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Abstract

A Richardson variety in a flag variety is an intersection of two Schubert varieties defined
by transverse flags. We define and study relative Richardson varieties, which are defined
over a base scheme with a vector bundle and two flags. To do so, we generalise transversal-
ity of flags to a relative notion, versality, that allows the flags to be non-transverse over some
fibers. Relative Richardson varieties share many of the geometric properties of Richardson
varieties. We generalise several geometric and cohomological facts about Richardson vari-
eties to relative Richardson varieties. We also prove that the local geometry of a relative
Richardson variety is governed, in a precise sense, by the two intersecting Schubert varieties,
giving a generalisation, in the flag variety case, of a theorem of Knutson–Woo–Yong; we also
generalise this result to intersections of arbitrarily many relative Schubert varieties. We give
an application to Brill–Noether varieties on elliptic curves, and a conjectural generalisation
to higher genus curves.

2020 Mathematics Subject Classification: 14M15 (Primary)

1. Introduction

A Richardson variety is an intersection of two Schubert varieties defined with respect
to transverse flags in a vector space. Here we are concerned with Schubert varieties
in Grassmannians and flag varieties. A very simple example is the subvariety of the
Grassmannian G(1, 3) parametrising lines in P

3 that meet two fixed skew lines.
Richardson varieties are well known to be rational, normal, and Cohen–Macaulay, and to

have rational singularities, hence they have Euler characteristic 1. Moreover, the singulari-
ties of a Richard–son variety are governed entirely by the singularities of the two Schubert
varieties: Knutson, Woo and Yong show that the singular points of a Richardson variety are
exactly the points that are singular in either one of the Schubert varieties [KWY13].

In this paper we generalise all of these basic results to a relative context. Throughout this
paper, we fix an algebraically closed field k of any characteristic. All schemes are assumed
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to be finite-type over k, and by a “point” of a scheme we will always mean a closed point.
We consider � flag bundles within a vector bundle on a base scheme S, and we allow the flag
bundles to become nontransverse over some points of S in a controlled manner: subject to
the condition of versality.

Given a rank-d vector bundle H over a base scheme S, write Fr(H) for the frame bundle
of H and Fl(d) for the variety of complete flags in kd. Then we define complete flag bundles
P•

1 , . . . , P•
� to be versal if the induced map Fr(H) → Fl(d)� is a smooth morphism. Versality

usefully generalises transversality to a relative context such that properties enjoyed locally
by transverse intersections are still enjoyed by versal intersections. But versality is more
general than transversality in every fiber.

A simple example is a 1-parameter family of two complete flags in P
3 which are transverse

except over a reduced point p, where the two 2-dimensional subspaces (lines L1, L2 in P
3)

meet at a point rather than being skew. At each point of this family, one may consider the
parameter space of lines in P

3 meeting both L1 and L2. These parameter spaces form what
we will call a relative Richardson variety, which is in this case a family of smooth quadric
surfaces (parameterising lines through two fixed skew lines) degenerating to a transverse
pair of planes over the special point p (one plane parameterises lines through the intersection
point of the fixed lines, while the other parameterises lines coplanar with the two fixed lines).
We now describe the general situation.

Suppose H is a rank d vector bundle over a base scheme S, and P• is a complete flag of
subbundles. Fix a nest of sets

A• = ({0, . . . , d−1} = Ai0 ⊃ Ai1 ⊃ . . . ⊃ Ais = ∅) (1·1)

in which |Aij | = d − ij. Let π : Fl(i0, . . . , is; H) → S denote the relative partial flag variety,
equipped with tautological flag bundle V• inside the rank d vector bundle π∗H. Define the
S-scheme XA•(P•) to be the subscheme

{x ∈ Fl(i0, . . . , is; H) : dim(V ij)x ∩ (π∗Pa)x ≥ #{a′ ∈ Aij : a′ ≥ a} for all j, a},
with scheme structure from its description as a degeneracy locus in the usual way, as
recalled in Section 2·5. The first main theorem is as follows. The proof appears at the end of
Section 5.

THEOREM 1·1. Let S be a smooth irreducible k-scheme, let H be a rank-d vector bundle
on S, and let P•, Q• be a versal pair of complete flags in H. Let A•, B• be nests of sets as in
Equation (1·1).

(i) The relative Richardson variety

RA•,B• = XA•(P•) ∩ XB•(Q•)

is normal and Cohen–Macaulay of pure codimension inv(ωσ ) + inv(ωτ ) in the par-
tial flag variety Fl(i0, . . . , is;H). Here inv is the inversion number, ω is the descending
permutation, and the permutations σ = σ (A•), τ = σ (B•) are the decreasing comple-
tions of A• and B•, as defined in Section 2·1.

(ii) Letting S′ denote the scheme-theoretic image of RA•,B• in S, the morphism
π : RA•,B• → S′ satisfies

π∗ORA• ,B• = OS′ , and
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Riπ∗ORA• ,B• = 0 for all i > 0.

Moreover, the scheme-theoretic image S′ is exactly understood. It is the subscheme
Dτ�σ−1(P•; Q•) of S where P• and Q• meet with permutation bounded above, in Bruhat
order, by the Demazure product τ � σ−1. See Theorem 5·4 for details, and Fact 2·4 for
recollections on the Demazure product.

COROLLARY 1·2. With the hypotheses of Theorem 1·1,

Hi(RA•,B• , ORA• ,B• ) ∼= Hi(S′, OS′),

and in particular

χ(RA•,B• , ORA• ,B• ) = χ(S′, OS′).

Remark 1·3. When the base S is Spec k, a versal pair of flags is the same as a transverse pair
of flags in a fixed vector space, and Theorem 1·1 directly generalises several facts about the
geometry and cohomology of Richardson varieties. Corollary 1·2 generalises the fact that
Richardson varieties have algebraic Euler characteristic 1.

Remark 1·4. We will say that the map RA•,B• → S′ is a cohomological equivalence. Our
analysis of the cohomological properties of this map is analogous in several ways to the
results in Section 1 of [ACT22]. Indeed, the variety 	p,q defined in [ACT22] is a spe-
cial case of a relative Richardson variety, namely in the case where the flag variety is a
Grassmannian, and Wp,q is its image. The hypotheses in [ACT22] are weaker; versality
is not required. Under their hypotheses, they prove a K-theoretic equivalence statement,
weaker than cohomological equivalence but stronger than equality of Euler characteristic.
This allows [ACT22] to give an independent proof of the main result of [CP21], which we
prove there using the cohomological equivalence results of this paper.

We can also describe the smooth locus of RA•,B• , as

(RA•,B•)sm = (XA•)sm ∩ (XB•)sm. (1·2)

In fact, our second main theorem generalises this to intersections of arbitrarily many rel-
ative Schubert varieties and proves a much stronger result about the singularities of such an
intersection. The most general statement is in Theorem 4·1, and applies to �-fold intersec-
tions of degeneracy loci defined with respect to versal flags. Applied to relative Schubert
varieties, we obtain the following special case of Theorem 4·1. The proof appears at the end
of Section 4.

THEOREM 1·5. Let P be an étale-local property of finite-type k-schemes that is preserved
by products with affine space. Suppose that there is an integer � and a function fP,� such that
for any finite-type k-schemes X1, . . . , X� and point x ∈ ∏

Xi,

P
(

x,
∏

Xi

)
= fP,� (P(π1(x), X1), . . . P(π�(x), X�)) .

Let P•
1 , . . . , P•

� be versal complete flags on a scheme S, and A•
1, . . . , A•

� be nests of sets,
each with the same coranks. Then for every point x ∈ XA•

1
(P•

1 ) ∩ . . . ∩ XA•
�
(P•

� ),

P(x, XA•
1
(P•

1 ) ∩ . . . ∩ XA•
�
(P•

� )) = fP,�

(
P(x, XA•

1
(P•

� )), . . . , P(x, XA•
�
(P•

� ))
)

.
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This theorem generalises the flag variety case of a theorem of Knutson, Woo, and Yong
[KWY13], both to the relative setting and to � ≥ 3. Note that the results of [KWY13] apply
to general Schubert varieties, whereas our results are specific to Schubert varieties in flag
varieties.

Remark 1·6. We show in Example 3·4 that a triple of fixed flags is never versal except
in trivial cases. Therefore Theorem 1·5 does not apply to intersections of three Schubert
varieties in a fixed flag variety; the generalisation to � ≥ 3 depends in an essential way on
the relative context.

Application to Brill–Noether varieties.

Relative Richardson varieties arise naturally in the study of Brill–Noether varieties in
[CP21]. Let E be an elliptic curve; we will realise twice-pointed Brill–Noether varieties
Gr,α,β

d (E, p, q) → S = Picd(E) as relative Richardson varieties.

COROLLARY 1·7. The schemes Gr,α,β
d (E, p, q) are relative Richardson varieties.

(See Corollary 6·2.) These varieties are the main building block in the proof in [CP21] of
an Euler characteristic formula for Brill–Noether varieties, which uses limit linear series and
degenerations of genus g curves to chains of elliptic curves. Corollary 1·2 is used to deduce
the Euler characteristics of these building blocks.

In addition, by recognising twice-pointed Brill–Noether varieties as relative Richardson
varieties, we obtain another application: Equation 1·2 gives a new proof of the main result
of [COP19] in the case of elliptic curves, characterising the singular locus of Gr,α,β

d (E, p, q).
Previously, the description of the singular locus of twice-pointed Brill–Noether varieties for
elliptic curves was obtained in [COP19] using an explicit analysis of vertical and horizontal
tangent spaces at points in Gr,α,β

d (E, p, q) relative to the map to the Picard variety Picd(E).
We conjecture that Brill–Noether varieties of a twice-marked curve C of higher genus

are also isomorphic as Picd(C)-schemes to relative Richardson varieties; we discuss this
conjecture and its consequences in Section 6.

Notation

We collect for convenience the notation used throughout this paper.

