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A SHARP LOWER BOUND FOR THE RICCI CURVATURE OF
BOUNDED HYPERSURFACES IN SPACE FORMS

AvLAIN R. VEERAVALLI
DEDICATED TO LAMIAE AND LUCAS ZAKARIA WITH GREAT AFFECTION.

We give a sharp lower bound for the Ricci curvature of bounded complete hypersur-
faces of space forms. This leads to several applications.

1. INTRODUCTION AND THE MAIN RESULT.

It is easy to see that if a closed smooth plane curve is included in a disk of radius
r > 0, then there exists a point of the curve for which the curvature is in absolute value
greater than or equal to 1/r. A similar result holds for surfaces: any compact surface
of B3 included in a ball of radius r admits a point for which the Gaussian curvature is
greater than or equal to 1/r%. In 1983, Leung extended these results by showing the
following.

THEOREM. (4] If M is a complete hypersurface of R**! (n > 2) included in a ball
of radius r > 0 with sectional curvature bounded away from —oo, then

n—1

limsupRic (§,£) 2 —
teUM T

where Ric is the Ricci curvature of M and UM the unit tangent bundle of M.

Note that for the sphere of radius 7 in R**! the above inequality is in fact an equality.
A natural question is to search for the Ricci curvature lower bound when replacing the
Euclidean space by any space form. In two recent papers, Beltagy [1] and Erdégan (3]
tried to give an answer but infortunately some estimates are false and the others are not
sharp. In a previous paper [8), the author dealt with a close problem whose ideas can be
used to settle the question. The main result of this work is the following:

THEOREM. Let Sp;1(c) be the simply connected space form of constant sectional
curvature c (c € R, n > 2), M a complete hypersurface of Sp11(c) with sectional curvature
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bounded away from —oo and included in a closed normal ball of radius r > 0 in S",,H(c),
with r < w/(2y/¢) ifc > 0. Then

limsupRic (§,€) 2 (n— 1)(0 + kf(’"))
ceUM

where Ric is the Ricci curvature of M, UM the unit tangent bundle of M and

Vceot (r/€) if ¢>0
ke(r) = 1/r if c=0.

v/—ccoth (r —c) if c<0

As one can see, this generalises Leung’s theorem. Moreover, the function k. is
well-known by Riemannian geometers: the distance sphere of radius r in 5',,+1(c), with
r < w/+/cif ¢ > 0, is an umbilical hypersurface with principal curvatures being precisely
kc(r). It also shows by the Gauss formula that its Ricci curvature is constant and equal
to (n — 1)(c + kZ(r)) Therefore the inequality given in our theorem is sharp.

Before giving the proof, one can remark that (n — 1)(c + kf('r)) is positive for any
constant ¢ and positive r (with 7 < w/y/cif ¢ > 0). This leads to criteria of unboundness:

COROLLARY 1. Let M be a complete hypersurface of Spi1(c) (n > 2) with sec-
tional curvature bounded away from —oco and nonpositive Ricci curvature. If ¢ < 0, then
M is unbounded. If ¢ > 0, then the diameter of M (for both Riemannian distances on
M and S,.,(c)) satisfies diam (M) > 7/(2,/c).

When M is compact, these results can be reformulated in an easier way:

COROLLARY 2.

(i) Let M be a compact hypersurface of S.+1(c). If ¢ is nonpositive, then there
exists a point ¢ € M and a unit tangent vector u to M at q such that

Ric (u,u) > (n = 1)(c+k2(r)) (>0)

where r is the radius of any ball in S,,,(c) containing M. Therefore, if c is
nonpositive, there is no compact hypersurfaces in §,,+1(c) with nonpositive
Ricci curvature. In particular, if ¢ is nonpositive, there is no compact
minimal hypersurfaces in S,;1(c).

(ii) Ifc is positive, then the diameter of any compact hypersurface M of S, (c)
with nonpositive Ricci curvature satisfies diam (M) > n/(2./c).

