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ABSTRACT. Optoelectronic sensors using infrared light-emitting diodes and photo-
transistors have been used for measuring velocities in snow avalanches for more than
10 years in America, Europe and Japan. Though they have been extensively used, how
they should be designed and how the data should be processed has received little discus-
sion. This paper discusses how these sensors can be applied to measure two-dimensional
velocities. The effects of acceleration and structure in the underlying field of reflectance
are carefully accounted for. An algorithm is proposed for calculating the continuous
velocity vector of an avalanche, and a sketch of the mathematical analysis given. The
paper concludes by suggesting design criteria for such sensors.

1. INTRODUCTION

Optoelectronic sensors have been used for a long time to
measure the velocities inside granular flows. Some of the
earliest work was done by Nishimura and others (1987) on
snow avalanches and continued in Nishimura and others
(1993). Early work was also done by Dent and others (1998)
and measurements were taken from the ‘‘Revolving Door’’
avalanche path near Bridger Bowl, MT, U.S.A.

The basic design of these sensors is simple. An infrared
light-emitting diode emits light that is reflected by the pass-
ing granular material and this is detected by an infrared-
sensitive photo-transistor, amplified, digitized and stored
on a computer. By comparing the signals from nearby sen-
sors it is possible to calculate the velocity of the flow.

In theory, it is possible to calculate many other pieces of
information about the flow since the magnitude of the back-
scattered light depends on the density, type, size and orien-
tation of the snow crystals. However, though Dent and
others (1998) tried to relate reflectivity to snow density, they
failed because crystal size and type are much more import-
ant than density. Some gross aspects of the flow can be de-
termined, however. For example, in deposited snow the
signal will be constant, in a powder cloud the signal will be
very low since no light from above can reach the sensor and
the density is usually too low to significantly reflect light,
and above the snow a high level will be detected due to am-
bient lighting.

Despite the widespread use of optoelectronic sensors,
there appears to have been little work done on how these
sensors can be applied to two-dimensional measurements.
In McElwaine and Tiefenbacher (2003) a detailed analysis
is developed for two element sensors, and the standard
cross-correlation algorithm is analyzed in detail. The main

results of this work are that the measured velocities are con-
sistently too high by

v2y þ T 2a2x þ T 2a2y
vx

; ð1Þ

where vx is the velocity parallel to the sensor, vy the perpen-
dicular velocity, ax and ay the corresponding accelerations
and T the width of the correlation window. The paper also
shows that T must be sufficiently large so that Lc=ðTvÞ is
small, where Lc is the correlation length of the snow, in
order that the minimum of the cross-correlation can be
located, and that Lcvy=ðLvÞ, where L is the sensor element
separation, must be small so that there are correlations
between the sensor elements. These requirements that the
bias is low, and that the correlation exists and can be found
cannot be simultaneously satisfied unless vy=vx, Tax=vx and
Tay=vx are all small. A novel analysis method is briefly pre-
sented that changes the time leading to acceleration errors
T , the width of the correlation window, to L=vx the transit
time over the sensor. This dramatically reduces the accel-
eration-induced bias, but the bias from vy cannot be elimi-
nated satisfactorily from a one-dimensional sensor. This
paper begins by discussing how a four-element sensor will
performwith different flow fields.This insight is used to de-
velop a continuous estimation procedure for two-dimen-
sional velocity which is introduced and analyzed.

For convenience, in this paper we ignore discretization
errors in time and regard functions as continuous.This sim-
plification can be made as long as the signals are properly
filtered before digitization so that there are no frequencies
higher than the Nyquist frequency (half the sample fre-
quency). Continuous functions are then defined by their
Fourier interpolation.

Annals of Glaciology 38 2004
# International Glaciological Society

139
https://doi.org/10.3189/172756404781814997 Published online by Cambridge University Press

https://doi.org/10.3189/172756404781814997


2. INTERPRETATIONOF LAGTIMES

2.1. Effect of acceleration

One of the simplest situations is shown in Figure 1. An edge
is moving past four photo-transistors with centres at xi.
Only the velocity and acceleration normal to the edge, that
is in the direction n̂, can be resolved. This is known as the
aperture effect (Ja« hne, 1997, ch. 13).We write v ¼ n̂ � v and
similarly for the acceleration a ¼ n � a. If a is constant, then
the arrival time of the edge at each sensor �i will be givenby

yþ v�i þ a�2i =2 ¼ n̂ � xi : ð2Þ

There are four equations, one for each sensor, and four un-
knowns, which are v the normal velocity, a the normal ac-
celeration, y the position of the edge at t ¼ 0 and n̂ the
normal direction to the edge. A convenient choice of coord-
inates is n � x1 ¼ L=2 cos �, n � x2 ¼ �L=2 cos �, n � x3 ¼
L=2 sin � and n � x4 ¼ �L=2 sin � so the the diagonal
length between the sensors is L. Equation (2) for each i can
now be solved to give