S, T , F Finite-type k-schemes
H A vector bundle
d The rank of H

[d] The set {0, 1, . . . , d − 1}
P•, Q•, V• Flags in H

Va The stratum of codimension a in V•
M(H; P•

1, . . . , P•
�) Space of relative first-order deformations of � flags

δx(H; P•
1 , . . . , P•

� ) Induced map TxS → M
A•, B• Nests of sets

σ , τ Permutations of [d]
σ (A•) Decreasing completion of a nest of sets

rσ (a, b) Rank function of a permutation
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τ � σ Demazure product of permutations
Fl(H) Complete (relative) flag variety of a vector bundle H

Fl(i0, i1, . . . , is; H) Flag variety of H with strata of codimensions {ij}
Fl(d) Variety of complete flags in kd

Dσ (V•; P•) Degeneracy locus where V• meets P• as prescribed by σ

Dσ1,...,σ�
(V•; P•

1 , . . . , P•
� ) Intersection of � degeneracy loci

XA• (P•) (Relative) Schubert variety defined by a nest of sets
Xσ (P•) (Relative) Schubert variety defined by a permutation

RA•,B•(P•, Q•) Relative Richardson variety defined by two nests of sets
Rσ ,τ (P•, Q•) Relative Richardson variety defined by two permutations.

In all of these notations, we often omit the arguments (e.g. write simply Rσ ,τ ) where they
are clear from context. A tilde over a symbol (e.g., D̃σ ) indicates the open locus where the
defining inequalities of the object in question hold with equality.

2. Preliminaries

This section summarises background material needed for this paper. General references
for this material include the expository article [Bri05] and book [Ful97] for the Schubert
varieties in flag varieties and the Bruhat order, [FP98] for a nice explanation, with many
pictures, of rank functions and their relationship to permutations, and [Ful92] for degeneracy
loci of flags of vector bundles, as well as the essential set of a permutation. We also refer the
reader to [Dem74, section 5·6] for the Demazure product, as it relates to Schubert varieties.
In several cases we use different notation conventions than these sources, more natural to
our application; we explain these choices in this section.

2·1. Permutations and nested sequences

We begin with combinatorial conventions. We write [d] = {0, . . . , d − 1} and write Sd for
the permutation group of [d]. Given a permutation σ ∈ Sd, we will write σ = (σ0, . . . , σd−1)
in one-line notation, i.e. σi = σ (i). The inversion number of a permutation σ ∈ Sd is

inv(σ ) = #{(i, j) ∈ [d]2 | i < j and σi > σj}.
We will denote by ω the descending permutation ω(i) = d − 1 − i. Observe that for all

σ ∈ Sd, inv(ωσ ) = (d
2

) − inv(σ ), the number of “non-inversions” of σ .
A nest of sets is a sequence

A• = ([d] = Ai0 ⊃ Ai1 ⊃ . . . ⊃ Ais = ∅),

where |Aij | = d − ij. The numbers is are called the coranks of A•. Note that we require i0 = 0
and is = d for convenience later.

Define the decreasing completion σ (A•) ∈ Sd of A• to be the permutation obtained by writ-
ing the elements of Ai0 \ Ai1 in decreasing order, then the elements of Ai1 \ Ai2 in decreasing
order, and so on. For example, the decreasing completion of

{0, 1, 2, 3, 4} ⊃ {0, 1, 3} ⊃ ∅
is (4, 2, 3, 1, 0). For a nest of sets A•, we define inv(A•) = inv(σ (A•)). Decreasing completion
provides a bijection between Sd and nests of sets of coranks (0, 1, . . . , d − 1). Such a nest
A• is called complete. We will often identify complete nests of sets with permutations.
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2·2. Flags

Let H be a d-dimensional vector space over k. Write

P• = (P0 ⊃ P1 ⊃ . . . ⊃ Pd = 0)

for a complete flag of subspaces of H, where Pi has codimension i. The relative position of
two flags P• and Q• uniquely defines a rank function

r(a, b) = dim Pa ∩ Qb.

The rank function of two complete flags can be encoded by a permutation. For any σ ∈ Sd,
define the rank function of σ by

rσ (a, b) = #{a′ ∈ [d] : a′ ≥ a and σ (a′) ≥ b}.
Note that this notation does not exclude the cases a ≥ d or b ≥ d, where we define

rσ (a, b) = 0.

Fact 2·1. For any two complete flags P•, Q•, there exists a unique σ ∈ Sd such that
dim Pa ∩ Qb = rσ (a, b) for all a, b ∈ [d], called the permutation associated to P•, Q•. The
following are equivalent.

(i) The permutation associated to P•, Q• is σ .

(ii) There exists a basis v0, v1, . . . , vd−1 of H such that {va, . . . , vd−1} is a basis for Pa for
all a, and {vσ (b), . . . , vσ (d−1)} is a basis for Qb for all b.

For example, P• = Q• if and only if σ = id. At the other extreme, flags P•, Q• are trans-
verse if their associated permutation is ω. Explicitly, P•, Q• are transverse if and only if

dim Pa ∩ Qb = max(d − a − b, 0)

for all i, j; that is, every pair of subspaces meets transversely. Call P•, Q• almost-transverse
if their associated permutation differs from ω by an adjacent transposition, or equivalently
inv(ωσ ) = 1.

A rank function rσ is uniquely determined by its values on a fairly small subset of its
domain.

Definition 2·2. The essential set of a permutation σ ∈ Sd is

Ess(σ ) =
{

(a, b) : 1 ≤ a, b < d, σ (a − 1) < b ≤ σ (a) and σ−1(b − 1) < a ≤ σ−1(b)
}

.

The essential set was introduced in [Ful92], although we define it slightly differently here;
see Remark 2·7. The importance of the essential set is reviewed in Fact 2·6.

The set Sd has a partial order, the Bruhat order: σ ≤ τ in Bruhat order if and only if
rσ (a, b) ≥ rτ (a, b) for all a and b. See, e.g., [Ful97, section 10·5]. By semicontinuity, the
associated permutation of two varying flags is lower semi-continuous in the Bruhat order.

Let Fix P• denote the vector subspace of End H consisting of φ : H → H such that
φ(Pi) ⊆ Pi for all i. The following characterisation of inv(σ ), for a permutation associated to
flags P•, Q•, will be convenient later.

https://doi.org/10.1017/S0305004123000087 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004123000087


Relative Richardson varieties 167

Fact 2·3. If σ is the permutation associated to flags P•, Q•, then

inv(ωσ ) = dim End H − dim
(
Fix P• + Fix Q•) .

In particular, P• and Q• are transverse if and only if Fix P• + Fix Q• = End H.

Fact 2·3 can be proved using a straightforward argument characterising Fix P• ∩ Fix Q•
in terms of a basis of the type described in Fact 2·1.

2·3. The Demazure product

To state our main results, we require an associative operation � on Sd called the Demazure
product.

Fact 2·4. For any two permutation σ , τ ∈ Sd, there exists a unique permutation τ � σ such
that

rτ�σ (a, b) = max
0≤k≤d

(
rσ (a, k) + rτ (k, b) − (d − k)

)
. (2·1)

The operation � defined in this way is associative, and satisfies (σ � τ )−1 = τ−1 � σ−1. When
one of the permutations is a simple transposition s (a transposition of two adjacent elements
of [d]), then

τ � s =
{

τ if inv(τ s) < inv(τ )

τ s if inv(τ s) > inv(τ )
. (2·2)

Equation 2·1 is motivated by the following observation: if P•, Q•, R• are three flags, σ is
the permutation associated to P•, Q•, and τ is the permutation associated to Q•, R•, then for
all a, b, k ∈ [d],

dim Pa ∩ Rb ≥ dim Pa ∩ Qk + dim Qk ∩ Rb − dim Qk = rσ (a, k) + rτ (k, b) − (d − k).
(2·3)

Therefore τ � σ gives an upper bound on the permutation associated to P•, R•. In fact, one
can deduce from Theorem 1·1 that τ � σ is the minimal such permutation.

The Demazure product was introduced and studied in [Dem74] and [BGG73] for arbitrary
Weyl groups. We briefly sketch a proof of Fact 2·4 for the benefit of the reader unfamiliar
with these topics, as follows. One may use the right-habd side of Equation 2·1 to define
an operation on functions [d] × [d] → [d]. One can verify that this operation is associative
by writing a composition of two products as a maximum taken over two variables, and
Equation 2·2 may be verified, on the level of rank functions, by some casework. Finally, the
existence of a permutation with the desired rank function may be proved by induction on
inv(σ ) by factoring σ into simple transpositions.

2·4. Schubert varieties in flag varieties

Fix a vector space H of dimension d, and let F• ∈ Fl(H) be a fixed complete flag. Given
σ ∈ Sd, define the Schubert variety Xσ by

Xσ = Xσ (F•) = {V• ∈ Fl(H) : dim Va ∩ Fb ≥ rσ (a, b) for all a, b ∈ [d]}.
We write X̃σ for the open locus where all these defining inequalities hold with equality.
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Remark 2·5. Our conventions differ from those used in [Ful97] and elsewhere, since we
index our flags by codimension, rather than dimension. We choose this convention because
it is most natural for our application in [CP21], where we stratify sections of a line bundle
by their vanishing order at a point. For example, in [Ful97], the associated permutation w of
two flags V•, W• (indexed by dimension) is defined by dim Va ∩ Wb = rw(a, b), where w is a
permutation of {1, 2, . . . , d} and the rank function is rw(a, b) = #{i ≤ a : w(i) ≤ b}. There are
two ways to translate our notation to the notation of [Ful97].

(i) Define an isomorphism i : Fl(H) → Fl(H∨) by i(P•) = V•, where Va = (Pa)⊥. If
i(P•) = V• and i(Q•) = W•, then

dim Va ∩ Wb = a + b − d + dim Pa ∩ Qb,

from which it follows that dim Pa ∩ Qb = rσ (a, b) if and only if dim Va ∩ Wb =
rw(a, b), where w(i) = σ (i − 1) + 1 (in one-line notation, w is obtained by adding
one to all entries of σ ). So i(Xσ ) is equal to the Schubert variety denoted Xw in
[Ful97].

