
15 Maps and Hash Tables

Lots of programming problems require dealing with data organized as key/value pairs.

Maybe the simplest way of representing such data in OCaml is an association list,

which is simply a list of pairs of keys and values. For example, you could represent a

mapping between the 10 digits and their English names as follows:

open Base;;
let digit_alist =

[0, "zero"; 1, "one"; 2, "two" ; 3, "three"; 4, "four"
; 5, "five"; 6, "six"; 7, "seven"; 8, "eight"; 9, "nine"];;

val digit_alist : (int * string) list =

[(0, "zero"); (1, "one"); (2, "two"); (3, "three"); (4, "four");

(5, "five"); (6, "six"); (7, "seven"); (8, "eight"); (9, "nine")]

We can use functions from the List.Assoc module to manipulate this data:

List.Assoc.find ~equal:Int.equal digit_alist 6;;
- : string option = Some "six"

List.Assoc.find ~equal:Int.equal digit_alist 22;;
- : string option = None

List.Assoc.add ~equal:Int.equal digit_alist 0 "zilch";;
- : (int, string) Base.List.Assoc.t =

[(0, "zilch"); (1, "one"); (2, "two"); (3, "three"); (4, "four");

(5, "five"); (6, "six"); (7, "seven"); (8, "eight"); (9, "nine")]

Association lists are simple and easy to use, but their performance is not ideal, since

almost every nontrivial operation on an association list requires a linear-time scan of

the list.

In this chapter, we'll talk about two more e�cient alternatives to association lists:

maps and hash tables. A map is an immutable tree-based data structure where most

operations take time logarithmic in the size of the map, whereas a hash table is a

mutable data structure where most operations have constant time complexity. We'll

describe both of these data structures in detail and provide some advice as to how to

choose between them.

15.1 Maps

Let's consider an example of how one might use a map in practice. In Chapter 5 (Files,

Modules, and Programs), we showed a module Counter for keeping frequency counts

on a set of strings. Here's the interface:

https://doi.org/10.1017/9781009129220.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.018

264 Maps and Hash Tables

open Base

(** A collection of string frequency counts *)
type t

(** The empty set of frequency counts *)
val empty : t

(** Bump the frequency count for the given string. *)
val touch : t -> string -> t

(** Converts the set of frequency counts to an association list. Every
string in the list will show up at most once, and the integers
will be at least 1. *)

val to_list : t -> (string * int) list

The intended behavior here is straightforward. Counter.empty represents an empty

collection of frequency counts; touch increments the frequency count of the speci�ed

string by 1; and to_list returns the list of nonzero frequencies.

Here's the implementation.

open Base

type t = (string, int, String.comparator_witness) Map.t

let empty = Map.empty (module String)
let to_list t = Map.to_alist t

let touch t s =
let count =
match Map.find t s with
| None -> 0
| Some x -> x

in
Map.set t ~key:s ~data:(count + 1)

Take a look at the de�nition of the type t above. You'll see that the Map.t has three

type parameters. The �rst two are what you might expect; one for the type of the key,

and one for the type of the data. The third type parameter, the comparator witness,

requires some explaining.

The comparator witness is used to indicate which comparison function was used to

construct the map, rather than saying something about the type of data stored in the

map. The type String.comparator_witness in particular indicates that this map was

built with the default comparison function from the String module. We'll talk about

why the comparator witness is important later in the chapter.

The call to Map.empty is also worth explaining, in that, unusually, it takes a �rst-class

module as an argument. The point of the �rst class module is to provide the comparison

function that is required for building the map, along with an s-expression converter for

generating useful error messages (we'll talk more about s-expressions in Chapter 21

(Data Serialization with S-Expressions)). We don't need to provide the module again

for functions like Map.find or Map.add, because the map itself contains a reference to

the comparison function it uses.

https://doi.org/10.1017/9781009129220.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.018

15.1 Modules and Comparators 265

Not every module can be used for creating maps, but the standard ones in Base can.

Later in the chapter, we'll show how you can set up a module of your own so it can be

used in this way.

15.1.1 Sets

In addition to maps, Base also provides a set data type that's designed along similar

lines. In some sense, sets are little more than maps where you ignore the data. But

while you could encode sets in terms of maps, it's more natural, and more e�cient, to

use Base's specialized set type. Here's a simple example.