� ¼ �þ tan�1 �2 tan 2�

1� �2

� �
;

v ¼ L

�

4��=� þ cosð2�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosð2�Þ2 � 2�2 cosð2�Þ2 þ �4

q ;

a ¼ L

�2
4�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosð2�Þ2 � 2�2 cosð2�Þ2 þ �4

q ;

ð3Þ

where the following auxiliary variables have been defined

� ¼ ð�1 þ �2 þ �3 þ �4Þ=4;
�1 ¼ �1 � �2;

�2 ¼ �3 � �4;

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�21 þ �22

q
;

� ¼ tan�1ð�2=�1Þ;

� ¼ �1 þ �2 � �3 � �4
�

:

ð4Þ

Using y, v and a from Equations (3) we know that at time t
the position of the edge projected in the direction n̂ is
yþ vtþ 1=2 at2 and the velocity is vþ at. A natural choice
is to calculate the time t0 when the edge is over the centre of
the sensor and then calculate the velocity at this time. This

gives a quadratic equation for t0 which has the following
solution:

t0 ¼ � � �

4

�ð�2 þ 2Þ sgn ðcos 2�Þ

j cos 2�j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosð2�Þ2 þ 2�2 þ �4

q : ð5Þ

This has been written so that the correct solution is chosen
regardless of the sign of cosð2�Þ.The velocity at this time is

vðt0Þ ¼
L

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosð2�Þ2 þ 2�2 þ �4

cosð2�Þ2 � 2�2 cosð2�Þ2 þ �4

s
: ð6Þ

The acceleration a and angle �, given by Equations (3), are
both independent of time in this model. Thus these two
equations along with Equation (6) can give an estimate of
the flow properties at the time t0 given by Equation (5).

There are several salient features of these equations.
First they are exact for all accelerations, angles and
velocities.The mean time � only occurs in Equation (5) spe-
cifying the time at the centre of the measurement. The
angle, velocity and acceleration only depend on the differ-
ences between the lag times �i. To understand these equa-
tions it is helpful to invert them.

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2 sin2 �

pp
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2 cos2 �

pph i2
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2 cos2 �

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2 sin2 �

p

� 1=4� cos 2�þOð�3Þ

�1 ¼
L

v

ffiffiffi
2

p
cos �

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2 cos2 �

p

� L cos �

v
1þ 1=8�2 cos2 �þOð�4Þ
� �

;

�2 ¼
L

v

ffiffiffi
2

p
sin �

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2 sin2 �

p

� L sin �

v
1þ 1=8�2 sin2 �þOð�4Þ
� �

;

ð7Þ

where v is the velocity at the centre point and � ¼ aL=v2 is
the relative velocity change over the size of the sensor. For
� > 1 the velocity can change direction so that the edge will
not reach the sensor for certain angles, and this is shown in
the above equations by the square roots becoming imagin-
ary. By considering small relative accelerations the nature of
� as a measure of relative acceleration and �1 and �2 as
velocities along the coordinate axes is clear. The above ex-
pansions in � are uniformly valid for j�j < 1, but the inverse
expansions treating � as a small parameter break down
when cos 2� is small. This is because when the edge is mov-
ing parallel to the sides of the square it is no longer possible
to calculate the acceleration.This problemwill be expanded
upon when we discuss the errors.

To calculate the effect of errors in the four �i we assume
that they are randomvariables with mean �i and independ-
ent mean squared errors with variance �2.These errors arise
from quantization, statistical fluctuations, electronic noise
and deviations by the reflectance field from our model. Al-
lowing the errors to be dependent only affects the results by
a small factor and is not important.

Consider an estimate of some property ĝ ¼ gð�iÞ. The

Fig. 1. Schematic ofa four-element sensor with a straight edge.