(ii) Define Va = Pd−a and Wb = Qd−b. If dim Pa ∩ Qb = rσ (a, b) for all a, b, then
dim Va ∩ Wb = rw(a, b), where w(i) = d − σ (d − i) (in one-line notation, w is
obtained by adding 1 to all entries of ωσω). So our Xσ is equal to the variety denoted
Xw in [Ful97].

We collect facts about Xσ . It is well known that Xσ is irreducible, normal, and Cohen–
Macaulay, of codimension inv(ωσ ) in Fl(H). A criterion for whether Xσ is regular is given by
Lakshmibai and Sandhya [LS90]: Xσ is regular if and only if σ is a 3120 and 2301-avoiding
permutation.1 The singular locus of Xσ is closed and a union of Borel orbits; therefore, it
must be a union of varieties Xσ ′ for σ ′ ≤ σ . Lakshmibai–Sandhya conjectured a combinato-
rial description of which Schubert subvarieties Xσ ′ occur, and their conjecture was proven
independently by several groups [BW03, Cor01, KLR03, Man01]. The description shows
that σ ′ ranges over all permutations that are derived from minimal 3120 and 2301 patterns
in σ by a certain combinatorial modification, see e.g., [Man01, section 1]. We note that the
singular locus of Xσ is a union of Xσ ′ for σ ′ < σ ranging over a certain set of permutations
having at least two fewer inversions than σ . In particular, Xσ is regular in codimension 1.

More generally, if A• is a nest of sets of coranks 0 = i0 < . . . < is = d, then we define a
Schubert variety in the partial flag variety Fl(i0, . . . , is; H) as follows.

XA•(F•) = {V• ∈ Fl(i0, . . . , is; H) : dim Vij ∩ Fb ≥ rσ (A•)(ij, b) for all j ∈ [s], b ∈ [d]}.

We write X̃A• for the open locus where these defining inequalities hold with equality.
The inverse image of XA• under the forgetful map Fl(H) → Fl(i0, . . . , is; H) is equal to
Xσ (F•). Since this forgetful map is a fiber bundle with smooth irreducible fibers, most of
the geometric facts above carry over readily to XA• .

1 In standard notation, 4231 and 3412-avoiding.
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2·5. Degeneracy loci and relative Schubert varieties

We adopt the following notation convention. If V , W are two sub-bundles of a vector
bundle H on a scheme S, we will write

{x ∈ S : dim Vx ∩Wx ≥ r}
as a shorthand for the subscheme defined by the degeneracy locus where the bundle map
V →H/W has rank at most rank(V) − r, defined locally as a determinantal variety in the
usual way (e.g. as in [Ful92, section 4] or [ACGH85, section II·4]). In particular, we always
mean this notation as a scheme-theoretic definition.

We will be concerned with degeneracy loci of the following form. For H a rank d vector
bundle on a scheme S, and P•, Q• complete flags in H, we consider the subscheme{

x ∈ S : dim(Pa)x ∩ (Qb)x ≥ rσ (a, b) for all a, b ∈ [d]
}

. (2·4)

In fact, many of the inequalities in this definition are redundant.

Fact 2·6. ([Ful92, lemma 3·10]) The scheme described by Equation (2·4) is equal to the
scheme {

x ∈ S : dim(Pa)x ∩ (Qb)x ≥ rσ (a, b) for all (a, b) ∈ Ess(σ )
}

.

Remark 2·7. The definition of the essential set in [Ful92] is different from ours, because
the degeneracy loci under consideration are defined by rank(Ep → Fq) ≤ rw(q, p), where
E1 ↪→ E2 ↪→ . . . En and Fn � Fn−1 � . . .� F1 are vector bundles indexed by rank. The
essential set of [Ful92] is the set of (q, p) for which the condition rank(Ep → Fq) ≤ rw(q, p)
is essential. Our definition is obtained by a straightforward translation.

In light of Fact 2·6, we make the following definition, which allows for partial flags.

Definition 2·8. Let H a rank d vector bundle on a scheme S, and P• = (P i0 ⊃ . . . ⊃
P is), Q• = (Qj0 ⊃ . . . ⊃Qjt ) be flags in H. Let σ be any permutation such that Ess(σ ) ⊆
{i0, . . . , is} × {j0, . . . , jt}. Define a subscheme

Dσ (P•; Q•) =
{

x ∈ S : dim(Pa)x ∩ (Qb)x ≥ rσ (a, b) for all a, b ∈ Ess(σ )
}

.

When P•, Q• are complete flags, also define D̃σ (P•; Q•) to be the open subscheme where
we have equality dim(Pa)x ∩ (Qb)x = rσ (a, b) for all (a, b) ∈ [d]2 (not only those in Ess(σ )).
Thus D̃σ (P•; Q•) is the locus where the two flags have associated permutation σ , and
Dσ (P•; Q•) is the locus where the two flags have associated permutation at most σ in Bruhat
order.

Remark 2·9. Suppose that Q• is complete, and the strata of P• have coranks 0 = i0 <

. . . < is = d. Then the following is a useful sufficient condition for Dσ (P•; Q•) to be
well-defined: for all 0 ≤ j < s, σ (ij) < σ (ij + 1) < . . . < σ (ij+1 − 1). This condition ensures
that σ (a − 1) > σ (a) for all a except possibly when a ∈ {i0, . . . , is} and thus Ess(σ ) ⊆
{i0, . . . , is} × [d]. In other words, if A• is any nest of sets with coranks i0, . . . , is, then
Dσ (A•)(P•; Q•) is well-defined.
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We mention some important geometric facts about degeneracy loci, stated at the level of
generality we need; see [Ful92] for the more general statement, including an intersection
theory result.

Fact 2·10. ([Ful92, theorem 8·2])) Suppose S is Cohen–Macaulay and pure dimensional.
Then any component of Dσ (P•; Q•) has codimension at most inv(ωσ ). If the codimension
of Dσ is exactly inv(ωσ ), then Dσ is Cohen–Macaulay.

Given � + 1 flags V•, P•
1 , . . . , P•

� and � permutations σ1, . . . , σ�, we also use the
following abbreviation.

Dσ1,...,σ�
(V•; P•

1 , . . . , P•
� ) = Dσ1(V•; P•

1 ) ∩ . . . ∩ Dσ�
(V•; P•

� ).

When the flags are clear from context, we will omit the arguments and write simply Dσ or
Dσ1,...,σ�

.

Remark 2·11. It is sometimes convenient to view Dσ locally as the inverse image of a
Schubert variety. If U ⊂ S is an open subscheme on which H is trivial, then we may
choose completions of P• and Q• and locally trivialise H in a way that makes the comple-
tion of Q• constant. Then the completion of P• defines a morphism p : S → Fl(d) (under
which the completion of P• is the pullback of the tautological bundle), and we have,
scheme-theoretically,

Dσ (P•; Q•) = p−1(Xσ ).

Example 2·12. (Relative Schubert varieties) Let S be a scheme, H a rank-d vector bundle
on S, and P• a complete flag in H. Let π : Fl(H) → S denote the relative flag variety. For
every σ ∈ Sd, there is a relative Schubert subvariety Xσ (P•) ⊆ Fl(H). These subvarieties are
important special cases of the degeneracy loci defined above, namely

Xσ (P•) = Dσ (V•; π∗P•),

where V• is the tautological flag bundle. Similarly, we obtain relative Schubert varieties in
partial flag varieties:

XA•(P•) = Dσ (A•)(V•; π∗P•).

3. Versality

In this subsection, we define versality of complete flags, and prove several criteria for it.
We work exclusively with complete flags in this subsection; results for incomplete flags can
be deduced from the case of complete flags.

Let H be a vector bundle of rank d on a base scheme S. Denote by Fl(d) = Fl(kd) the
variety of complete flags in the standard vector space kd, and denote by Fr(H) → S the frame
bundle of H. Then a complete flag P• in H uniquely determines a morphism of schemes
Fr(H) → Fl(d).

Definition 3·1. With the notation above, suppose that P•
1 , . . . , P•

� are complete flags in
H, inducing a morphism

p : Fr(H) → Fl(d)�.
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Call the �-tuple of flags (P1, . . . , P�) versal if p is a smooth morphism. Call the flags versal
at x ∈ S if they are versal when restricted to some neighbourhood of x.

Observe that any subset of a versal �−tuple of flags is again versal, since the projection

Fl(d)� → Fl(d)�
′

is smooth for all �′ < �.
When � = 1, versality is automatic. When � = 2 and S = Spec k, two flags are versal if

and only if they are transverse, as is explained in Example 3·4. When � = 2 but S is a more
general scheme, Definition 3·1 is equivalent to a geometric condition (Lemma 3·7) that
roughly says that the locus where P•, Q• are nontransverse is stratified by smooth varieties
of specific codimension. This stratification is indexed by permutations.

Our first goal is a linear-algebraic criterion for versality (Proposition 3·2), for which we
need some preliminary notions. For complete flags P•

1, . . . , P•
� in a vector space H, let

M = M(H; P•
1, . . . , P•

�) = coker(End H
�−→

�∏
i=1

End H/Fix P•
i ),

where � is the diagonal map.
This vector space M is the space of relative first-order deformations of the flags. Indeed,

each factor End H/Fix P•
i is naturally identified with the tangent space at [P•

i ] to the flag vari-
ety, while the image of � corresponds to simultaneous deformations arising from a change
of basis for H.

Now given x ∈ S, let

δx = δx(H; P•
1 , . . . , P•

� ) : TxS → M(Hx; (P•
1)x, . . . , (P•

�)x)

denote the natural linear map encoding the first-order deformations of the P•
i relative to each

other induced by a first-order deformation in S. A precise definition is as follows. Note the
natural map p : Fr(H) → Fl(d)� induced by the flags P•

1 , . . . , P•
� . Shrink S so that H is

trivial. Any section s : S → Fr(H) of Fr(H) → S induces a linear map

δx : TxS −→ T(p◦s)(x)Fl(d)� −→ M, (3·1)

where the first arrow is the differential of p ◦ s at x, and the second is induced by s(x).
Moreover, any two sections s, s′ are related by an element of GLd(S). That is, there is a

morphism c : S → GLd with the following commuting diagram.

