open set such that
VAW is void and VU W dense in S. Then S\W is k-closed and
x € int(S\W) C U. Thus, for each x is S, the collection O, of k-regular open
neighbourhoods of x forms a fundamental system. We assert that

(14) t(z)(x) = inf(V € O)sup(V € y € S(k))z(y).
For

i) (x) = (roI*)(z)(x) = 7(oI)(x) = inf(V € V)sup(V € x € S)z( (x))
= inf(V € O)sup(V € x € S)z(I(x)) = inf(V € O,)sup(V € y € S(k))z(y),

using (12) in the last equality and the fact that I is onto.

Next we compute the action of ¢ on characteristic functions. Let N be a
cl-open subset of S(k). Then there is a k-closed subset M of .S such that
N = p(k,int M). Given x in S and W in O, sup(W €y € S&))x(N)(y) is
either 0 or 1: 0 if W is disjoint from int M and 1 if they meet. Therefore,
t(x(N)) (x) is either 0 or 1, and it is 1 if and only if x is in cl int M. Therefore,

(15) t(x(p(k, int M))) = x(clint M)

for each k-closed subset M of S. Since every k-regular closed subset of S is of
the form cl int M for some k-closed subset M, ¢ carries the family of character-
istic functions of cl-open subsets of S(k) onto the family of characteristic
functions of k-regular closed subsets of S. Our result now follows from Theorem
5, the Corollary to Theorem 4, and the fact that ¢ is an isomorphism.
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