McElwaine:Two-dimensional avalanche velocities

140
https://doi.org/10.3189/172756404781814997 Published online by Cambridge University Press

https://doi.org/10.3189/172756404781814997


mean squared error about the exact value gð�iÞ can then be
calculated as follows.

V ½f̂ � ¼ E½ðĝ� gÞ2� ¼ E
X
i

ð�i � �iÞ
@g

@�i

 !2
2
4

3
5

¼
X
i

@g

@�i

� �2

E½ð�i � �iÞ2� ¼ �2
X
i

@g

@�i

� �2

:

ð8Þ

Using this formula for each of v̂, â and �̂, the errors can
easily be calculated. The expressions are rather long, how-
ever, so we only consider the case of small � and expand.

V ½v̂� ¼ �2v4

L2
2þ �2

4þ 9 cos2ð2�Þ þ 5 cos4ð2�Þ
4 cos2ð2�Þ þOð�4Þ

� �

V ½�̂� ¼ �2v2

L2
2þ 5=4�2 sin2ð2�Þ þOð�4Þ
� �

V ½â� ¼ �2v6

L4

64

cos2ð2�Þ þ �2
2ð13 cosð2�Þ2 � 16Þ

cos2ð2�Þ þOð�4Þ
" #

:

ð9Þ
These equations show that there is a very strong dependence
of the error on the angle for the acceleration and the
velocity. For small cosð2�Þ the expansions break down and
the errors can be arbitrarily large in calculating v and a.
This breakdown occurs for any size of �, though the equa-
tions are not included here. Different estimations that avoid
this breakdown will be discussed in the following subsec-
tions.These results also show that the size of the errors is de-
termined by the dimensionless grouping �v=L. This is
exactly the uncertainty one would expect if the sampling
period is � and the lag times �i can be located to this accu-
racy. If this is the case, then the larger L is, the smaller the
errors will be. In general, however, this is wrong for two rea-
sons. If a feature or edge is diffuse, the lags canbe calculated
with a precision that is much greater than the sampling
period. Also as L increases, the correlationbetween the sen-
sors will decrease and may disappear, so that � increases
without bound. A different approach is needed to include
these effects, which will be discussed later. First, however,
two different modelling assumptions will be introduced.

2.2. Effect of curvature

The previous subsection considered the case when the cur-
vature of the flow was constant over the scale of the sensors
but the velocity was allowed to vary. In this subsection we
consider the case of constant velocity, but with curvature.
This would correspond to the case where the size of the sen-
sor is comparable with that of the particles. A four-element
sensor does not give enough information to resolve particle
centre, curvature and velocity as this has five unknowns,
but it is possible to solve for the normal velocity. The four
equations for the lags at each sensor are

jyþ v�i � xij2 ¼ R2; ð10Þ
where y is the centre of curvature at t ¼ 0 and R is the ra-
dius of curvature. Using the normal approximation so that
y ¼ yn̂ and v ¼ vn̂ and the same definition of the sensor
element sensors xi, the equation for each lag time is

ðyþ v�i � n̂ � xiÞ2 þ ðm̂ � xiÞ2 ¼ R2 ¼ 1=	2; ð11Þ

where m̂ is the unit vector normal to n̂. For a straight edgeR

is infinite, so it is more convenient to work with the curva-
ture 	 ¼ 1=R.

The four equations can be solved to give

v ¼ L

�
ð12Þ

� ¼ � ð13Þ

y ¼ �L
�

�
þ L

cosð2�Þ
4�

ð14Þ

	 ¼ 4�

L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ð2�Þ þ 2�2 þ �4

p : ð15Þ

These are considerably simpler than those involving accel-
eration because the curvature gives a linear time shift and
thus has no effect on the velocity or normal angle.The effect
of acceleration is non-linear and more complicated. In the
case of small acceleration, the results give the same esti-
mates for v and �. Since this model includes no acceleration,
the velocity and angle estimate are for all times. A sensible
choice is to regard them as applying at the mean time �.
If we use Equation (12) as our estimate v̂, and Equation (13)
as our estimate �̂, then the errors in the estimates canbe cal-
culated as before.They are

V ½v̂� ¼ 2v4�2

L2

V ½�̂� ¼ 2v2�2

L2
:

ð16Þ

These equations are exact and have no dependence on angle
or curvature. Thus the velocity and normal angle can be
equally well calculated in any direction. The estimates for
the errors in 	 and y do depend on the angle and are also
unstable for small cos 2�, thus again showing that the sensor
will be most effective when aligned with the diagonal in the
flow direction.