Set.of_list (module Int) [1;2;3] |> Set.to_list;;
- : int list = [1; 2; 3]

Set.union
(Set.of_list (module Int) [1;2;3;2])
(Set.of_list (module Int) [3;5;1])

|> Set.to_list;;
- : int list = [1; 2; 3; 5]

In addition to the operators you would expect to have for maps, sets support the

traditional set operations, including union, intersection, and set di�erence.

15.1.2 Modules and Comparators

It's easy enough to create a map or set based on a type represented by a module in Base.

Here, we'll create a map from digits to their English names, based on digit_alist,

which was de�ned earlier in the chapter.

let digit_map = Map.of_alist_exn (module Int) digit_alist;;
val digit_map : (int, string, Int.comparator_witness) Map.t = <abstr>

Map.find digit_map 3;;
- : string option = Some "three"

The function Map.of_alist_exn constructs a map from a provided association list,

throwing an exception if a key is used more than once. Let's take a look at the type

signature of Map.of_alist_exn.

#show Map.of_alist_exn;;
val of_alist_exn :

('a, 'cmp) Map.comparator -> ('a * 'b) list -> ('a, 'b, 'cmp) Map.t

The type Map.comparator is actually an alias for a �rst-class module type, repre-

senting any module that matches the signature Comparator.S, shown below.

#show Base.Comparator.S;;
module type S =

sig

type t

type comparator_witness

val comparator : (t, comparator_witness) Comparator.t

end

https://doi.org/10.1017/9781009129220.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.018

266 Maps and Hash Tables

Such a module must contain the type of the key itself, as well as the

comparator_witness type, which serves as a type-level identi�er of the comparison

function in question, and �nally, the concrete comparator itself, a value that contains

the necessary comparison function.

Modules from Base like Int and String already satisfy this interface. But what

if you want to satisfy this interface with a new module? Consider, for example, the

following type representing a book, for which we've written a comparison function

and an s-expression serializer.

module Book = struct

type t = { title: string; isbn: string }

let compare t1 t2 =
let cmp_title = String.compare t1.title t2.title in
if cmp_title <> 0 then cmp_title
else String.compare t1.isbn t2.isbn

let sexp_of_t t : Sexp.t =
List [Atom t.title; Atom t.isbn]

end;;
module Book :

sig

type t = { title : string; isbn : string; }

val compare : t -> t -> int

val sexp_of_t : t -> Sexp.t

end

This module has the basic functionality we need, but doesn't satisfy the

Comparator.S interface, so we can't use it for creating a map, as you can see.

Map.empty (module Book);;
Line 1, characters 19-23:

Error: Signature mismatch:

...

The type `comparator_witness' is required but not provided

File "duniverse/base/src/comparator.mli", line 19, characters

2-25:

Expected declaration

The value `comparator' is required but not provided

File "duniverse/base/src/comparator.mli", line 21, characters

2-53:

Expected declaration

In order to satisfy the interface, we need to use the Comparator.Make functor to

extend the module. Here, we use a common idiom where we create a submodule,

called T containing the basic functionality for the type in question, and then include

both that module and the result of applying a functor to that module.

module Book = struct
module T = struct

type t = { title: string; isbn: string }

let compare t1 t2 =

https://doi.org/10.1017/9781009129220.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.018

15.1 Why Do We Need Comparator Witnesses? 267

let cmp_title = String.compare t1.title t2.title in
if cmp_title <> 0 then cmp_title
else String.compare t1.isbn t2.isbn

let sexp_of_t t : Sexp.t =
List [Atom t.title; Atom t.isbn]

end
include T
include Comparator.Make(T)

end;;

With this module in hand, we can now build a set of Book.t's.

let some_programming_books =
Set.of_list (module Book)
[{ title = "Real World OCaml"
; isbn = "978-1449323912" }

; { title = "Structure and Interpretation of Computer Programs"
; isbn = "978-0262510875" }

; { title = "The C Programming Language"
; isbn = "978-0131101630" }];;

val some_programming_books : (Book.t, Book.comparator_witness) Set.t =

<abstr>

While we used Comparator.Make in the above, it's often preferable to use

Comparable.Make instead, since it provides extra helper functions, like in�x com-

parison operators and min and max functions, in addition to the comparator itself.