Passing to tangent spaces verifies that δx does not depend on choice of s.

PROPOSITION 3·2. Let S be a scheme with a vector bundle H and complete flags
P•

1 , . . . , P•
� . For any x ∈ S, these flags are versal at x if and only if S is smooth at x and

δx is surjective.
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Proof. Fix x ∈ S and a point y ∈ Fr(H) in the fiber over x. First, we claim that the map
δx is surjective if and only if the differential dpy of the map p : Fr(H) → Fl(d)� is surjec-
tive. Shrinking S if necessary, choose a section s : S → Fr(H) such that y = s(x). We use the
description of δx in Equation 3·1. The kernel of the map T(p◦s)(x)Fl(d)� → M is equal to the
tangent space to the GLd-orbit of (p ◦ s)(x). Since p is equivariant, this is the image under
dps(x) of the GLd-orbit of s(x). Therefore the map Ts(x)Fr(H) → M is surjective if and only
if dps(x) is surjective. Furthermore, the GLd-orbit of s(x) is the fiber of x in Fr(H), so its
tangent space is complementary to the image of dsx. Therefore the image of δx is equal to
the image of Ts(x)Fr(H) → M. Putting this together, δx is surjective if and only if dps(x) is
surjective.

Next, observe that since Fr(H) is a GLd-torsor, it is smooth at y if and only if S is smooth
at x.

Suppose that the flags are versal at x. Since Fl(d)� is a nonsingular variety, the structure
map Fl(d)� → Spec k is smooth, hence the composition Fr(H) → Spec k is smooth at y, i.e.,
y is a smooth point of Fr(H) and x is a smooth point of S. Since p is a smooth morphism
of nonsingular varieties in a neighbourhood of y, the differential dpy is surjective [Har77,
10·4]. It follows that δx is surjective as well.

Now suppose x ∈ S is a smooth point and δx is surjective. Then y is a smooth point of
Fr(H) and dpy is surjective, so p is a morphism of nonsingular varieties with surjective
differential around y. Hence p smooth at y, and the flags are versal at x.

Remark 3·3. The definition of versality and the criterion of Proposition 3·2 has a stack-
theoretic description, as follows. A choice of � complete flags on S is equivalent to a
morphism p from S to the quotient stack

[
Fl(d)�/GLd

]
, which may be regarded as the mod-

uli stack of �-tuples of flags. This morphism, along with the induced morphism p : Fr(H) →
Fl(d)� discussed above, form a cartesian diagram as follows:

The vertical arrows are GLd-torsors, and it follows that p is smooth if and only if p is
smooth. So the tuple of flags is versal if and only if it determines a smooth morphism to
the moduli stack; this accords with the usual use of “versal” in deformation theory. The
differential of p at x ∈ S may be identified with a map from TxS to a two-term complex

End H
�−→ ∏�

i=1 End H/Fix P•
i , which is surjective if and only if the linear map δx is surjec-

tive. Hence Proposition 3·2 amounts to the fact that p is smooth if and only if it has smooth
domain and surjective differential.

Example 3·4. (Versality of fixed flags) A pair of two complete flags P•, Q• are versal in
a neighbourhood of any smooth point x ∈ S where P•

x and Q•
x are transverse. This is because

Fix P•
x + Fix Q•

x = End H by Fact 2·3, which implies (and is equivalent to) M(Hx; P•
x , Q•

x) =
0. If S = Spec k, the flags are transverse if and only if they are versal. Therefore versality is
a generalisation of transversality.
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When � > 2 and d > 2, then � flags over S = Spec k are never versal since

dim
∏

End H/Fix P•
i = �

(
d

2

)
≥ 3

(
d

2

)
≥ d2 = dim End H,

so End H → ∏
End H/Fix P• cannot be surjective because the kernel always contains the

identity and is therefore nontrivial. When d = 2, the only way versality over Spec k can occur
is if � ≤ 3 and the flags are distinct.

Adding a tautological flag bundle preserves versality:

LEMMA 3·5. With H a vector bundle on a smooth scheme S, if P•
1 , . . . , P•

� are versal
complete flags on S, and π : Fl(H) → S is the flag variety of H with tautological bundle V•,
then π∗P•

1 , . . . , π∗P•
� , V• are versal flags of π∗H on Fl(H).

Proof. Fix x ∈ S, and define P•
i = (P•

i )x. Shrinking S, we may assume H= H × S. For
any point y = [Q•] ∈ Fl(H), versality at (x, y) ∈ Fl(H) is equivalent to the surjectivity of the
linear map

T(x,y)Fl(H) ⊕ End H →
∏

End H/Fix P•
i × End H/Fix Q•.

We have T(x,y)Fl(H) = TxS ⊕ TyFl(H). Then surjectivity of the above map follows from
the fact that TxS ⊕ End H → ∏

End H/Fix P•
i is surjective by the versality hypothesis, and

TyFl(H) → End H/Fix Q• is an isomorphism.

The linear maps δx provide a convenient description of tangent spaces to degeneracy loci
Dσ (P•; Q•) defined in Definition 2·8, and intersections thereof.

LEMMA 3·6. Let Dσ (P•; Q•) be as in Definition 2·8.

(i) At any point x ∈ Dσ (P•; Q•),

TxDσ (P•; Q•) ⊇ ker δx(H; P•, Q•).

(ii) Moreover, if x ∈ D̃σ (P•; Q•), then equality holds.

Proof. Start by verifying (ii) in the special case that H = kd and S = Fl(H)2 with P•, Q•
the tautological flag bundles. For any x = (P•, Q•) ∈ D̃σ (P•; Q•), the scheme D̃σ (P•; Q•)
is equal to the GLd-orbit of x, i.e. the scheme-theoretic image of the map GLd → Fl(d)2

taking 1 to x. The differential of this map is the diagonal map � : End H → End H/Fix P• ×
End H/Fix Q•, and TxDσ (P•; Q•) = TxD̃σ (P•; Q•) = im � = ker δx as desired.

Now the general case of (ii) follows by pulling back: shrink S around x so that we may
assume H is trivial, and then choose a section s : S → Fr(H); we get a composite map S →
Fr(H) → Fl(d)2 taking x to y = (P•, Q•), say. Under the differential TxS → TyFl(d)2, ker δx

is the preimage of ker δy = im �, by definition of δx. (Note this does not depend on the
choice of section, as verified in the definition of δx). And D̃σ (P•; Q•) is the inverse image
of D̃σ (V•

1 ;V•
2 ) ⊂ Fl(d)2. This verifies (ii) in general.

Now (i) follows from (ii) by observing that if x ∈ Dσ (P•; Q•), then x ∈ D̃σ ′(P•; Q•) for
some σ ′ ≤ σ in Bruhat order, so since Dσ ′(P•; Q•) is a subscheme of Dσ (P•; Q•),

TxDσ (P•; Q•) ⊇ TxDσ ′(P•; Q•) = ker δx(H; P•, Q•).
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LEMMA 3·7. If x ∈ D̃σ (P•; Q•), where P•, Q• are complete flags, then the following are
equivalent.

(i) The pair (P•, Q•) is versal at x.

(ii) The point x is a smooth point of S and δx is surjective.

(iii) The point x is a smooth point of both S and Dσ (P•; Q•) and the local codimension of
Dσ (P•; Q•) in S is equal to inv(ωσ ).

Proof. We first observe that in the two-flag case, we have the following isomorphism.

M(Hx; P•
x , Q•

x) ∼= End Hx/
(
Fix P•

x + Fix Q•
x

)
.

Together with Fact 2·3 and the assumption that σ is the permutation associated to P•
x , Q•

x ,
this implies that dim M(Hx; P•

x , Q•
x) = inv(ωσ ). By Lemma 3·6, we deduce that

dim TxDσ (P•; Q•) = dim TxS − inv(ωσ ) + dim cokerδx.

We now prove the Lemma. The equivalence of (i) and (ii) is part of Proposition 3·2, so it
suffices to prove that (ii) is equivalent to (iii). Assume that x is a smooth point of S (since
this is a hypothesis of both statements). Observe that

dimx S − inv(ωσ ) ≤ dimx Dσ (P•; Q•) ≤ dim TxDσ (P•; Q•)

= dimx S − inv(ωσ ) + dim cokerδx.

The first inequality follows from the local description of Dσ (P•, Q•) as the inverse
image of a Schubert variety (Remark 2·11). Now, δx is surjective if and only if dim coker
δx = 0, which holds if and only if both inequalities above hold with equality. This in turn is
equivalent to Dσ (P•; Q•) having local codimension inv(ωσ ) (first inequality) and x being a
smooth point of it (second inequality). So indeed (ii) is equivalent to (iii).

Example 3·8. A simple example of all conditions in Lemma 3·7 being satisfied is two
points in P

1 moving above a smooth 1-parameter base S, which come together over a reduced
point x of S.

4. A Knutson–Woo–Yong theorem for degeneracy loci of versal flags

We turn our attention to intersections of degeneracy loci defined with respect to versal
flags. We show that the singularities of these loci are completely controlled by the singular-
ities of the individual degeneracy loci, and in turn by Schubert varieties. More precisely, we
prove the following analog of the main theorem of [KWY13]. The results of [KWY13]
concern general Schubert varieties, whereas we are concerned only with Schubert vari-
eties of flag varieties. In the flag variety case, our result provides a generalisation to �-fold
intersections, as well as to the relative setting.

THEOREM 4·1. Let P be an étale-local property of finite-type k-schemes that is preserved
by products with affine space. Suppose that there is an integer � and a function fP,� such that
for any finite-type k-schemes X1, . . . , X� and point x ∈ ∏

Xi,

P
(

x,
∏

Xi

)
= fP,� (P(π1(x), X1), . . . P(π�(x), X�) ).
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Let V•, P•
1 , P•

2 , . . . , P•
� be a versal (� + 1)-tuple of flags in a rank-d vector bundle H on

a smooth variety S, σ1, . . . , σ� ∈ Sd, and x a point in Dσ1,...,σ�
(V•; P•

1 , . . . , P•
� ). Then

P(x, Dσ1,...,σ�
(V•; P•

1 , . . . , P•
� )) = fP,�(P(x, Dσ1 (V•; P•

1 )), . . . , P(x, Dσ�
(V•; P•

� ))).