Suppose now we use the estimates given by Equations
(12) and (13) in the case of acceleration. The total squared
error will now consist of a bias term and an uncertainty in
� term.The bias errors are

v̂� v ¼ v�

4� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2 cos2 �

p
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2 sin2 �

p � v

¼ �1=16v�2½1þ cos2ð2�Þ2� þOð�4Þ

�̂� � ¼ tan�1

 
cosð�Þ sinð�Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2 cos2 �

pp
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2 sin2 �

pp
sin2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2 cos2 �

pp
þ cos2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2 sin2 �

pp
!

¼ �1=32�2 sinð4�Þ þOð�4Þ:

The variance of these estimates can also be calculated as
before, but is now much simpler than for the unbiased esti-
mates including acceleration.

V ½v̂� ¼ �2v4

L2

2�4

ð4� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2 cos2 �

p
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2 sin2 �

p
Þ2

ð17Þ

¼ �2v4

L2
2� 1=2�2ð1þ cos2ð2�ÞÞ þOð�4Þ
� �

ð18Þ

V ½�̂� ¼ �2v2

L2

2�2

4� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2 cos2 �

p
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2 sin2 �

p ð19Þ

¼ �2v2

L2
2� 1=4�2ð1þ cos2ð2�ÞÞ þOð�4Þ
� �

ð20Þ
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These mean squared errors do depend on the angle �, but
they are always finite, so provided that the velocity does
not vary too much over the size of the sensor so that � is
small, the estimators derived from the curvature model in
Equations (12) and (13) will be more accurate. Only if the
flow is very closely alignedwith the sensor and accelerations
are very large and the curvature can be neglected, will the
estimators based on the acceleration model prove better.

2.3. Closest approach

In this subsection we consider another interpretation of the
lag times when there is structure in the flow field over length
scales smaller than the sensor size. In the next section when
the complete statistical description is given, this is also seen
to arise from averaging over many edge events.

We consider a trajectory given by ð� � tÞvþ
1=2ð� � tÞ2a so that it passes through the centre of the sen-
sor. The lag time �i for sensor i is the point of closest ap-
proach, so that

ð½vþ ð� � tÞa� � ½ð�i � tÞvþ 1=2ð�i � tÞ2a� xi� ¼ 0: ð21Þ
Each of these equations is a cubic in �i which can be solved
exactly, but for simplicity we only consider series solutions
for small acceleration a. In this case we interpret � as the
direction of the velocity v, let a ¼ jaj and let ! be the angle
between v and a, so that a � v ¼ av cos!. Expanding in
terms of the non-dimensional � and substituting the �i into
Equations (4),

� ¼ L

v
þ L�2

128v
½4� 4 cosð4�Þ þ 8 cosð2!Þ

� cosð4�þ 2!Þ þ 9 cosð4�� 2!Þ� þOð�4Þ ð22Þ
� ¼ �þ 1=128�2½4 sinð4�Þ þ sinð4�þ 2!Þ

� 10 sinð2!Þ � 9 sinð4�� 2!Þ� þOð�4Þ ð23Þ

� ¼ t� �
L cos!

16v
�þOð�3Þ ð24Þ

� ¼ �1=8�½3 cosð2�� !Þ � cosð2�þ !Þ� þOð�3Þ: ð25Þ
Equation (24) shows that the mean time is only affected to
lowest by acceleration in the direction of the velocity as
would be expected. Substituting these results into the simple
estimators v̂ ¼ L=� and �̂ ¼ �we can calculate the bias and
variance as before.

v̂� v ¼ �1=128�2v½4� 4 cosð4�Þ þ 8 cosð2!Þ
� cosð2!þ 4�Þ þ 9 cosð4�� 2!Þ� þOð�4Þ ð26Þ

�̂� � ¼ 1=128�2½ð4 sinð4�Þ þ sinð2!þ 4�Þ
� 10 sinð2!Þ � 9 sinð4�� 2!Þ� þOð�4Þ ð27Þ

V ½v̂� ¼ �2v4

L2
2� 1=16�2½4� 4 cosð4�Þ þ 8 cosð2!Þ
�

� cosð2!þ 4�Þ þ 9 cosð4�� 2!Þ� þOð�4Þ
�

V ½�̂� ¼ �2v2

L2
2� 1=32�2½4� 4 cosð4�Þ þ 8 cosð2!Þ
�

� cosð2!þ 4�Þ þ 9 cosð4�� 2!Þ� þOð�4Þ
�

What these results show is that under the assumptions of
this section the simple estimators for v (Equation (12))
and � (Equation (13)) also perform well. That is, the bias
and the variance will be small for all angles provided that
the velocity does not change too much across the width of
the sensor and the lag times can be accurately calculated.
In the next section we describe how to calculate the lag

times and perform a complete statistical analysis of the
approach.

