SOME POSSIBLE AND SOME IMPOSSIB LE
TRIPARTITIONS OF THE PLANE
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For each positive integer n it is possible to partition the Euclidean
plane into n (disjoint) congruent connected sets [1], but if n> 2, it
is impossible to partition the plane into n congruent continuumwise
connected sets such that some one of the sets can be translated onto
another one [2]. This paper is concerned with the possibility of
partitioning the plane into three congruent sets without any topological
restrictions whatever.

Definition. Case (r,, rz) is a partitioning of the plane into three

sets A1, AZ' A3

Aj+1 if je{1, 2} . A rotation through 0 is interpreted as a translation.

such that a rotation through 2w rj carries A, onto
J

Remark 1. If case (ri, r2) is possible, and is realised by the

ordered triple (A1, AZ' A3) of sets, then the following cases are also
possible (as are all cases obtainable by repeated application of these
rules):

(a) (r1+rn, r_+n) (where m and n are integers), realised by

2
(A, A, AL
_ . . A )
(b) (r1+r2, rz), realised by the permutation (A1,A3, 2),
_ _ . . A A
(c) (r2, ri), realised by the permutation (A3, > 1),

(d) (rz, ri), realised by (113, A, Ki), where the bar denotes

2
reflection with respect to some fixed line; and

(e) (—ri, -rz), realised by (A1, AZ' A3).

THEOREM 1. Case (0,0) is possible.
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Proof. I je {1, 2, 3}, let Aj be {(x,y):[x] =j (mod 3)}.
(The brackets denote the greatest-integer function.) In (1) an example
is given in which the three sets are connected but not arcwise connected.

THEOREM 2. Case (0, 1/2) is possible.

Proof. If je {1, 2, 3}, let Aj be the set of all (x, y) in the

plane such that either x is an integer congruent to j - 1 modulo 3,
or x is a non-integer such that [x] = j (mod 3). Then a reflection

through the point (3/2, 0) carries A2 onto A3.

This example also illustrates case (0, 0), and is in fact a special
case of the following theorem.

THEOREM 3. If case (r, 1/2) is possible, then so is case
(r, 0).

Proof. Let a coordinate system be chosen so that (with complex
number notation for the plane)

(1) zsA2 <> -zeA3.
Then
(2) zeA1 <> -zsA1,

since both other possibilities contradict (1). Thus A1 is symmetric
about the origin. Hence A3 is symmetric about some point o. But
then A2 is taken onto A3 by the translation (through 2«@) composed
of a reflection through the origin followed by a reflection through «.
Thus the same partitioning serves for case (r, 0).

THEOREM 4. Case (1/4, 0) is impossible.

Proof. The steps in the proof are indicated schematically in
Figure 1. A coordinate system is chosen so that

(3) zsA1 <> izeA2 and
(4) zsA2<—%z+1eA3.

The horizontal and vertical dashed lines are the coordinate axes.
Points in the lattice of Gaussian integers which are needed in the proof
of impossibility are indicated by dots or symbols j , the latter

m
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Figure 1. Case (1/4,0)

denoting the mth point whose assignment to a set can be determined
from (3) and (4), where that set is Aj if je{1, 2, 3,}, andis

no setif j is ?. Thus, the origin is marked 31, since it must

belong to A3 (a centre of rotation from A1 to A_ can't belong to

2
either A1 or AZ), and is the first point assignable to a set. The

agsignment of points numbered 1, 4, 6, 9, and 12 is by exclusion of
all other possibilities, because of conflicts with previously assigned
points. The presence of the question mark shows that the proposed
partitioning is impossible.

Remark 2. Case (1/4, 1/2) is impossible, by Theorems 3 and
4, Itis easy to see, using Remark 1, that all cases involving angles
which are integral multiples of w/2 can be obtained from those
treated in Theorems 1 through 4.

THEOREM 5. Case (1/3, r) is impossible if r is rational.

Proof. Let c be exp (2mi/3) and let a be exp (2wir).

3
Then ¢ =1 and c2 +c+1 =0, and for some complex number b we
have (after choice of a coordinate system)

(5) zsA1 P <:zsA2 and
(6) ZEA2 <> az+b£A3,
417
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or, equivalently,

(7) zeA3<——>(z-b)/a£A2.

An indirect proof using (5) shows that

(8) zsA2 %czaA3

(one way implication only!). Use of (8) and (7) yields

(9) zsA2 - (cz—b)/asAZ.

From (5) it follows that
A_.
(10) 0 ¢ 3
Hence, by (7),
(11) -b/ae A, .
Repeated application of (9), beginning with (11),yields
n-1

(12) = (c/a)‘j(-b/a) e A

§=0 g

for every positive integer n. Now, by hypothesis, a and c¢ are
roots of unity. Hence also c/a is a root of unity. I a # ¢, then for
any positive integer n such that (c/a)n =1, the sum in (12) is O,
which contradicts (10). However, if a = c (i.e., in the case (1/3, 1/3)),
then let

(13) d be bc/(c-1).

It follows from (13), (5), and (6), after a little computation, that

dsA1 <> cdt:A2 <—> deA3,

which is impossible unless dsAZ. Then (6) and (9) vyield

cd +beA, and (cd - b)/ce A

3 2’

respectively. But this is impossible, since
2
cd +b = b(c +c-1)/(c-1) = (cd - Db)/c.

THEOREM 6. Case (1/6, 0) is impossible.
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Proof. Let c be exp (wi/3). A coordinate system is chosen

so that
(14) z € A1 <—> cz¢ A2 and
(15) zeA2<———> z+1£A3.

Let d be the centroid (c+1)/3 of the triangle with vertices 0, 1, and
c. The proof of impossibility, like that of Theorem 3, is shown
schematically, in Figures 2 and 3. The points indicated are those of
the regular hexagonal tesselation of the.plane in which the centre of one
hexagon is at the origin and one of its vertices is at d. If d is
assumed to belong to Ai’ then Figure 2 is used; points numbered

4, 7, 9, 12, 13, 15, and 18 are assigned by indirect argument. If d
is assumed to belong to AZ’ then Figure 3 is used; points numbered

3, 6, and 8 are assigned by indirect argument. If d is assumed to
belong to A then set

3
B1={Z:C—ZEA1},
B‘2 = {z:c- zsA3} , and
B ={z:c—zsA2}.

3

(Note the permuted subscripts!) Then easy calculations show that

Bi’ BZ’ and B3 form a partitioning of the plane satisfying (14) and
(15) (with "B" replacing "A'" throughout), and that d £B1. Figure 2
shows that such sets Bi’ BZ’ and B3 cannot exist; thus A1, AZ’ and

A_ cannot exist.

3

Remark 3. All cases in which the rotations are integral
multiples of ©m/3 can be obtained from those treated in Theorems 1, 2,
3, 5, and 6, by use of Remark 1. For example, if case (1/6, 1/6),
were possible, then so would be case (1/3, -1/6), which contradicts
Theorem 5.

Remark 4. All constructions used in this paper made essential
use of regular tesselations of the plane. What can be said about the

possibility of other cases (ri, rZ), for example if both T, and r,

are rational? What can be said about partitions into four or more
sets?
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Figure 2. Case (1/6, 0) if deA1 .
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Figure 3. Case (1/6, 0) if de A_ .
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Added in proof: N.K. Krier has pointed out that Figure 1 can be
simplified by omitting the points with subscripts 5, 6, 7, and 8,
labelling the point (2, 0) as 3 and decreasing subscripts higher

5)
than 8 by 3.
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