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ABSTRACT. In this paper, two-dimensional direct numerical simulations (DNS) of
dense clouds moving down steep slopes are presented for the first time. The results
obtained are in good agreement with the overall characteristics, 1.e. the spatial growth
rate and velocity variations, of clouds studied in the laboratory. In addition to the overall
flow structure, DNS provide local density and velocity variations inside the cloud, not
easily accessible in experiments. The validity of two-dimensional simulations as a first ap-
proach is confirmed by the dynamics of the flow and by comparison with experimental
results. The interest of the results for powder-snow avalanches is discussed; it 1s concluded
that two-dimensionality is acceptable and that large density differences need to be taken

into account in future simulations.

INTRODUCTION

A powder-snow avalancheis a dense cloud of suspended snow
particles moving down a steep slope. These flows can reach
front velocities ug of 100m's ', and heights & of the order of
100 m. Measurements by intrusive probes are therefore very
hazardous. In addition, powder-snow avalanches are rare
events. Techniques such as georeferenced photography and
radar nowinuse provide extremely valuableinformationcon-
cerning the avalanche dimensions, their shape and front
velocities, as well as velocities behind the front (Dufour and
others, 200la, b). However, density or snow-concentration
measurements still rely on intrusive probes and are relatively
uncertain.

In parallel, laboratory experiments, simulating ava-
lanches, were developed which provided useful information
about the dynamics of these flows and the dependency of
avalanche velocity and shape on slope angle. A review of la-
boratory experiments and the related theoretical models
can be found in Hopfinger (1983) and Hutter (1996). The
theoretical models show that entrainment of snow from the
snow cover is an important aspect of avalanche motion
(Hopfinger and Tochon-Danguy, 1977; Fukushima and Par-
ker, 1990; Rastello and Hopfinger, 2004). Generally, labora-
tory experiments are, unfortunately, limited to Boussinesq
fluids of Boussinesq number (92 — 01)/02 < 1. The princi-
pal similarity parameter is the densimetric Froude number
provided the Reynolds number is sufficiently large for the
flow to be fully turbulent (in free shear flows, a continuous
energy spectrum with a k~°/% spectral slope emerges when
the flow Reynolds number is greater than 3 x 10%).

Commercial avalanche codes use depth-averaged
models and in some cases turbulence k — ¢ models for the
powder cloud. Often these models are combined with a
dense flow layer below the powder cloud and a transition
layer in between (see, e.g., Naaim and Giirer, 1998 ).

Progress in understanding the flow structure requires
more refined experiments (field studies and laboratory ex-
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periments). Direct numerical simulations (DNS) and large
eddy simulations (LES) are alternative approaches. These
give access to all the flow quantities desired and would be
of particular interest for the study of the interaction of an
avalanche with structures, for instance. Unfortunately, the
complex structure of avalanches makes such numerical
simulations difficult. For this reason, only Boussinesq grav-
ity currents on a horizontal boundary have been simulated
at present (Necker and others, 2002). Here we present the
first DNS of dense-cloud motion on slopes. These simula-
tions are, at present, two-dimensional and for
(02 — 01)/ 02 < 1; the relevance of two-dimensional simu-
lations, which allow high Reynolds numbers to be reached,
is supported by the dynamics of avalanches discussed below.
Before refining the simulations by going to a three-dimen-
sional code, it is of interest to study such first-order effects
as snow entrainment and large (g2 — 01)/02. Ultimately,
DNS and LES can serve as benchmark tests for averaged
models used in practice.

CHARACTERISTICS AND DYNAMICS OF
POWDER-SNOW AVALANCE FLOW

The density of avalanches ranges from about 20 kg m * near
the start to about 2kgm * at the end. The settling velocity
and volume concentration of the snow particles are small, so
thattheenergy requiredtokeepthe particlesinsuspensionisa
small fraction of the turbulent kinetic energy. Furthermore,
the particle time-scale 7, = wg/ g, where wy is the fall velocity
and gthe gravitational acceleration) is about one-tenth of the
flow time-scale h/ug. Hence, the particles closely follow the
local velocity of the cloud, which allows, as a first approxima-
tion, treatment of the avalanche as a variable density fluid.
Laboratory experiments with dense clouds carried out
by Beghin and others (1981), Hermann and others (1987)
and more recently by Rastello (2002) showed that the main
features of avalanche flow can be reproduced with single-
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Fig. 1. Definition sketch. The star denotes dimensional coun-
terparts of quantities otherwise used in non-dimensional form.

phase, variable-density flows, and demonstrated two essen-
tial features of these flows:

The force balance governing the flow is between the
driving buoyancy force and the entrainment of ambient
fluid (air in the case of avalanches). As ambient fluid is
entrained, it has to be accelerated, and this momentum
transfer results in an effective drag, which has an effect of
much larger magnitude than ground friction. There is
practically no flow separation, so the form drag is negli-
gible. The interfacial friction is included in the entrain-
ment.