3. CONTINUOUS TIME ESTIMATION

The continuous time estimation approach was described
briefly in McElwaine and Tiefenbacher (2003) for two-
element sensors. In this paper we show how the same
method can be applied to four-element sensors. The field of
reflectance fðxÞ is regarded as constant in time and corres-
ponds to the value one element of our sensor would output if
placed at a location x. For simplicity we do not include tem-
poral variation in f, but this is not significant as the differ-
ences are very similar to changes in velocity. Let fiðtÞbe the
signal received by sensor i at time t which is F ðyðtÞÞ where
yðtÞ is the relative trajectory of the centre of the sensor to the
flowing medium. The method consists of minimizing the
Lagrangian

L ¼
X
i

Z
½fið�iðtÞÞ � fðtÞ�2dt

þ2

X
i

Z
d�iðtÞ
dt

� �2

dt:

ð28Þ

The variables to solve for are �i, the lags at each sensor, and
fðtÞ, the estimated underlying value at the centre of the sen-
sor. The first terms of L penalize the discrepancy between
the lagged sensor signals and the estimated signal f. If there
were no constraint on the lag functions then these could be
made zero but the lags would be unphysical. For this to be
well posed, certainly the �iðtÞ must have no frequencies
higher than the sampling frequencies. In fact we expect only
slow changes in the velocity, so a simple term that enforces
this has been chosen, which has nice features. It is analyti-
cally tractable and corresponds to linear interpolationwhen
there is little information present in the signal. 
 is a par-
ameter that determines the strength of this smoothing. At
least one additional constraint on the �iðtÞ is also necessary.
Using our results from the previous sectionwhich show that
estimators based only on �1 ¼ � cos� and �2 ¼ � sin� give
good results, we use �1ðtÞ ¼ tþ �1=2, �2ðtÞ ¼ t� �1=2,
�3ðtÞ ¼ tþ �2=2 and �4ðtÞ ¼ t� �3=2. It would also be pos-
sible to try to calculate curvature, but imposing an addition-
al constraint simplifies the numerical implementation and
means the the residuals fið�iðtÞÞ � fðtÞ contain muchuseful
information about the accuracy of themethod.The Lagran-
gian (Equation (28)) then becomes

L ¼ 1=2

Z (
½f1ðtþ �1=2Þ � fðtÞ�2þ ½f2ðt� �1=2Þ � fðtÞ�2

þ ½f3ðtþ �2=2Þ � fðtÞ�2 þ ½f4ðt� �2=2Þ � fðtÞ�2

þ 

ðd�1Þ
dt

� �2

þ 

ðd�2Þ
dt

� �2
)
dt; ð29Þ

where the dependence of �i on time has been dropped. Solv-
ing this variational problem is straightforward. The esti-
mated field value f is simply the average of the lagged
measurements

fðtÞ ¼ 1� 4½f1ðtþ �1=2Þ þ f2ðt� �1=2Þ
þ f3ðtþ �2=2Þ þ f4ðt� �2=2Þ�: ð30Þ

If there is additional knowledge about the underlying field f
this could be incorporated here, but failing that the mean
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field can be eliminated. The Euler^Lagrange equations for
�i are then


€�1 ¼ _f1ð3f1 � f2 � f3 � f4Þ=4� _f2ð3f2 � f1 � f3 � f4Þ=4
ð31Þ


€�2 ¼ _f3ð3f3 � f1 � f2 � f4Þ=4� _f4ð3f4 � f1 � f2 � f3Þ=4;
ð32Þ

where each fi is evaluated at the appropriate lagged time
t� �i. This can be solved efficiently numerically using an
implicit multi-grid scheme.