Throughout this section, assume that we have fixed a property P, denoted P(x, X) for a
point x ∈ X, and a function fP,� satisfying the hypotheses of Theorem 4·1.

Definition 4·2. Let X, Y be schemes with points x ∈ X, y ∈ Y . Let H, J be rank-d vector
bundles on X, Y respectively, let P•

1 , . . . , P•
� be flags in H and let Q•

1, . . . , Q•
� be flags

in J .
We say that (x, P•

1 , . . . , P•
� ) is equivalent via smooth morphisms to (y, Q•

1, . . . , Q•
�) if

there is a scheme Z with rank-d vector bundle K, two smooth morphisms π : Z → X, ρ : Z →
Y and a point z ∈ Z such that π(z) = x, ρ(z) = y, K∼= π∗H∼= ρ∗J , and such that upon
identifying both pullbacks with K, we have π∗P•

i = ρ∗Q•
i for all i.

Equivalence via smooth morphisms is an equivalence relation. Reflexivity and symme-
try are clear, and transitivity follows from standard facts about fiber products of smooth
morphisms.

LEMMA 4·3. If (x, V•, P•
1 , . . . , P•

� ) is equivalent via smooth morphisms
to (y, W•, Q•

1, . . . , Q•
�), and σ1, . . . , σ� are permutations such that x ∈

Dσ1,...,σ�
(V•; P•

1 , . . . , P•
� ), then

y ∈ Dσ1,...,σ�
(W•; Q•

1, . . . , Q•
�)

and

P(x, Dσ1,...,σ�
(V•; P•

1 , . . . , P•
� )) = P(y, Dσ1,...,σ�

(W•; Q•
1, . . . , Q•

�)).

Furthermore, the codimension at y of Dσ1,...,σ�
(W•; Q•

1, . . . , Q•
�) in Y is equal to the

codimension at x of Dσ1,...,σ�
(V•; P•

1 , . . . , P•
� ) in X.

Proof. Let π : Z → X, ρ : Z → Y , and z ∈ Z be as in Definition 4·2. Abbreviate
Dσ1,...,σ�

(V•; P•
1 , . . . , P•

� ) by DX , Dσ1,...,σ�
(W•; Q•

1, . . . , Q•
�) by DY , and abbreviate

Dσ1,...,σ�
(π∗V•; π∗P•

1 , . . . , π∗P•
� ) by DZ . Observe that DZ = π−1(DX) = ρ−1(DY ). Since

x ∈ DX , it follows that z ∈ DZ and y ∈ DY .
The restriction DZ → DX of π is smooth. Let n be the relative dimension of this morphism

at z. Then n is also the relative dimension of π at z; it follows that the codimension of DZ in
Z is equal to the codimension of DX at x.

There exist affine neighbourhoods z ∈ U ⊆ DZ and x ∈ V ⊆ DX and an étale morphism
e : U →A

n
V such that U → V factors through the projection A

n
V → V [Sta17, tag 039P].

Since the property P is étale-local and unaffected by products with affine space, it follows
that P(z, DZ) = P(e(z), An

V ) = P(x, DX).
Applying the same logic to ρ, it follows that the codimension of DY in Y is equal to the

codimension of DZ in Z, and P(z, DZ) = P(y, DY ). The result follows.

Proof of Theorem 4·1. The frame bundle Fr(H) → S is surjective, so x ∈ S lifts to a point
x′ ∈ Fr(H). The versal tuple (V•, P•

1 , . . . , P•
� ) determines a smooth morphism p : Fr(H) →

Fl(d)�+1. Next, apply the same construction, with S replaced by Fl(d)�, with T = kd × Fl(d)�

being the trivial rank d vector bundle, and with flags (F•, V•
1 , . . . , V•

� ), where {V•
i } are
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Figure 1. The morphisms and chosen points in the proof of Theorem 4·1.

the tautological flags and F• is an arbitrary fixed flag. We obtain a morphism v : Fr(T) →
Fl(d)�+1. The tuple (F•, V•

1 , . . . , V•
� ) is versal, by � applications of Lemma 3·5 (and the

straightforward observation that a single flag is versal), so v is smooth. It is straightfor-
ward to check that v is also surjective, so p(x′) ∈ Fl(d)�+1 lifts to x′′ ∈ Fr(T) = GLd × Fl(d)�.
Denote by y the image of x′′ in Fl(d)�. Denote by π1, . . . , π� the projection maps from Fl(d)�

to Fl(d). The maps and points constructed are summarised in Figure 1. In this diagram, all
morphisms are smooth.

The intuition behind the first four arrows of the diagram is that a family of � + 1 versal
flags can, after coordinate change, be regarded as a family of � versal flags together with one
fixed flag.

Denote the tautological flags in the trivial bundle on Fl(d)�+1 by U•
1 , . . . , U•

�+1. By
construction, p∗U•

1 , . . . , p∗U•
�+1 are equal to the pullbacks from S of V•, P•

1 , . . . , P•
� ,

respectively. Similarly, v∗U•
1 , . . . , v∗U•

�+1 are equal to the pullbacks from Fl(d)�+1 of
F•, V•

1 , . . . , V•
� , respectively. Finally, denoting the tautological and trivial flags over Fl(d)

by U•, E• respectively, we have V•
i = π∗

i U• and F• = π∗
i E•. From this, we deduce the

following equivalences via smooth morphisms.

(x, V•, P•
1 , . . . , P•

� ) ∼ (y, F•, V•
1 , . . . , V•

� )

(x, V•, P•
i ) ∼ (πi(y), E•, U•)

Observe that for each i, Dσi(F
•; V•

i ) = π−1
i (Dσi(E

•; U•)) inside Fl(d)�. Therefore

Dσ1,...,σ�
(F•; V•

1 , . . . , V•
� ) =

⋂
i

π−1
i (Dσi(E

•; U•))

∼=
∏

i

Dσi(E
•; U•).

Putting this together and applying Lemma 4·3:

P(x, Dσ1,...,σ�
(V•; P•

1 , . . . , P•
� )) = P(y, Dσ1,...,σ�

(F•; V•
1 , . . . , V•

� ))

= fP,�

(
P(π1(y), Dσ1(E•; U•)), . . . , P(π�(y), Dσ�

(E•; U•))
)

= fP,�

(
P(x, Dσ1(V•; P•

1 )), . . . , P(x, Dσ�
(V•; P•

� ))
)

.

In fact, the proof of Theorem 4·1 shows that we can say slightly more: we can reduce
completely to Schubert varieties in flag varieties.
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THEOREM 4·4. With the same hypotheses as Theorem 4·1, let σ ′
1 ≤ σ1, . . . , σ ′

� ≤ σ� be
permutations such that x ∈ D̃

σ
′
i
(V•; P•

i ) for all i. Let zi be any point in the open Schubert

cell X̃
σ
′
i
⊆ Fl(d). Then

P(x, Dσ1,...,σ�
(V•; P•

1 , . . . , P•
� )) = fP,�(P(z1, Xσ1), . . . , P(z�, Xσ�

)).

Proof. In the notation of the proof of Theorem 4·1, it suffices to prove that

P(πi(y), Dσi(E
•; V•)) = P(zi, Xσi).

Observe that Dσi(E
•; U•) = D

σ−1
i

(U•; E•) = X
σ−1

i
(E•). Similarly, D

σi
′(E•, U•) =

X(σi
′)−1(E•). Since Schubert cells are Borel orbits, it follows that for any w ∈ X̃(σi

′)−1 (E•),

P(πi(y), Dσi(E
•; V•)) = P(w, X

σ−1
i

).

To see that the same result holds when σ−1
i , (σi

′)−1 are replaced with σi, σ ′
i, observe that we

may apply the entire argument to the case S = Fl(d), x = w, � = 1, V• =U•, P•
1 = E•, from

which it follows that for any zi ∈ X̃
σ
′
i
, P(w, X

σ−1
i

(E•)) = P(zi, Xσi(E
•)), and the result follows.

We also point out another useful consequence of the proof of Theorem 4·1.

PROPOSITION 4·5. If V•, P•
1 , . . . , P•

� is a versal (� + 1)-tuple of flags in a vector bundle
H over S, then Dσ1,...,σ�

(V•; P•
1 , . . . , P•

� ) has pure codimension inv(ωσ1) + . . . + inv(ωσ�)
in S.

Proof. By the codimension statement in Lemma 4·3 and the equivalence via smooth mor-
phisms in the proof of Theorem 4·1, we may assume that S = Fl(d)�, P•

i =U•
i , and V• = F•.

The result now follows from the fact that, in Fl(d), the codimension of Dσi(V•; F•) is equal
to the codimension of Xσi , which is inv(ωσi) (see Section 2·4).

Compare Corollary 4·6 below with [KWY13, corollaries 1·2, 1·3, 1·4, 3·1]; note also the
generalisation from � = 2 to any �.

COROLLARY 4·6. By making various choices of P and fP,�, we deduce the following about
any degeneracy locus D = Dσ1,...,σ�

for versal flags V•, P•
1 , . . . , P•

� .

(i) The smooth locus of D is the intersection of the smooth loci of each Dσi .

(ii) D is normal and Cohen–Macaulay.

(iii) D is Gorenstein at x ∈ D if and only if each Xσi is Gorenstein along X̃
σ
′
i
, where σi

′ is
as in the hypotheses of Theorem 4·4.

(iv) Recall that for x ∈ X, the H-polynomial Hx,X(q) is defined by the equation

Hilb(Gmx(OX,x); q) = Hx,X(q)

(1 − q)dimx X
,

where Gmx(OX,x) denotes the associated graded ring of OX,x. Recall the Hilbert–
Samuel multiplicity is multx,X = Hx,X(1). Then
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Hx,D(q) =
∏

i

Hx,Dσi
(q),

and hence multx,D = ∏
i multx,Dσi

.