The entrainment of ambient fluid is caused by the over-
turning motion of the large structures of the flow.

The generation of the large structures responsible for the
entrainment of ambient fluid is essentially a two-dimen-
sional mechanism. The smaller-scale three-dimensional
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Iig. 2. Detail of the adaptive mesh in Figure 5. Note the re-
Jfinement in the boundary layer close to the ground and along
the density map isolines (shown as background ).
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Fig. 3. Comparison of the non-dimensional front velocity vs
non-dimensional front position in simulations and in experi-

mental clouds of Rastello (2002).

turbulence of the flow is superimposed on the larger fea-
tures. The effect of these three-dimensional structures on
the air entrainment can be neglected in a first-order ap-
proach. Indeed, Normand (1990) demonstrated by compar-
1son with numerous laboratory experiments that two-
dimensional simulations of a mixing layer reproduce well
the actual spreading rate of the flow. Therefore, we can ex-
pect that two-dimensional DNS can reproduce fairly well
the essential physics and dynamics of laboratory clouds and
also powder-snow avalanches. This allows us to focus on sol-
ving accurately this simplified problem rather than dealing
with the complexity of three-dimensional simulations.

Within this frame, we shall proceed first with validating
our assumptions by comparing the simulations with labora-
tory clouds, for which we have accurate quantitative results.
Then the simulations are extended to avalanches.

The comparison with laboratory experiments allows
two further approximations which will provisionally be
used in our simulations: (1) The ratio of the density of the
aerosol to the ambient fluid density is close to one (whereas
it 1s closer to 10 for avalanches), 1.e. we can use the Boussi-
nesq approximation; (ii) the Reynolds number is of order
104, rather than 10° for avalanches. It should be noted that
the actual value of the Reynolds number is not of primary
importance (because the dynamics is controlled by the
large-scale features and depends only weakly on the smaller

scales) as long as it is sufficiently large (Re > 10%).
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Fig. 4. Comparison of the spatial growh of cloud length and
height in simulations on a slope of angle 6 = 32°.


https://doi.org/10.3189/172756404781815031

Ig. 5. Qualitative comparison between (a) laboratory cloud
of Rastello (2002) and ('b) numerical simulation of a Bous-
sinesq cloud at time t =128 on a 32° slope, with
Re = 10*. Superimposed in black are the large eddy motions
and in white the air-entrainment process. T he mesh of the front
part is shown in Figure 2.

Small-scale laboratory dense clouds are limiting cases of
avalanches, as was clearly shown by Rastello (2002) by com-
paring laboratory results with observations by Dufour and
others (2001a).

VARIABLE-DENSITY FLOW EQUATIONS

Let us consider a fluid which is a mixture of two miscible spe-
cies with different properties, and define a volume fraction of
each of them, ®; and ®5, in a domain ), such that
®; + &, = 1. Inourcase, thespeciesaretheinitial dense fluid
(snow aerosol) and the ambient fluid (air).

Following Joseph and Renardy (1993), we assume that
the diffusion within the mixture is governed by Fick’s law,
and assuming Boussinesq conditions we obtain the system:

(gt +u- V) ¢, =V - (DV®) (1a)

Q+ -V |u=-V +LV~(V + Vau') -
o u u = Po Re u u 1€z
(1b)
V-u=0 (1c)

which is non-dimensionalized by the wvelocity scale

(01 — 02)gL/02], which is the free-fall, terminal
velocity of the fluid in the light one. The Reynolds number is
definedasRe = 9o LU/ 19. The characteristiclength Lis cho-
senasthelength £y of the heavy fluid volume initially released
(note that often the characteristic length scale is taken as
L = \/{yhy) (see Fig. 1). All results are presented in this non-
dimensional form, i.e. velocity is normalized by U, the dis-
tance z* and cloud dimensions by I, and the time by L /U.We
use non-slip conditions on the boundary; the domain is cho-
sen large enough so that its finiteness does not affect the
solution.
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Fig. 6. A time sequence of density maps in numerical stmula-
tions, for t =11.8,t=12.3,t =128 and t =13.3.

Conditions are the same as in Figure 5. Note that the maxi-
mum of @1 diluted down from I to 0.95.

NUMERICAL METHOD
Time discretization

Inorder toavoid the numerical instabilities that usually origi-
nate from half-implicit schemes with large time-steps, we use
the characteristics method proposed by Pironneau (1989), 1.e.
wediscretizedirectly thematerialderivative [(0/0t) + u - V|
along the trajectory of a fictious particle X moving with the
velocity #(X). It is thus possible to write an implicit Euler
scheme for Equations (1a) and (Ib—Ic), respectively.