15.1.3 Why Do We Need Comparator Witnesses?

The comparator witness is quite di�erent from other types that we've seen. Instead

of tracking the kind of data being used, it's used to single out a particular value, a

comparison function. Why do we even need such a thing?

The comparator witness matters because some of the operations on maps and

sets, in particular those that combine multiple maps or sets together, depend for their

correctness on the fact that both objects being combined are ordered according to the

same total order, which in turn is determined by the comparison function.

Consider, for example, Map.symmetric_diff, which computes the di�erence be-

tween two maps.

let left = Map.of_alist_exn (module String) ["foo",1; "bar",3;
"snoo",0];;

val left : (string, int, String.comparator_witness) Map.t = <abstr>

let right = Map.of_alist_exn (module String) ["foo",0; "snoo",0];;
val right : (string, int, String.comparator_witness) Map.t = <abstr>

Map.symmetric_diff ~data_equal:Int.equal left right |>
Sequence.to_list;;

- : (string, int) Map.Symmetric_diff_element.t list =

[("bar", `Left 3); ("foo", `Unequal (1, 0))]

As you can see below, the type of Map.symmetric_diff requires that the two maps

https://doi.org/10.1017/9781009129220.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.018

268 Maps and Hash Tables

it compares have the same comparator witness, in addition to the same key and value

type.

#show Map.symmetric_diff;;
val symmetric_diff :

('k, 'v, 'cmp) Map.t ->

('k, 'v, 'cmp) Map.t ->

data_equal:('v -> 'v -> bool) ->

('k, 'v) Map.Symmetric_diff_element.t Sequence.t

Without this constraint, we could run Map.symmetric_diff on maps that are sorted

in di�erent orders, which could lead to garbled results.

To see this constraint in action, we'll need to create two maps with the same key

and data types, but di�erent comparison functions. In the following, we do this by

minting a new module Reverse, which represents strings sorted in the reverse of the

usual lexicographic order.

module Reverse = struct
module T = struct
type t = string
let sexp_of_t = String.sexp_of_t
let t_of_sexp = String.t_of_sexp
let compare x y = String.compare y x

end
include T
include Comparator.Make(T)

end;;

As you can see in the following, both Reverse and String can be used to create

maps with a key type of string:

let alist = ["foo", 0; "snoo", 3];;
val alist : (string * int) list = [("foo", 0); ("snoo", 3)]

let ord_map = Map.of_alist_exn (module String) alist;;
val ord_map : (string, int, String.comparator_witness) Map.t = <abstr>

let rev_map = Map.of_alist_exn (module Reverse) alist;;
val rev_map : (string, int, Reverse.comparator_witness) Map.t =

<abstr>

Map.min_elt returns the key and value for the smallest key in the map, which

con�rms that these two maps do indeed use di�erent comparison functions.

Map.min_elt ord_map;;
- : (string * int) option = Some ("foo", 0)

Map.min_elt rev_map;;
- : (string * int) option = Some ("snoo", 3)

As a result, the algorithm in Map.symmetric_diff just wouldn't work correctly when

applied to these values. Happily, the type system will give us a compile-time error if

we try, instead of throwing an error at run time, or worse, silently returning the wrong

result.

Map.symmetric_diff ord_map rev_map;;
Line 1, characters 28-35:

Error: This expression has type

(string, int, Reverse.comparator_witness) Map.t

https://doi.org/10.1017/9781009129220.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.018

15.1 The Polymorphic Comparator 269

but an expression was expected of type

(string, int, String.comparator_witness) Map.t

Type Reverse.comparator_witness is not compatible with type

String.comparator_witness

15.1.4 The Polymorphic Comparator

Wedon't need to generate specialized comparators for every typewewant to build amap

on. We can instead build a map based on OCaml's built-in polymorphic comparison

function, which was discussed in Chapter 4 (Lists and Patterns).