Proof. For (i), (ii) and (iii), recall that Cohen–Macaulayness, reducedness, normalness,
regularity, and being Gorenstein are all étale-local [Sta17, Tag 025L, Tag 0E12]; more-
over all Schubert varieties are normal and Cohen–Macaulay. In all three cases, we take the
function fP,� to be “logical and.” For (iv), the associated graded of OD,x can be computed
from its completion, and étale morphisms induce isomorphisms on completed local rings
(recall we always work over an algebraically closed field). Hence the H-polynomial is also
an étale-local invariant. The result follows by taking fP,� to be the usual multiplication of
polynomials.

See [WY06] for a characterisation of which Schubert varieties, in type A, are Gorenstein
in terms of permutation pattern-avoidance, and a conjectured general characterisation of the
non-Gorenstein locus. The conjecture is proven by Perrin for minuscule Schubert varieties
[Per09]; it is open in general as far as we know.

We can now prove Theorem 1·5 from the introduction. This requires a short argument
applying Theorem 4·1 to cases where one defining flag may not be a complete flag.

Proof of Theorem 1·5. Let i0, . . . , is be the coranks of the nests of sets. Let F =
Fl(i0, . . . , is; H) and F′ = Fl(H) (the complete flag variety); denote the projections to S
by π , π ′ respectively. Let V• be the tautological complete flag in π ′∗H. Since each
essential set Ess(σ (A•

i )) is contained in {i0, . . . , is} × [d], we see by comparing defin-
ing rank conditions that the inverse image of XA•

1
(P•

1 ) ∩ . . . XA•
�
(P•

� ) in F′ is equal to
Dσ (A•

1),...,σ (A•
�)(V•; π ′∗P•

1 , . . . , π ′∗P•
� ), to which Theorem 4·1 applies. The Theorem now

follows from the fact that the forgetful map F′ → F is a fiber bundle, with fibers étale-locally
isomorphic to affine space.

5. Relative Richardson varieties
5·1. Definitions

We now define relative Richardson varieties and deduce their basic properties from the
results of the previous section. In particular we take � = 2 in this section, as we are not
aware of a generalisation of the cohomological arguments below to higher �.

Definition 5·1. Let S be an irreducible smooth variety, with a rank d vector bundle H and
two complete versal flags P•, Q•. Let 0 = i0 < i1 < . . . < is = d be integers. For any two
nests of sets A•, B• with coranks i0, . . . , is, define the subvariety of Fl(i0, . . . , is; H)

RA•,B•(P•, Q•) = XA•(P•) ∩ XB•(Q•),

where XA•(P•) and XB•(Q•) are defined in section 2·5. Such a variety RA•,B• is called a
relative Richardson variety over S.

For any two permutations σ , τ , we also write Rσ ,τ (P•, Q•) as alternate notation for
RA•,B•(P•, Q•), where A•, B• are complete nests of sets with decreasing completions σ , τ ,
respectively. We write R̃A•,B• for the open subscheme where all the defining rank conditions
hold with equality, and use the notation R̃σ ,τ similarly.
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We emphasise that we reserve the phrase “relative Richardson variety” for situations
where S is smooth and irreducible and the flags P•, Q• are versal, so that relative Richardson
varieties share the geometric properties enjoyed by Richardson varieties, as summarised in
Theorem 1·1.

Example 5·2. Let S = Spec k, let d = 5, and

A• = {0, 1, 2, 3, 4} ⊃ {0, 2, 4} ⊃ ∅, B• = {0, 1, 2, 3, 4} ⊃ {0, 1, 2} ⊃ ∅.

Then RA•,B• is isomorphic to a Schubert variety with respect to the flag P•, parametrising
2-dimensional subspaces V3 with

dim V3 ∩ P2 ≥ 2 and dim V3 ∩ P4 ≥ 1.

The cohomological statements in Theorem 1·1 will be proved in Section 5·2. The rest of
Theorem 1·1 follows readily from the results of the previous section, as summarised below.

THEOREM 5·3. A relative Richardson variety RA•,B• is normal and Cohen–Macaulay, of
pure codimension inv(ωσ (A•)) + inv(ωσ (B•)) in Fl(H; i0, . . . , is), and the smooth locus of
RA•,B• is equal to the intersection of the smooth loci of the relative Schubert varieties XA•
and XB• . The open subscheme R̃A•,B• is dense in the smooth locus of RA•,B• .

Proof. Let σ = σ (A•) and τ = σ (B•). Observe that Rσ ,τ = f −1(RA•,B•), where
f : Fl(H) → Fl(i0, . . . , is; H) is the forgetful morphism from the complete flag variety. Since
f is a fiber bundle with smooth irreducible fibers, we see that it suffices to prove the theorem
for Rσ ,τ , i.e., for the case of complete flags. Note that

Rσ ,τ = Dσ ,τ (V•; π∗P•, π∗Q•),

where π : Fl(H) → S is the structure map and V• is the tautological bundle of Fl(H). The
flags V•, π∗P•, and π∗Q• are versal by Lemma 3·5, so Proposition 4·5 and Corollary 4·6
imply that Rσ ,τ is normal and Cohen–Macaulay of pure codimension inv(ωσ ) + inv(ωτ ) in
Fl(H), with smooth locus equal to the intersection of the smooth loci of Dσ (V•; π∗P•) =
Xσ (P•) and Dτ (V•; π∗Q•) = Xτ (Q•). Theorem 4·4 and the description in Section 2·4 of
the singular locus of Schubert varieties show that the singular locus of Rσ ,τ is a union of
certain loci Rσ ′,τ ′ where σ ′ < σ or τ ′ < τ , and Proposition 4·5 shows that each such locus
has positive codimension. In particular, R̃σ ,τ is dense and contained in the smooth locus of
Rσ ,τ .

5·2. Cohomology of relative Richardson varieties

In order to understand the cohomology of the schemes RA•,B• , we will relate them to each
other, and to the base S, via morphisms for which the total pushforward of the structure sheaf
is trivial. Call a proper morphism of k-schemes π : X → Y O-connected if OY → π∗OX is
an isomorphism, and call π a cohomological equivalence if it is O-connected and

Riπ∗OX = 0 for all i > 0.

We note that the term “cohomological equivalence” is sometimes used in the literature
specifically for birational morphisms (e.g. in [Kov17]), but we use it in a more general
way. Note (see e.g. [Har77, exercise 8·1]) that if π is a cohomological equivalence then it
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induces canonical isomorphisms Hi(X, OX) ∼= Hi(Y , OY ) for all i ≥ 0. In particular, we have
χ(X, OX) = χ(Y , OY ) in this situation. In what follows, we will make use of the follow-
ing fact, which can be deduced from the Grothendieck spectral sequence: if f : X′ → X is
a cohomological equivalence and π : X → Y is any proper morphism, then π is a cohomo-
logical equivalence if and only if π ◦ f is a cohomological equivalence. The purpose of this
subsection is to prove the following theorem.

THEOREM 5·4. Let P•, Q• be versal flags in a rank-d vector bundle H on a scheme
S, and let A•, B• be any two nests of sets as defined in section 5·1. Denote by RA•,B• the
resulting relative Richardson variety. Let σ = σ (A•) and τ = σ (B•). Then the image of the
morphism RA•,B• → S is Dτ�σ−1 (P•; Q•), and the morphism RA•,B• → Dτ�σ−1(P•; Q•) is a
cohomological equivalence.

Our strategy for proving Theorem 5·4 is as follows. We first reduce to the case of complete
flag varieties, i.e., varieties Rσ ,τ (Corollary 5·9). We then show that the desired statement
about Rσ ,τ can be deduced from the statement for Rσ ′,τ ′ , where σ ′, τ ′ is another pair of
permutations with inv(σ ′) < inv(σ ) and τ ′ � σ ′−1 = τ � σ−1 (Lemma 5·11). This reduces by
induction to the case of the morphism Rid,τ�σ−1 → S, which we show (Lemma 5·12).

Throughout the section, we fix the choice of S, H, P•, Q•. We do not assume in general
that P•, Q• are versal, as several auxiliary results do not require this hypothesis; we will
state it specifically when it is needed. We begin with three useful criteria for cohomological
equivalences.

Fact 5·5. If f : X → Y is a Grassmannian bundle, then f is a cohomological equivalence.

Proof. This follows from the fact that the structure sheaf of the Grassmannian vari-
ety Gr(t, n) has no higher cohomology. This in turn follows from the Borel–Weil–Bott
theorem, or can be seen more directly by induction on t, by observing that both the forget-
ful morphisms Fl(t − 1, t; n) → Gr(t − 1, n) and Fl(t − 1, t; n) → Gr(t, n) are cohomological
equivalences.

Fact 5·6. If f : X → Y is a birational morphism of normal, irreducible, projective varieties,
then f is O-connected.

Proof. See the proof of [Har77, corollary 11·4].

Fact 5·7. Suppose X
π−→ Y factors as X

j−→ Z
π

′
−→ Y , where X → Z is a closed immersion

with ideal sheaf I and Z → Y is a P
1-bundle. Then Riπ∗OX = 0 for all i > 0.

Proof. This argument may be found in [Bri05, section 2·1]; we summarise it here for
convenience. The statement holds for i > 1 since all fibers of π have dimension at most 1.
For i = 1, the exact sequence 0 → I →OZ → j∗OX → 0 yields the following portion of a
long exact sequence.

. . . → R1π ′∗OZ → R1π∗OX → R2π ′∗I → . . .

The first term is 0 since π ′ is a P
1-bundle, and the third term is 0 since all fibers of π ′ have

dimension 1. So the middle term is 0.

https://doi.org/10.1017/S0305004123000087 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004123000087


Relative Richardson varieties 181

In what follows, we fix the following notation. If A, B ⊆Z are finite sets, we write A < B
to mean max A < min B. If A•, B• are two nests of sets, and j is an index with 0 < j < s, we
denote the nested sets obtained by removing the jth set as follows.