2. PRELIMINARY RESULTS.

Let (M » s )) be a Riemannian manifold, V its Levi-Civita connection and f : M —
R a smooth function on M. Recall that the gradient of f is a smooth vector field V f
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on M defined by (Vf, X) = X f and the Hessian of f is the (0, 2)-symmetric tensor V2f
defined by V2f(X,Y) <VX (Vf) > ~()7f) (f?}Y)f, X and Y being smooth
vectors fields on M. If M is a submanifold of M with the induced metric and the induced
connection V, we can also define the gradient Vf and the Hessian V2f of any smooth
function f on M. For the particular case of smooth functions f on M of the form f = foi
(wherei: M — M is the canonical injection), these operators are related: for any vector
fields X,Y on M, we have

V2f(x,Y) = X(YF) - (VxY)f
= X(YF) - {(Vx¥) + S(X,Y)} £
(1) =V f(X,Y) - (Vf,5(X,Y))

where S is the second fundamental form of M.

The gradient and Hessian are used in the classical Hopf lemma which says that for
a smooth function f : M — R on a compact Riemannian manifold M, there exists a
point ¢ € M such that V f(g) = 0 and V2f(g)(X, X) < 0 for any vector X € T,M. The
proof of our theorem uses a rather technical result due to Omori which can be seen as a
generalisation of the Hopf lemma:

THEOREM (5] Let M be a complete Riemannian manifold with sectional curvature
bounded away from —co and f : M — R a smooth function on M bounded from above.
Then for any go € M and any € > 0, there exists a point ¢ € M such that f(q) 2 f(q),
|Vf l < € and V2f(q)(X, X) < ¢ for any unit tangent vector X at q.

Another trick used in the proof is an algebraic lemma due to Otsuki:

LEMMA [7] Let S: R™ x R® — R* be a symmetric bilinear form on R* (n,k > 0). If
S"-! denotes the unit sphere of R*, then the function S ' 5> R:z — |S(a:, :v:)l2 achieves
its minimum at a point ¢ and we have the following properties

(i) zo L Ker S(zo,-)
(i1) <S(zo,xo),S(z,x)> > I;S'(:zo,nv:o)|2 for any unit vector x € Ker S(zo,-).

At last, the crucial point in the proof is the following result which uses classical
material of Riemannian geometry:

PROPOSITION. Let (M, (,)) be a Riemannian manifold, p a point of M, d the
Riemannian distance of M and f : M - R:q d2(q)/2. Then

(i) f is smooth on M \ Cut(p) where Cut(p) is the cut point of p.

(i) For any ¢ € M and any tangent vector v to M at g, we have V f(q)
= dy(9)7(dp(9)) and V2f(q)(v,v) = dp(0)(VX (dp(q)), X (dp(a))) where
7 : [O,d,,(q)] — M is the unique normal geodesic joining p to g, X the
unique Jacobi field along v with the boundary condition (X 0), X (d,,(q)))
= (0,v) and VX the covariant derivative of X along ~.
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(iii) In particular, if M = §n+1 (c) is a space form of constant sectional curvature
c and p is a point of M, then for any q € B (r) withr < w/(2,/c) ifc > 0,
and any tangent vector v to M at g withv L Vd, ,(q), we have V2f(q)(v,v)

= dy(q) - ke(dp(@)) - ol
The first two points come from the first and second variation formulae for length and

energy (see, for example, [2] or [6]). For the last point, it suffices to solve the differential
equation satisfied by the Jacobi field.

3. PROOF OF THE THEOREM.

The manifold M is endowed with the metric (, ) induced by S, ,1(c). The Riemannian

distance in S,4;(c) will be noted d and UM = {J U,M will mean the unit tangent bundle
_aeM

of M. We shall also consider the function f = d2/2 : Snt1(c) = R and its restriction

= d2/2 : M - R. As M is included in a closed normal ball By(r), the manifold
M avoids the cut point of p in S,41(c) and therefore the function f is smooth (by the
above proposition) and bounded by 7?/2. Choose a point gy in M different from p. By
Omori’s theorem, for any positive integer m, there exists a point ¢,, € M such that
flgm) = f(q0), |Vf(qm)| < 1/m and V?f(¢m)(u,u) < 1/m for any u € U,, M. Remark
that 0 < dp(go) < dp(gm) < 7. For any integer m > 0, we shall write for convenience ¢,
for dp(gm) and 7y, for the unique normal geodesic joining p to gm. Fix now a positive
integer m and a vector u € U, M. By Omori’s theorem, equation (1), the previous
proposition and the Cauchy-Schwarz inequality, we have