Map.Poly.of_alist_exn digit_alist;;
- : (int, string) Map.Poly.t = <abstr>

Note that maps based on the polymorphic comparator have di�erent comparator wit-

nesses than those based on the type-speci�c comparison function. Thus, the compiler

rejects the following:

Map.symmetric_diff
(Map.Poly.singleton 3 "three")
(Map.singleton (module Int) 3 "four");;

Line 3, characters 5-43:

Error: This expression has type (int, string, Int.comparator_witness)

Map.t

but an expression was expected of type

(int, string, Comparator.Poly.comparator_witness) Map.t

Type Int.comparator_witness is not compatible with type

Comparator.Poly.comparator_witness

This is rejected for good reason: there's no guarantee that the comparator associated

with a given type will order things in the same way that polymorphic compare does.

The Perils of Polymorphic Compare

Polymorphic compare is awfully convenient, but it has serious downsides and should

mostly be avoided in production code. To understand why, it helps to understand how

polymorphic compare works.

Polymorphic compare operates directly on the runtime representation of OCaml

values, walking the structure of those values without regard for their type.

And despite ignoring types, it mostly behaves as you would hope. Comparisons on

ints and floats respect the ordinary ordering of numeric values, and containers like

strings, lists, and arrays are compared lexicographically. And it works on almost every

OCaml type, with some important exceptions like functions.

But the type-oblivious nature of polymorphic compare means that it peeks under

ordinary abstraction boundaries, and that can lead to some deeply confusing results.

Maps themselves provide a great example of this. Consider the following two maps.

let m1 = Map.of_alist_exn (module Int) [1, "one";2, "two"];;
val m1 : (int, string, Int.comparator_witness) Map.t = <abstr>

let m2 = Map.of_alist_exn (module Int) [2, "two";1, "one"];;
val m2 : (int, string, Int.comparator_witness) Map.t = <abstr>

https://doi.org/10.1017/9781009129220.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.018

270 Maps and Hash Tables

Logically, these two maps should be equal, and that's the result that you get if you

call Map.equal on them:

Map.equal String.equal m1 m2;;
- : bool = true

But because the elements were added in di�erent orders, the layout of the trees

underlying the maps will be di�erent. As such, polymorphic compare will conclude

that they're di�erent.

We can see this below. Note that Base hides polymorphic comparison by default,

but it is available within the Poly module.

Poly.(m1 = m2);;
Exception: (Invalid_argument "compare: functional value")

This comparison failed because polymorphic compare doesn't work on functions,

and maps store the comparison function they were created with. Happily, there's a

function, Map.Using_comparator.to_tree which exposes the underlying binary tree

without the attached comparison function. We can use that to compare the underlying

trees:

Poly.((Map.Using_comparator.to_tree m1) =
(Map.Using_comparator.to_tree m2));;

- : bool = false

As you can see, polymorphic compare now produces a result, but it's not the result we

want.

The abstraction-breaking nature of polymorphic compare can cause real and quite

subtle bugs. If, for example, you build a map whose keys are sets (which have the

same issues with polymorphic compare that maps do), then the map built with the

polymorphic comparator will behave incorrectly, separating out keys that should be

aggregated together. Even worse, it will behave inconsistently, since the behavior of

polymorphic compare will depend on the order in which the sets were built.

15.1.5 Satisfying Comparator.S with [@@deriving]

Using maps and sets on a new type requires satisfying the Comparator.S interface,

which in turn requires s-expression converters and comparison functions for the type

in question. Writing such functions by hand is annoying and error prone, but there's a

better way. Base comes along with a set of syntax extensions that automate these tasks

away.

Let's return to an example from earlier in the chapter, where we created a type

Book.t and set it up for use in creating maps and sets.

module Book = struct
module T = struct

type t = { title: string; isbn: string }

let compare t1 t2 =

https://doi.org/10.1017/9781009129220.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.018

15.1 Satisfying Comparator.S with [@@deriving] 271

let cmp_title = String.compare t1.title t2.title in
if cmp_title <> 0 then cmp_title
else String.compare t1.isbn t2.isbn

let sexp_of_t t : Sexp.t =
List [Atom t.title; Atom t.isbn]

end
include T
include Comparator.Make(T)

end

Much of the code here is devoted to creating a comparison function and s-expression

converter for the type Book.t. But if we have the ppx_sexp_conv and ppx_compare

syntax extensions enabled, then we can request that default implementations of these

functions be created for us. We can enable both of these extensions via the omnibus

ppx_jane package.