A rigorous analysis of these equations will not be given
here, but an indication of the nature of the solutions and the
errors involvedwill be briefly discussed.The reading at each
sensor is fiðtÞ ¼ fðxi � yðtÞÞ. Taylor expanding each fi in
Equation (31) to lowest order about �yðtÞ gives


€�1 ¼ 1=2ðv � rfÞ2�1 � 1=2Lðv � rfÞðx̂ � rfÞ ð33Þ

€�2 ¼ 1=2ðv � rfÞ2�2 � 1=2Lðv � rfÞðŷ � rfÞ; ð34Þ

where x1 � x2 ¼ Lx̂ and x3 � x4 ¼ Lŷ. The equations for
�i are now decoupled. Letting gðtÞ ¼ jrfð�yðtÞÞj2, the
signal power, and gðtÞn̂ðtÞ ¼ rfð�yðtÞÞ, the equation for
�1 can then be written

€�1 ¼
gðv � n̂Þ2

2

�1 � L

ðx̂ � n̂Þ
ðv � n̂Þ

� �
: ð35Þ

The righthand side of this vanishes when �1 ¼
Lðx̂ � n̂Þ=ðv � n̂Þ, which is precisely the condition (neglect-
ing acceleration) in Equation (7), that is the lag time for
the arrival of an edge with normal direction n̂ travelling
with velocity v. Departures away from this value are gov-
erned by the size of gðv � n̂Þ2=2
.When this is large, �1 will
closely match the lag.When it is smaller, larger deviations
will be allowed and �1 will be an average of this and be ap-
proximately linear. This equation can be analyzed by split-
ting up the multiplier into its mean part and its varying
part. If f is isotropic, then g and n̂ are independent, and n̂
is distributed uniformly on the unit circle. So defining
�2ðtÞ ¼ E ½gðv � n̂Þ2=2
� ¼ v2ðtÞE ½jrf j2� =4
, which de-
pends only weakly on t through changes in v, and
�ðtÞ ¼ ½gðv � n̂Þ2=2
� � �2. Equation (35) becomes

€�1 � �2�21 ¼ ��1 � Lgðx̂ � n̂Þðv � n̂Þ: ð36Þ

The Green’s function for the lefthand side (that decays for
large jtj) is Gðs; tÞ ¼ �e��js�tj=2�, neglecting variation
in �. So we can write

�1ðtÞ ¼
Z 1

�1

e��ðtÞjs�tj

2�ðsÞ ½LgðsÞðx̂ � n̂ðsÞÞðvðsÞ � n̂ðsÞÞ

� �1ðsÞ�ðsÞ� ds: ð37Þ

This equation can be used to calculate the statistics of �1ðtÞ.
It is most easily understood in the frequency domain. The
Fourier transform of the Green’s function is �2=ð�2 þ !2Þ,
that is, it is a low-pass filter with cut-off frequency �. If the
dominant frequencies in n̂ðtÞ are above this then they canbe
averaged to give

�1ðtÞ �
Z 1

�1
�=2e��js�tj L

x̂ � vðsÞ
v2ðsÞ ds � L

x̂ � vðsÞ
v2ðsÞ : ð38Þ

The approximation for �2 is similar, so that up to terms in

acceleration we have the same results as in Equations (22)
and (23); thus the velocity can be estimated as

v ¼ L
x̂�1 þ ŷ�2
�21 þ �22

: ð39Þ

The above heuristic justification can be made precise and
the errors quantified, but the analysis is complicated and
the brief discussion above contains the salient features.

Though the analysis and implementation for the con-
tinuous method described in Equation (28) are more com-
plicated than for the traditional approach of calculating
lags at fixed times using a fixed window, there are several
important advantages of this approach.

1. The primary errors due to acceleration enter through
the time-scale defined by the traverse size of the sensor
L=v, not the window width needed to calculate the
cross-correlation. The acceleration errors will therefore
be an order of magnitude smaller. The smoothing
needed to overcome the aperture effect acts as a low-pass
filter removing high frequencies in the velocity, rather
than introducing bias. If there is prior information
about the wavelengths in fðxÞ, for example if the par-
ticle size distribution is known, the regularization term

 _�2 (equivalent to !2 in the frequency domain) can be
changed so as to produce any desired filter.

2. The effective smoothing width 1=� depends inversely on
the signal strength, so that velocity is automatically
interpolated where the signal is weak and errors are re-
duced where the signal is strong.