Space discretization

We use the Taylor-Hood finite element (Hood and Taylor,
1973), which is a continuous piecewise quadratic approxima-
tionofuand ®, and a continuous piecewiselinear approxima-
tion of p. Equation (Ic) is enforced up to machine precision by
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Ig. 7. Ratio of maximum over z of excess dynamic pressure
%(Ql — 02)®1u? to front average stagnation pressure at
t = 12.8. The plus signs denote the loct of the maxima; iso-
lines ® = 0.08 and ® = 0.35 are also shown.

an augmented Lagrangian iterative algorithm (Fortin and
Glowinski, 1983) over Equations (1b—lc).

The flow being of “impulse” type, with locally high gra-
dients in the shear and boundary layers, there is an obvious
benefit in locally refining the mesh as shown in Figure 2
(Saramito and Roquet, 2000). We refine according to the
Hessians of both the local energy dissipation and the phase
volume-fraction in order to have the boundary layers and
high-shear regions refined as well as the interface. It
requires approximately 6 min to run a one-time-step itera-
tion of four mesh adaptations on an Intel/Linux 1 GHz per-
sonal computer. A reasonable time-step is 0.05 in non-
dimensional units, that is approximately 0.25s for a large
avalanche.

RESULTS
Validation

Our validation in this paper relies on the spatial growth and
front velocity of the acrosol cloud as it moves down the slope.
Tor a fine enough mesh, the features of the solution become
mesh-invariant, whichmeansthat thenumerical convergence
1s assured. It is shown in Figure 3 that the calculated front
velocity isfound similar to the experimental front velocity. In
Figure 4 we compare the calculated evolution of cloud height
and length with laws experimentally established by Beghin
andothers (1981) and by Rastello (2002). Itisseen that the evo-
lutions are similar.

Flow structure

Asnoted bothinreal avalanches and inlaboratory clouds, the
flow consists of two well-identified parts, namely the head,
which reacheslarge heights and develops shear-layer instabil-
ities, and the tail (awake), which flowsmoreslowly, close to the
ground. The numerical simulations display an even stronger
separation between these two parts.

An essential feature is the ambient fluid entrainment,
which causes the main drag. It is strongest at the rear of the
head in experiments (Hopfinger and Tochon-Danguy, 1977,
Rastello, 2002) and 1s also clearly so in our numerical simu-
lations (Fig. 5). The shear flow instability is also seen in the
time sequence (Fig. 6) and was found in both of the above-
cited experiments. Two other vortices rotating opposite to
the shear-layer eddies are exhibited, one of them having
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been noticed by Rastello (2002) in experiments. Moreover,
it was noted in these experiments that heavy fluid from the
forepart of the head was periodically rejected into the large
vortex at the rear, a process also exhibited by the numerical
simulations.

Kinetic energy and dynamic pressure

Awell-known manifestation of avalanchesis their destructive
power, which is observed to be much larger in practice than
estimated from the average density and front velocity
(Berthet-Rambaud, 2001). One possible explanation is that
the dynamic pressure inside the avalanche is locally much
larger. The dynamic pressure is % ou?, and, the ambient fluid
density g2 being small in an avalanche, it is essentially equal
to (01 — 02)®1u®. We compareit to the front average stagna-
tion pressure, that is %@u? ~ % (01 — 02)®1u?, where D (re-
spectively @) is the average of the density (respectively of
®,) over thehead. Itisshownin Figure 7 that very high ratios
(around 7) arereached locally where there are high velocities
in dense areas. The existence of such large dynamic pressures
inside the avalanche behind the front was suggested by Hop-
finger (1983) and has also been noted by other authors (per-
sonal communication from D. Issler, 2003).

DISCUSSION

The direct numerical simulations presented in this paper
show that two-dimensional simulations reproduce the essen-
tial features of gravity currents, including avalanches. The
assumption of two-dimensionality seems at first sight very
stringent because the visual appearance of an avalanche flow
in two dimensions is quite different; the large vortices seen in
avalanches as well as in laboratory clouds appear fully three-
dimensional. Their strength, however, is determined by the
two-dimensional mean shear, which justifies two-dimen-
sional simulations as a good first approach. Indeed, the cor-
responding numerical results compare well with laboratory
results. This is because the force balance 1s accounted for by
the gravitational force which drives the avalanche, and by en-
trainment of ambient fluid, which is the principal retarding
force and is essentially a two-dimensional process. Since la-
boratory experiments with Boussinesq fluids are well repro-
duced in our simulations and since these laboratory
avalanches have the same three-dimensional structures and
involve the same governing mechanisms as the real ava-
lanches, we canhope tosimulate avalanchesby taking into ac-
countthelargerdensitydifference. Thisrequiresthe extension
of the model and code to non-Boussinesq flows, which was
done recently by Etienne and others (2004).
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