#require "ppx_jane";;

And we can use the extensions in our de�nition of Book as follows:

module Book = struct
module T = struct
type t = { title: string; isbn: string }
[@@deriving compare, sexp_of]

end
include T
include Comparator.Make(T)

end;;

If you want a comparison function that orders things in a particular way, you can

always write your own by hand; but if all you need is a total order suitable for creating

maps and sets with, then [@@deriving compare] is a good choice.

=, ==, and phys_equal

OCaml has multiple notions of equality, and picking the right one can be tricky. If you

don't open Base, you'll �nd that the == operator tests for physical equality, while the =

operator is the polymorphic equality function.

Two values are considered physically equal if they are the same pointer in memory.

Two data structures that have identical contents but are constructed separately will not

be considered equal by ==. Polymorphic equality, on the other hand, is structural, which

e�ectively means that it considers values to be equal if they have the same contents.

Most of the time you don't want either of these forms of equality! Polymorphic

equality is problematic for reasons we explained earlier in the chapter, and physical

equality, while useful, is something that's needed in particular cases, most often when

you're dealing with mutable objects, where the physical identity of the object matters.

Base hides polymorphic equality, instead reserving = for equality functions associ-

ated with particular types. At the top-level = is specialized to integers.

1 = 2;;
- : bool = false

https://doi.org/10.1017/9781009129220.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.018

272 Maps and Hash Tables

"one" = "two";;
Line 1, characters 1-6:

Error: This expression has type string but an expression was expected

of type

int

Other type-speci�c equality functions are found in their associated modules

String.("one" = "two");;
- : bool = false

It's quite easy tomix up = and ==, and so Base deprecates == and provides phys_equal

instead, a function with a clear and descriptive name.

ref 1 == ref 1;;
Line 1, characters 7-9:

Alert deprecated: Base.==

[2016-09] this element comes from the stdlib distributed with OCaml.

Use [phys_equal] instead.

- : bool = false

phys_equal (ref 1) (ref 1);;
- : bool = false

This is just a small way in which Base tries to avoid error-prone APIs.

15.1.6 Applying [@@deriving] to Maps and Sets

In the previous section, we showed how to use [@@deriving] annotations to set up

a type so it could be used to create a map or set type. But what if we want to put a

[@@deriving] annotation on a map or set type itself?

type string_int_map =
(string,int,String.comparator_witness) Map.t [@@deriving sexp];;

Line 2, characters 44-49:

Error: Unbound value Map.t_of_sexp

Hint: Did you mean m__t_of_sexp?

This fails because there is no existing Map.t_of_sexp. This isn't a simple omission;

there's no reasonable way to de�ne a useful Map.t_of_sexp, because a comparator

witness isn't something that can be parsed out of the s-expression.

Happily, there's another way of writing the type of a map that does work with the

various [@@deriving] extensions, which you can see below.

type string_int_map = int Map.M(String).t [@@deriving sexp];;
type string_int_map = int Base.Map.M(Base.String).t

val string_int_map_of_sexp : Sexp.t -> string_int_map = <fun>

val sexp_of_string_int_map : string_int_map -> Sexp.t = <fun>

Here, we use a functor, Map.M, to de�ne the type we need. While this looks di�erent

than the ordinary type signature, the meaning of the type is the same, as we can see

below.

let m = Map.singleton (module String) "one" 1;;
val m : (string, int, String.comparator_witness) Map.t = <abstr>

https://doi.org/10.1017/9781009129220.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.018

15.2 Hash Tables 273

(m : int Map.M(String).t);;
- : int Base.Map.M(Base.String).t = <abstr>

This same type works with other derivers as well, like those for comparison and

hash functions. Since this way of writing the type is also shorter, it's what you should

use most of the time.

15.1.7 Trees

As we've discussed, maps carry within them the comparator that they were created

with. Sometimes, for space e�ciency reasons, you want a version of the map data

structure that doesn't include the comparator. You can get such a representation with

Map.Using_comparator.to_tree, which returns just the tree underlying the map, with-

out the comparator.

let ord_tree = Map.Using_comparator.to_tree ord_map;;
val ord_tree :

(string, int, String.comparator_witness)

Map.Using_comparator.Tree.t =

<abstr>

Even though the tree doesn't physically include a comparator, it does include the

comparator in its type. This is what is known as a phantom type, because it re�ects

something about the logic of the value in question, even though it doesn't correspond

to any values directly represented in the underlying physical structure of the value.