3. The cross-correlation approach can fail by finding an in-
correct globalmaximum that is unrelated to the lag time
(McElwaine andTiefenbacher, 2003), resulting in effect-
ively infinite expected mean squared error.The errors in
this continuous approachwill only increase gradually as
the signal degrades and the mean squared error will
always be finite until there is total lack of correlation.

4. DESIGNCRITERIA FOR SENSORS

The design of a sensor to calculate velocities depends on
several factors. In order to calculate velocities it is necessary
to average over several incident edges at different angles, but
as the averaging time increases, higher frequencies in
velocity are filtered out. Thus maximum sensitivity will be
achieved by considering the smallest wavelengths, Lc, that
exist in the reflectance field fðxÞ.This will be similar to the
size of the smallest particles. For the sensor elements to
detect these wavelengths the diameter of the elements
should be the same or smaller.The area of the element acts
as a low-pass spatial filter, so in order to satisfy the Nyquist
criterion and prevent aliasing, the sensors spacing should be
the same. That is, there should be no gaps between the
active parts of the elements that are larger than the smallest
wavelength. For flowing snow the smallest particles may be
<1mm in size and it may not be possible to build such a
small sensor, though this might be achievable using fibre-
optic cables to connect to the photo-transistors. The
sampling frequency should also be chosen to satisfy the Ny-
quist requirement. The highest frequencies that will be
observed are � vmax=ðdþ LcÞ, where d is the diameter of
the active part of a sensor element. (If the sensors elements
are not round, this should be the smallest dimension
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through the element centre.) The sampling frequency
should be chosen to be at least twice this, but going much
higher will add no further information. The lag times can
easily be calculated with super-resolution (accuracy greater
than the sampling frequency) by interpolating (over-
sampling) the signal. Finally if the flow has a preferred dir-
ection, such as parallel to the ground, it is best to orient this
as shown in Figure 2, which is optimized for horizontal or
vertical directions. This has several advantages. Most of
the errors are minimized in this direction.The acceleration
or curvature can be calculated as the same part of the flow
passes over sensors at three different times.The spatial alias-
ing also depends on the angle, as it is less likely that particles
will pass through the gaps. Another counter-measure, if spa-
tial aliasing cannot be prevented, is to reduce this vertical
dimension Ly as shown in Figure 3. This will reduce most
errors when jvxj > jvyj, but increase errors when the
velocity is closer to vertical.

These design criteria can easily be summarized in terms
of the power spectrum (the energy at different wavelengths)
of the reflectance field f. Energy at wavelengths less than
the averaging diameter d of each photo-transistor is filtered
out. Energy at wavelengths between d and the sensors spa-
cing L appears as noise. Energy at wavelength greater than
the spacingL is the useful signal energy. Since there are also
fixed sources of error, the maximum signal-to-noise ratio is
obtained by having d ¼ L ¼ Lc=2.The sampling frequency
needs to be at least 2Lc=v. For laboratory chute experiments
with snow, Lc � 1mm and v < 10m�1, so that the
sampling frequency should be around 20KHz and the sen-
sors 1mm in size. For a real snow avalanche the sampling
frequency would need to be higher, around 50 kHz. Photo-
transistors are generally larger than 1mm, but by using
fibre-optic cables, or a charge-coupled device (CCD) chip
rather than photo-transistors, it should be possible to build
such a sensor. If existing sensors are to be used, the best
choice would be to mount four photo-transistors as close to-
gether as possible, perhaps with a defocusing lens in order to
spatial average over the sensor spacing L.

5. CONCLUSIONS

There are many possible sources of error in calculating

velocities from optoelectronic sensors. This paper has de-
scribed how the careful design of such instruments and
analysis procedures can reduce and quantify the errors.
Further improvements could be made by investigating in
detail the nature of the reflectance field fðxÞ and construct-
ing a parametric model that incorporates information such
as the particle size distribution. In a flow of identical granu-
lar particles, this would be straightforward and estimates of
the local flow density could easily be made, by reducing the
smoothing 
 and calculating individual normal velocities
and angles, rather than attempting to find the velocity aver-
aged over several particles and orientations. Using a sensor
with five elements would allow the curvature and size of the
particles also to be reliably estimated, which would be im-
portant for a more complicated material such as snow when
the sizes are not known.
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Fig. 2. Schematic of a symmetric four-element sensor, where

L ¼ Lx ¼ Ly and the elements are diameter d:

Fig. 3. Schematic of an asymmetric four-element sensor, opti-

mized for horizontal flow.
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