1/m > V2f(gm) (1, ) = V2 F(gn) (2, 4) + bm (7,,,( lm), Squ(,))
(2) > V2 flgm) (1, 6) = bon - | Sy (w,0)|-
Our next work will be to estimate the first term of the right-hand side of equation (2).
We remark that u need not to be normal to V f(gn) (= Z,,."y,,,([m)). In order to apply

the preceding proposition, share u in two parts: u = uf + u"™ where u® (respectively u™)
is normal (respectively parallel) to V f(g). Then

(3)  V2F(gm)(, u) = V2F(gm) (u', u') +2- V2F(gm) (', u") + V2 flgm) (", u").
Of course, we have by the above proposition
V2 F(gm) (0, u') = b - ke(lm) - |0l
Since u" = (u, 'va(qm)>"7,,.(£m)/2m and since <u,§f(qm)> = (u, Vf(q,,,)), we obtain by
Omori’s theorem and the Cauchy-Schwarz inequality

1 1
n —_ L
(4) |u|<m£m\m€o
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and so
1 1

t
—_—1- .
(5) |ef] > 1 ?m,l -

From now, we shall assume that m is choosen sufficiently large to ensure that
1- (l/mfo) > 0.

Finally, note that the linear map L, : T, Sns1(c) = Ty Sns1(c) : w = V,, (—6 f) is
continuous. So ||L,,, || < co and we can write that for any tangent vectors w; and w, to
§n+l(c) at gm,

|72 7 (gm) (w1, w)| = [ Lom (1), w2)| < MLgnll - ] - [wal.

By using the continuity of the map B,(r) — R : ¢ — ||L|| on the compact set By (r),
there exists a positive constant a such that on By(r),

(6) [72f(@) (w1, wo)| < @ wy] - [wyl.
Combining inequalities (3), (4), (5), (6), [u*] < 1, |¢*| < 1 and since k. is a decreasing
function, we obtain
P f(gm) (1) 2 b - kellm) - [0 — 2a]uf] - [u”] - alu”?

12
> . [ — n
2l kc(r){l eo} 3a|u”|

1\’ 3
>£m'kc(7‘){1—m—eo} —m—eo.

By inequality (2), we conclude that

1Y 3a 1
S 0] > ’“°(r){1 - Ee_} T mB ity

Since k. is a positive function, one sees that, for sufficiently large m, |Sqm (u, u)| is positive.

Among all vectors of Uy, M, let u, be one which makes |S,,,| minimal on the diagonal
of U,,, M. By the last remark, IS - (U1, u1)| > 0 for sufficiently large m and so the kernel of
the linear map S, (u1,°) : Tg,, M = (T, M)* is (n — 1)-dimensional. If {us, ..., un} isan
orthonormal basis of this kernel, the first part of Otsuki’s lemma asserts that {u;,...,u,}
is an orthonormal basis of T, M. By the above inequality, the Gauss formula and the
second part of Otsuki’s lemma, we have

n
I}ic (w)=(n-c+ 3 (S (U1, U1, Sq(u,-,u,-))

=2

2 (n-1)c+ i!sqm(ulx Ul)l2

=2

2 2
> (n- e+ (n— 1){kc(r){1 - Hle_o} - 73%0 - 'mlTo} .

By letting m going to 400, this leads to the announced inequality. 0
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REMARKS

1]
2]
(3]
4]
(5]
(6]
[7]

(8]

1. It was asserted in [3] without proof that for the elliptic space form
S"“_ = Sp4+1(1), we have

lim sup Ric (€,€) > (n — 1)(1 + cos* (r/2)/ sin’ (r/2)).
ceUM -
An easy computation shows that
(n- 1)(1 + kf(r)) —(n- 1)(1 + cos* (r/2)/ sin? (r/2)) <0

for any positive r < m/2. So, the assertion in [3] cannot be true as was
shown above by taking the hypersphere. For the hyperbolic space form
H*+! = §,,;(—1), our result sharpens the inequality given in [3].

2. If M is assumed to be compact, the proof can be shortened of course by
using the Hopf lemma. -
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