Since the comparator isn't included in the tree, we need to provide the comparator

explicitly when we, say, search for a key, as shown below:

Map.Using_comparator.Tree.find ~comparator:String.comparator
ord_tree "snoo";;

- : int option = Some 3

The algorithm of Map.Tree.find depends on the fact that it's using the same com-

parator when looking up a value as you were when you stored it. That's the invariant

that the phantom type is there to enforce. As you can see in the following example,

using the wrong comparator will lead to a type error:

Map.Using_comparator.Tree.find ~comparator:Reverse.comparator
ord_tree "snoo";;

Line 1, characters 63-71:

Error: This expression has type

(string, int, String.comparator_witness)

Map.Using_comparator.Tree.t

but an expression was expected of type

(string, int, Reverse.comparator_witness)

Map.Using_comparator.Tree.t

Type String.comparator_witness is not compatible with type

Reverse.comparator_witness

https://doi.org/10.1017/9781009129220.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.018

274 Maps and Hash Tables

15.2 Hash Tables

Hash tables are the imperative cousin of maps. We walked through a basic hash table

implementation in Chapter 9 (Imperative Programming), so in this section we'll mostly

discuss the pragmatics of Core's Hashtblmodule.We'll cover thismaterialmore brie�y

than we did with maps because many of the concepts are shared.

Hash tables di�er from maps in a few key ways. First, hash tables are mutable,

meaning that adding a key/value pair to a hash table modi�es the table, rather than

creating a new table with the binding added. Second, hash tables generally have

better time-complexity than maps, providing constant-time lookup and modi�cations,

as opposed to logarithmic for maps. And �nally, just as maps depend on having a

comparison function for creating the ordered binary tree that underlies a map, hash

tables depend on having a hash function, i.e., a function for converting a key to an

integer.

15.2.1 Time Complexity of Hash Tables

The statement that hash tables provide constant-time access hides some complexities.

First of all, most hash table implementations, OCaml's included, need to resize the

table when it gets too full. A resize requires allocating a new backing array for the

hash table and copying over all entries, and so it is quite an expensive operation. That

means adding a new element to the table is only amortized constant, which is to say,

it's constant on average over a long sequence of operations, but some of the individual

operations can cost more.

Another hidden cost of hash tables has to do with the hash function you use. If you

end up with a pathologically bad hash function that hashes all of your data to the same

number, then all of your insertions will hash to the same underlying bucket, meaning

you no longer get constant-time access at all. Base's hash table implementation uses

binary trees for the hash-buckets, so this case only leads to logarithmic time, rather

than linear for a traditional implementation.

The logarithmic behavior of Base's hash tables in the presence of hash collisions also

helps protect against some denial-of-service attacks. One well-known type of attack is

to send queries to a service with carefully chosen keys to cause many collisions. This,

in combination with the linear behavior of most hashtables, can cause the service to

become unresponsive due to high CPU load. Base's hash tables would be much less

susceptible to such an attack because the amount of degradation would be far less.

We create a hashtable in a way that's similar to how we create maps, by providing a

�rst-class module from which the required operations for building a hashtable can be

obtained.

let table = Hashtbl.create (module String);;
val table : (string, '_weak1) Base.Hashtbl.t = <abstr>

Hashtbl.set table ~key:"three" ~data:3;;
- : unit = ()

Hashtbl.find table "three";;

https://doi.org/10.1017/9781009129220.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.018

15.2 Hash Tables 275

- : int option = Some 3

As with maps, most modules in Base are ready to be used for this purpose, but if

you want to create a hash table from one of your own types, you need to do some work

to prepare it. In order for a module to be suitable for passing to Hashtbl.create, it has

to match the following interface.