A•
j = (Ai0 ⊃ . . . ⊃ Âij ⊃ . . . ⊃ Ais), B•

j = (Bi0 ⊃ . . . ⊃ B̂ij ⊃ . . . ⊃ Bis).

LEMMA 5·8. Let S be a smooth variety, with a rank d vector bundle H and two complete
flags P•, Q•. Suppose that A•, B•, j are as above, and that we have both

(Aij−1 \ Aij) > (Aij \ Aij+1) and (Bij−1 \ Bij) > (Bij \ Bij+1).

Then RA•,B• → RA•
j ,B•

j
is a cohomological equivalence, and it is a fiber bundle with smooth

irreducible fibers.

For example, let A• = B• = ({0, 1, 2, 3} ⊃ {0, 1} ⊃ ∅), and j = 1. Then RA•,B• → RA•
j ,B•

j
is

a Grassmannian G(1, P3) over a point.

Proof of Lemma 5·8. Observe that Ess(σ (A•), σ (B•)) does not contain (ij, b) for any value
of b (see Remark 2·9). So RA•,B• and RA•

j ,B•
j

are defined by the same rank conditions, and
thus RA•,B• is the inverse image of RA•

j ,B•
j

under a forgetful morphism of partial flag varieties.

The Lemma now follows from Fact 5·5.

Applying Lemma 5·8 repeatedly gives the following.

COROLLARY 5·9. Let P•, Q• be complete flags in a vector bundle H on a smooth scheme
S. For any choice of A•, B•, the forgetful morphism

Rσ (A•),σ (B•) → RA•,B•

is a cohomological equivalence with smooth irreducible fibers.

LEMMA 5·10. Let P•, Q• be versal flags in a vector bundle H on a smooth scheme S.
Given A•, B•, define A•

j and B•
j as in Lemma 5·8. Suppose further that ij+1 = ij−1 + 2, and

either

(Aij−1 \ Aij) > (Aij \ Aij+1) or (Bij−1 \ Bij) > (Bij \ Bij+1).

Then the forgetful morphism π : RA•,B• → RA•
j ,B•

j
is a cohomological equivalence.

Proof. If both of these conditions hold, then the result follows from Lemma 5·8.
Therefore we may assume without loss of generality that ij+1 = ij−1 + 2 and that

(Aij−1 \ Aij) > (Aij \ Aij+1) and (Bij−1 \ Bij) < (Bij \ Bij+1).

Writing {b} = Bij−1 \ Bij and {c} = Bij \ Bij+1 , we have b < c. Define C• by “exchanging b
and c,” in other words Cij = Cij+1 ∪ {b} and C• is otherwise the same as B•. Notice that π

factors as RA•,B• → RA•,C• → RA•
j ,B•

j
, where the first morphism is a closed immersion, and

the second is the structure map for a P1-bundle, by the argument in Lemma 5·8. This implies
that Riπ∗ORA• ,B• = 0 for i > 0 (Fact 5·7). It remains to verify that π is O-connected. The
statement is local in RA•

j ,B•
j
, so we assume that RA•

j ,B•
j

is connected. Since it is also normal
(Theorem 5·3), we may assume that RA•

j ,B•
j

is irreducible. By Fact 5·6, it suffices to check

that π is birational. The open subscheme R̃A•,B• is dense in RA•,B• by Theorem 5·3, and
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likewise R̃A•
j ,B•

j
is dense in RA•

j ,B•
j
. At any point of R̃A•

j ,B•
j
, corresponding to flags V•, P•, Q•

in H, there is a unique choice of subspace Vij strictly between Vij−1 and Vij+1 which can be
added to the flag V• to produce a point of RA•,B• . More precisely, over R̃A•

j ,B•
j
, the morphism

π is a structure morphism for a relative Schubert subvariety of a P
1-bundle consisting of

all relative flags in this P1-bundle that coincide with a fixed flag. This shows that in fact π

restricts to an isomorphism R̃A•,B• → R̃A•
j ,B•

j
, which shows that π is indeed birational, which

completes the proof.

LEMMA 5·11. Suppose σ , τ is a pair of permutations, and s is a simple transposition.
Assume that P•, Q• are versal. Then Rσ�s,τ → S and Rσ ,τ�s → S have the same image S′,
and if one is a cohomological equivalence then so is the other.

Proof. First, consider the case where σ � s = σ . We may assume that τ � s �= τ . Let j be
the index such that s transposes j and j − 1. By Fact 2·4, σj−1 > σj, τj−1 < τj, and τ � s = τ s.
Let A•, B•, C• be the complete nests of sets associated to σ , τ , and τ s, respectively.

Both Rσ ,τ = RA•,B• and Rσ ,τ s = RA•,C• have forgetful morphisms to RA•
j ,B•

j
; we record the

relevant morphisms in the commuting diagram below.

Here i is a closed immersion, and f ′ is a P
1-bundle. The maps f and f ′ are known to be

cohomological equivalences, by Lemmas 5·8 and 5·10. In particular, all three push-forwards
π∗ORA• ,B• , π

j∗ORA•
j ,B•

j
, π ′∗ORA• ,C• agree. It follows that the scheme-theoretic image of all

three has the same ideal sheaf on S (namely, the kernel of OS → π∗ORA• ,B• ). Hence the
image of all three morphisms π , π j, π ′ is the same; call this image S′.

All three morphisms π , π j, π ′ factor through S′. It follows from the Grothendieck spectral
sequence that the morphism RA•,B• → S′ is a cohomological equivalence if and only the mor-
phism RA•

j ,B•
j
→ S′ is a cohomological equivalence, if and only if the morphism RA•,C• → S′

is a cohomological equivalence. This establishes the result in the case where σ � s = σ .
Next, the case where τ � s = τ follows from the first case by exchanging the flags. It

remains to consider the case where τ � s �= τ and σ � s �= σ . In fact, this case follows from
the first two: by Fact 2·4 we have σ � s = σ � s � s = σ s and τ � s = τ � s � s = τ s, and the
result follows by first relating Rσ�s�s,τ to Rσ�s,τ�s and then relating Rσ�s,τ�s to Rσ ,τ�s�s.

LEMMA 5·12. Suppose that σ ∈ Sd. For any scheme S with vector bundle H and com-
plete flags P•, Q•, the morphism Rid,σ (P•, Q•) → S is a closed immersion with image
Dσ (P•; Q•).

Proof. Consider the functor of points of Rid,σ . A morphism T → Rid,σ corresponds to a
morphism t : T → S and a complete flag W• of t∗H such that the permutation associated
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to (W•, t∗P•) is at most id and the permutation associated to (W•, t∗Q•) is at most σ

(where these statements are meant scheme-theoretically, i.e., as determinantal loci). The
former condition is equivalent to saying that W• is identical to t∗P•. So in fact morphisms
T → Rid,σ correspond to morphisms t : T → S such that t∗P•, t∗Q• have associated permu-
tation at least σ . But this is a description of the functor of Dσ (P•; Q•). We deduce that
the morphism Rid,σ → S induces a bijection between morphisms T → Rσ ,τ and morphisms
T → Dσ (P•; Q•); the result follows.

We can now prove Theorems 5·4 and 1·1.

Proof of Theorem 5·4. Let σ = σ (A•) and τ = σ (B•). By Corollary 5·9 and the
Grothendieck spectral sequence, RA•,B• → S and Rσ ,τ → S have the same image S′, and one
is a cohomological equivalence if and only if the other is. So it suffices to consider complete
A•, B•, i.e., the schemes Rσ ,τ .

We prove the result by induction on inv(τ ). The base case, τ = id, follows from Lemma
5·12. For the induction step, let s be a simple transposition such that inv(τ s) = inv(τ ) − 1.
Then Rσ ,τ = Rσ ,(τ s)�s, so by Lemma 5·11 the morphism Rσ�s,τ s → S has the same image S as
Rσ ,τ → S, and is a cohomological equivalence if and only if Rσ ,τ → S is. By induction, this
image is D(τ s)�(σ�s)−1(P•; Q•) and both maps are cohomological equivalences. Finally, Fact
2·4 implies that (τ s) � (σ � s)−1 = (τ s) � s−1 � σ−1 = τ � σ−1, so the image of both maps is
Dτ�σ−1(P•; Q•). This completes the induction.

Proof of Theorem 1·1. Part (ii) of Theorem 1·1 is Theorem 5·4. Part (i) is Theorem 5·3.

6. Brill–Noether varieties and relative Richardson varieties

This section describes an example of relative Richardson varieties arising in Brill–Noether
theory, which is a crucial ingredient in [CP21]. Let E be an elliptic curve and L ∈ Picd(E),
and let V = H0(E, L). Suppose p and q are distinct closed points on E such that p − q is
nontorsion in the Jacobian. Assume d ≥ 1. Define two complete flags of V as follows.

Pi =
⎧⎨⎩V(−ip) if 0 ≤ i < d

0 if i = d.
Qj =

⎧⎨⎩V(−jq) if 0 ≤ j < d

0 if j = d.

Let H be the rank d vector bundle on Picd E whose fiber over L is identified with H0(E, L);
more precisely H is the pushforward to PicdE of the Poincaré bundle on PicdE × E. For
discussion of Poincaré line bundles and this construction, see [ACGH85, section IV·2-3].
One must be careful in this construction to assume d ≥ 2g − 1, so that H is a vector bundle,
and to only define Pi for d − i ≥ 2g − 1 for the same reason. In this case 2g − 1 = 1, so we
have assumed d ≥ 1 and i < d. Then the flags P• and Q•, defined above for each L ∈ PicdE,
globalise to a pair of flags P•, Q•.

LEMMA 6·1. The flags P• and Q• are versal.

Proof. Notice that P•, Q• are transverse except when L ∼=O(ap + bq) for some a, b > 0
and a + b = d. Since we assume p − q is non-torsion, the integers a, b are unique in this
case, and we have
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dim Pi ∩ Qj =
⎧⎨⎩max(d − i − j, 0) if (i, j) �= (a, b)

1 if (i, j) = (a, b).