#show Base.Hashtbl.Key.S;;
module type S =

sig

type t

val compare : t -> t -> int

val sexp_of_t : t -> Sexp.t

val hash : t -> int

end

Note that there's no equivalent to the comparator witness that came up for maps

and sets. That's because the requirement for multiple objects to share a comparison

function or a hash function mostly just doesn't come up for hash tables. That makes

building a module suitable for use with a hash table simpler.

module Book = struct
type t = { title: string; isbn: string }
[@@deriving compare, sexp_of, hash]

end;;
module Book :

sig

type t = { title : string; isbn : string; }

val compare : t -> t -> int

val sexp_of_t : t -> Sexp.t

val hash_fold_t :

Base_internalhash_types.state -> t ->

Base_internalhash_types.state

val hash : t -> int

end

let table = Hashtbl.create (module Book);;
val table : (Book.t, '_weak2) Base.Hashtbl.t = <abstr>

You can also create a hashtable based onOCaml's polymorphic hash and comparison

functions.

let table = Hashtbl.Poly.create ();;
val table : ('_weak3, '_weak4) Base.Hashtbl.t = <abstr>

Hashtbl.set table ~key:("foo",3,[1;2;3]) ~data:"random data!";;
- : unit = ()

Hashtbl.find table ("foo",3,[1;2;3]);;
- : string option = Some "random data!"

This is highly convenient, but polymorphic comparison can behave in surprising

ways, so it's generally best to avoid this for code where correctness matters.

15.2.2 Collisions with the Polymorphic Hash Function

The polymorphic hash function, like polymorphic compare, has problems that derive

from the fact that it doesn't pay any attention to the type, just blindly walking down

https://doi.org/10.1017/9781009129220.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.018

276 Maps and Hash Tables

the structure of a data type and computing a hash from what it sees. That means that

for data structures like maps and sets where equivalent instances can have di�erent

structures, it will do the wrong thing.

But there's another problem with polymorphic hash, which is that it is prone to

creating hash collisions. OCaml's polymorphic hash function works by walking over

the data structure it's given using a breadth-�rst traversal that is bounded in the number

of nodes it's willing to traverse. By default, that bound is set at 10 �meaningful� nodes.

The bound on the traversal means that the hash function may ignore part of the

data structure, and this can lead to pathological cases where every value you store has

the same hash value. We'll demonstrate this below, using the function List.range to

allocate lists of integers of di�erent length:

Hashtbl.Poly.hashable.hash (List.range 0 9);;
- : int = 209331808

Hashtbl.Poly.hashable.hash (List.range 0 10);;
- : int = 182325193

Hashtbl.Poly.hashable.hash (List.range 0 11);;
- : int = 182325193

Hashtbl.Poly.hashable.hash (List.range 0 100);;
- : int = 182325193

As you can see, the hash function stops after the �rst 10 elements. The same can

happen with any large data structure, including records and arrays.When building hash

functions over large custom data structures, it is generally a good idea to write one's

own hash function, or to use the ones provided by [@@deriving], which don't have this

problem, as you can see below.

[%hash: int list] (List.range 0 9);;
- : int = 999007935

[%hash: int list] (List.range 0 10);;
- : int = 195154657

[%hash: int list] (List.range 0 11);;
- : int = 527899773

[%hash: int list] (List.range 0 100);;
- : int = 594983280

Note that rather than declaring a type and using [@@deriving hash] to invoke

ppx_hash, we use [%hash], a shorthand for creating a hash function inline in an

expression.

15.3 Choosing Between Maps and Hash Tables

Maps and hash tables overlap enough in functionality that it's not always clear when to

choose one or the other. Maps, by virtue of being immutable, are generally the default

choice in OCaml. OCaml also has good support for imperative programming, though,

and when programming in an imperative idiom, hash tables are often the more natural

choice.

https://doi.org/10.1017/9781009129220.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.018

15.3 Choosing Between Maps and Hash Tables 277

Programming idioms aside, there are signi�cant performance di�erences between

maps and hash tables. For code that is dominated by updates and lookups, hash tables

are a clear performance win, and the win is clearer the larger the amount of data.

The best way of answering a performance question is by running a benchmark,

so let's do just that. The following benchmark uses the core_bench library, and it

compares maps and hash tables under a very simple workload. Here, we're keeping

track of a set of 1,000 di�erent integer keys and cycling over the keys and updating the

values they contain. Note that we use the Map.change and Hashtbl.change functions

to update the respective data structures:

open Base
open Core_bench

let map_iter ~num_keys ~iterations =
let rec loop i map =
if i <= 0
then ()
else
loop
(i - 1)
(Map.change map (i % num_keys) ~f:(fun current ->

Some (1 + Option.value ~default:0 current)))
in
loop iterations (Map.empty (module Int))

let table_iter ~num_keys ~iterations =
let table = Hashtbl.create (module Int) ~size:num_keys in
let rec loop i =
if i <= 0
then ()
else (
Hashtbl.change table (i % num_keys) ~f:(fun current ->

Some (1 + Option.value ~default:0 current));
loop (i - 1))

in
loop iterations

let tests ~num_keys ~iterations =
let t name f = Bench.Test.create f ~name in
[t "table" (fun () -> table_iter ~num_keys ~iterations)
; t "map" (fun () -> map_iter ~num_keys ~iterations)
]

let () =
tests ~num_keys:1000 ~iterations:100_000
|> Bench.make_command
|> Core.Command.run

The results show the hash table version to be around four times faster than the map

version:

(executable
(name map_vs_hash)
(libraries base core_bench))

https://doi.org/10.1017/9781009129220.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.018

278 Maps and Hash Tables

$ dune build map_vs_hash.exe
$./_build/default/map_vs_hash.exe -ascii -quota 1 -clear-columns

time speedup
Estimated testing time 2s (2 benchmarks x 1s). Change using -quota

SECS.

Name Time/Run Speedup
------- ---------- ---------
table 13.34ms 1.00
map 44.54ms 3.34

We can make the speedup smaller or larger depending on the details of the test; for

example, it will vary with the number of distinct keys. But overall, for code that is

heavy on sequences of querying and updating a set of key/value pairs, hash tables will

signi�cantly outperform maps.

Hash tables are not always the faster choice, though. In particular, maps excel in

situations where you need to keep multiple related versions of the data structure in

memory at once. That's because maps are immutable, and so operations like Map.add

that modify a map do so by creating a new map, leaving the original undisturbed.

Moreover, the new and old maps share most of their physical structure, so keeping

multiple versions around can be space-e�cient.

Here's a benchmark that demonstrates this. In it, we create a list of maps (or hash

tables) that are built up by iteratively applying small updates, keeping these copies

around. In the map case, this is done by using Map.change to update the map. In the

hash table implementation, the updates are done using Hashtbl.change, but we also

need to call Hashtbl.copy to take snapshots of the table:

open Base
open Core_bench

let create_maps ~num_keys ~iterations =
let rec loop i map =
if i <= 0
then []
else (
let new_map =
Map.change map (i % num_keys) ~f:(fun current ->

Some (1 + Option.value ~default:0 current))
in
new_map :: loop (i - 1) new_map)

in
loop iterations (Map.empty (module Int))

let create_tables ~num_keys ~iterations =
let table = Hashtbl.create (module Int) ~size:num_keys in
let rec loop i =
if i <= 0
then []
else (
Hashtbl.change table (i % num_keys) ~f:(fun current ->

Some (1 + Option.value ~default:0 current));
let new_table = Hashtbl.copy table in
new_table :: loop (i - 1))

https://doi.org/10.1017/9781009129220.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.018

15.3 Choosing Between Maps and Hash Tables 279

in
loop iterations

let tests ~num_keys ~iterations =
let t name f = Bench.Test.create f ~name in
[t "table" (fun () -> ignore (create_tables ~num_keys ~iterations))
; t "map" (fun () -> ignore (create_maps ~num_keys ~iterations))
]

let () =
tests ~num_keys:50 ~iterations:1000
|> Bench.make_command
|> Core.Command.run

Unsurprisingly, maps perform far better than hash tables on this benchmark, in this

case by more than a factor of 10:

(executable
(name map_vs_hash2)
(libraries core_bench))

$ dune build map_vs_hash2.exe
$./_build/default/map_vs_hash2.exe -ascii -clear-columns time speedup
Estimated testing time 20s (2 benchmarks x 10s). Change using -quota

SECS.

Name Time/Run Speedup
------- ------------ ---------
table 4_453.95us 25.80
map 172.61us 1.00

These numbers can be made more extreme by increasing the size of the tables or

the length of the list.

As you can see, the relative performance of trees and maps depends a great deal

on the details of how they're used, and so whether to choose one data structure or the

other will depend on the details of the application.

https://doi.org/10.1017/9781009129220.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.018