It follows that if L ∼=O(ap + bq) then the flags P•, Q• are almost-transverse, i.e. their asso-
ciated permutation is a simple transposition. By Lemma 3·7, it is enough to show that the
subscheme of Picd(E) over which P• and Q• fail to be transverse consists of exactly these
finitely many reduced points; the only issue to check here is reducedness.

Locally around a point L =OE(ap + bq), where a, b > 0 with a + b = d, the scheme is
question is defined by the condition dim Pa ∩ Qb ≥ 1 (where the scheme structure can be
defined with a degeneracy condition for a map of vector bundles). This can be reformulated
as the condition that Pa−1 ∩ Qb and Pa ∩ Qb−1 are equal, viewing both of these as codi-
mension 1 subspaces of Pa−1 ∩ Qb−1. The assertion of reducedness amounts to showing
that two sections of the P1-bundle P(Pa−1 ∩Qb−1) → PicdE are transverse. This P1-bundle
can be identified with Sym2E, regarded as a P

1-bundle over Pic2E, by tensoring with
O((a − 1)p + (b − 1)q). The two sections are the effective divisors in Sym2E containing
p and containing q, respectively. These loci meet transversely at p + q ∈ Sym2E, since the
tangent space there may be identified with TpE × TqE, and the tangent spaces to the curves
identified with the tangent spaces of the two factors.

It follows that the twice-pointed Brill–Noether varieties Gr,α,β
d (E, p, q), studied in

[COP19, CP21], are examples of relative Richardson varieties. See those papers for the
definitions.

COROLLARY 6·2. The schemes Gr,α,β
d (E, p, q) are relative Richardson varieties over

Picd(E).

6·1. A conjecture in higher genus

We conclude with a conjectural generalisation to higher genus that would provide an
intriguing generalisation of some results in Brill–Noether theory. To state our conjecture,
we generalise the notion of versality to partial flags in the natural way: � partial flags on a
scheme S are versal if the induced map from Fr(H) to a product of partial flag varieties is
smooth. One may then define relative Richardson varieties with respect to partial flags. Note
that one must impose restrictions on nests of sets A•, B• that may be used to define such
relative Richardson varieties: Ess(σ (A•)) must contain only elements (a, b) for which Pb is
defined, and likewise for B• and Q•.

Let C be a curve of genus g with two marked points p, q. Fix an integer N ≥ 2g − 1. For
every point [L] ∈ PicN(C), the vector space H = H0(C, L) has dimension N − g + 1 and has
two partial flags given by vanishing orders at p and q, namely

Pa = H0(C, L(−ap)) for 0 ≤ a ≤ N − 2g + 1

Qb = H0(C, L(−bq)) for 0 ≤ b ≤ N − 2g + 1.

The upper bounds on a, b ensure that Pa has codimension a in H, since L(−ap)
and L(−bq) are nonspecial; this is analogous to the need in [ACGH85, section IV·3] to
twist by a fixed divisor in order to work with lines bundles of degree at least 2g − 1.
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This construction globalises, giving a vector bundle H with partial flags P•, Q•, each with
coranks 0, 1, . . . , N − 2g + 1.

CONJECTURE 6·3. If (C, p, q) is a general twice-marked curve of genus g, then for all
N ≥ 2g − 1 the flags P•, Q• in H described above are versal on PicN (C).

This conjecture would show that for general curves C, Brill–Noether varieties Gr
d(C) are

relative Richardson varieties (in the more general sense where partial flags are allowed).
Indeed, by choosing N sufficiently large that there are integers a, b with N − a, N − b ≥
2g − 1 and N − a − b = d, one may embed Gr

d(C) in the Grassmannian bundle Gr(r + 1, H)
by twisting by the divisor ap + bq. This gives the following isomorphism.

Gr
d(C) ∼= {(L, V) ∈ Gr(r + 1, H) : V ⊆ (Pa)x and V ⊆ (Qb)x},

where H is the vector bundle on PicN(C) given by H|[L] ∼= H0(C, L(ap + bq)). Conjecture
6·3 would therefore imply that Gr

d(C) is isomorphic over Picd(C) to a relative Richardson
variety.

More generally, Brill–Noether varieties with ramification Gr,α,β
d (C, p, q) (see [COP19]

for definitions) may be described in a similar manner, and Conjecture 6·3 also implies that
they are isomorphic over Picd(C) to relative Richardson varieties.

We remark that Theorem 4·1 generalises readily to versal partial flags: one may either
replace complete flag varieties with partial flag varieties throughout the proof, or deduce the
general result from Theorem 4·1 by locally extending the versal partial flags to versal com-
plete flags. Conjecture 6·3 would give a new way to study singularities of Gr,α,β

d (C, p, q) for
general (C, p, q), and in particular would provide a new proof of the Gieseker-Petri Theorem
and the main theorem of [COP19] characterising the singular locus of Gr,α,β

d (C, p, q). It
would also generalise these results from linear series to flags of linear series.

Acknowledgements. We are grateful to Dave Anderson, Allen Knutson, Alex Woo and
Alex Yong for their correspondence regarding an earlier version of this manuscript, in par-
ticular for explaining the connection to the Demazure product. We also thank Jonathan Wise
for helpful conversations leading to Remark 3·3. MC was supported by NSF DMS-1701924,
NSF CAREER DMS-1844768, and a 2018 Sloan Research Fellowship.

REFERENCES

[ACGH85] E. ARBARELLO, M. CORNALBA, P. A. GRIFFITHS and J. HARRIS. Geometry of algebraic
curves. Vol. I. Grundlehren Math. Wiss., vol. 267 (Springer-Verlag, New York, 1985).

[ACT22] D. ANDERSON, L. CHEN and N. TARASCA. K-classes of Brill–Noether loci and a determi-
nantal formula. Int. Math. Res. Not. IMRN (2022), no. 16, 12653–12698.

[BGG73] I. N. BERNŠTEN, I. M. GEL′FAND and S. I. GEL′FAND. Schubert cells, and the cohomology
of the spaces G/P. Uspehi Mat. Nauk 28 (1973), no. 3(171), 3–26.

[Bri05] M. BRION. Lectures on the geometry of flag varieties. Topics in cohomological studies of
algebraic varieties. Trends Math. Birkhäuser (Basel, 2005), pp. 33–85.

[BW03] S. C. BILLEY and G. S. WARRINGTON. Maximal singular loci of Schubert varieties in
SL(n)/B. Trans. Amer. Math. Soc. 355 (2003), no. 10, 3915–3945.

[COP19] M. CHAN, B. OSSERMAN and N. PFLUEGER. The Gieseker–Petri theorem and imposed
ramification. Bull. London Math. Soc. 51 (2019), no. 6, 945–960.

[Cor01] A. CORTEZ. Singularités génériques et quasi-résolutions des variétés de Schubert pour le
groupe linéaire. C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), no. 6, 561–566.

https://doi.org/10.1017/S0305004123000087 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004123000087


186 MELODY CHAN AND NATHAN PFLUEGER

[CP21] M. CHAN and N. PFLUEGER. Euler characteristics of Brill–Noether varieties. Trans. Amer.
Math. Soc. 374 (2021), no. 3, 1513–1533.

[Dem74] M. DEMAZURE. Désingularisation des variétés de Schubert généralisées. Ann. Sci. École
Norm. Sup. (4) 7 (1974), 53–88.

[FP98] W. FULTON and P. PRAGACZ. Schubert varieties and degeneracy loc. Lecture Notes in Math.,
vol. 1689. (Springer-Verlag, Berlin, 1998), Appendix J by the authors in collaboration with I.
Ciocan–Fontanine.

[Ful92] W. FULTON. Flags, Schubert polynomials, degeneracy loc, and determinantal formulas. Duke
Math. J. 65 (1992), no. 3, 381–420.

[Ful97] W. FULTON. Young Tableaux. London Math. Soc. Student Texts, vol. 35 (Cambridge
University Press, Cambridge, 1997), With applications to representation theory and geometry.

[Har77] R. HARTSHORNE. Algebraic Geometry. Graduate Texts in Math. no. 52 (Springer-Verlag,
New York-Heidelberg, 1977).

[KLR03] C. KASSEL, A. LASCOUX and C. REUTENAUER. The singular locus of a Schubert variety. J.
Algebra 269 (2003), no. 1, 74–108.

[Kov17] S. J. KOVÁCS. Rational singularities, arXiv:1703.02269, 2017.
[KWY13] A. KNUTSON, A. WOO and A. YONG. Singularities of Richardson varieties. Math. Res. Lett.

20 (2013), no. 2, 391–400.
[LS90] V. LAKSHMIBAI and B. SANDHYA. Criterion for smoothness of Schubert varieties in Sl(n)/B.

Proc. Indian Acad. Sci. Math. Sci. 100 (1990), no. 1, 45–52.
[Man01] L. MANIVEL. Le lieu singulier des variétés de Schubert. Internat. Math. Res. Notices (2001),

no. 16, 849–871.
[Per09] N. PERRIN. The Gorenstein locus of minuscule Schubert varieties. Adv. Math. 220 (2009),

no. 2, 505–522.
[Sta17] THE STACKS PROJECT AUTHORS. Stacks Project, http://stacks.math.columbia.edu, 2017.

[WY06] A. WOO and A. YONG. When is a Schubert variety Gorenstein? Adv. Math. 207 (2006), no. 1,
205–220.

https://doi.org/10.1017/S0305004123000087 Published online by Cambridge University Press

http://stacks.math.columbia.edu
https://doi.org/10.1017/S0305004123000087

	Introduction
	Application to Brill"2013`Noether varieties.

	Notation
	Preliminaries
	Permutations and nested sequences
	Flags
	The Demazure product
	Schubert varieties in flag varieties
	Degeneracy loci and relative Schubert varieties

	Versality
	A Knutson"2013`Woo"2013`Yong theorem for degeneracy loci of versal flags
	Relative Richardson varieties
	Definitions
	Cohomology of relative Richardson varieties

	Brill"2013`Noether varieties and relative Richardson varieties
	A conjecture in higher genus


